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Abstract
In this paper, we prove general fixed point theorems for self-maps of a partially
ordered complete metric space which satisfy an implicit type relation. Our method
relies on constructive arguments involving Picard type iteration processes and our
uniqueness result uses comparability arguments. Our results generalize a multitude of
fixed point theorems in the literature to the context of partially ordered metric spaces.

1 Introduction
Fixed point theorems in nonlinear analysis have become indispensable tools in a vast area
of the analysis ranging from proving the existence of solutions of certain partial differen-
tial equations to nonlinear optimization and related fields (see, for instance, []). Having
their origin in the classical paper of Stefan Banach [] as the ‘Banach Contraction Map-
ping Theorem’ (which is by now so classical that it appears in almost every book on Func-
tional Analysis), fixed point theorems have attracted a lot of attention during the past
five decades. This is mainly due to the fact that they have found many applications to the
problems in applied mathematics such as boundary value problems in differential equa-
tions. The ‘Banach Contraction Mapping Theorem’ was generalized by many authors to
mappings that satisfy much weaker conditions (see, for instance, [–]). Banach’s theo-
rem was also extended to mappings which have an invariant subset that is finite, namely
that have ‘periodic points’ [, ]. Another direction where the theorem was extended is
for more than one mapping which have common fixed points [–]. In recent years, Ba-
nach’s theoremwas extended in part to partially orderedmetric spaces by Ran andReuring
[] in order to obtain a solution of a matrix equation. Nieto and López [] generalized
the result of Ran and Reuring by removing the continuity condition of the mapping. They
applied their result to get a solution of a boundary value problem. The efficiency of these
kind of extensions of fixed point theorems in such kind of problems, as it is well known, is
due to the fact that most real valued function spaces are partially ordered metric spaces.
Alber and Guerre-Delabriere [] introduced the notion of weak φ-contraction: A self-

mapping T on a metric space X is called weak φ-contraction if φ : [,∞) → [,∞) is a
strictly increasing map with φ() =  and

d(Tx,Ty) ≤ d(x, y) – φ
(
d(x, y)

)
for all x, y ∈ X.

In fact, it is a generalization of �-contraction, introduced by Boyd and Wong []: A
self-mapping T on a metric space X is called �-contraction if there exists an upper semi-
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continuous function � : [,∞)→ [,∞) such that

d(Tx,Ty) ≤ �
(
d(x, y)

)
for all x, y ∈ X.

We underline that for a lower semi-continuous mapping φ, the function �(u) = u –
φ(u) coincides with Boyd and Wong types. These two notions, �-contraction and weak
φ-contraction, have been studied heavily by many authors in fixed point theory (see, e.g.,
[–]).
Our aim in this paper is to obtain fixed point theorems for mappings acting on partially

ordered complete metric spaces which satisfy certain implicit relations. There are indeed
fixed point theorems for mappings satisfying such kind of relation in the literature; how-
ever, all of these fixed point theorems are on complete metric spaces that are not partially
ordered spaces. The novelty of this work lies in generalizing these fixed point theorems to
partially ordered spaces.
Throughout this paper, (X,d,�) denotes a partially ordered metric space where (X,�)

is a partially ordered set and (X,d) is a metric space for a given metric d on X. A partially
ordered metric space (X,d,�) is called regular, if for each convergent sequence {xn}∞n= ⊂
X, the following condition holds: either
• if {xn} is a non-increasing sequence in X such that xn → x∗ implies x∗ � xn ∀n ∈N,

or
• if {xn} is a non-decreasing sequence in X such that xn → x∗ implies xn � x∗ ∀n ∈N.
Let� be the class of all strictly increasing lower semi-continuous functions φ : [,∞) →

[,∞) with φ() = . Let F denote the class of all implicit continuous functions F :
(R+) →R. We shall consider the following subclasses of F:

(F) F ∈ F is non-increasing in the fifth variable, and F(u, v, v,u,u + v, ) ≤  for u, v > 
implies that there exists a function φ ∈ � such that u ≤ v – φ(v).

(F) F ∈ F is non-increasing in the fifth variable, and F(u, v, v,u,u+v, )≤  for u, v >  =⇒
∃k ∈ [, ) such that u≤ kv.

(F) F ∈ F is non-increasing in the fourth variable, and F(u, v, ,u + v,u, v) ≤  for u, v >
 =⇒ ∃k ∈ [, ) such that u ≤ kv.

(F) F ∈ F is non-increasing in the third variable, and F(u, v,u + v, , v,u) ≤  for u, v >
 =⇒ ∃k ∈ [, ) such that u ≤ kv.

(F) F ∈ F such that F(u,u, , ,u,u) >  for all u > .

See [, ] for examples of functions F ∈ F satisfying the above conditions F-F.

2 Main results
We start this section with the first main result.

Theorem  Let (X,d,�) be a partially ordered metric space which is complete. Assume
that T : X → X is a continuous map satisfying x � Tx ∀x ∈ X, and let T satisfy

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F ∩ F. Then T has a fixed point.
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Proof Let x ∈ X be arbitrary. Since T is non-decreasing, we have x � Tx. We define a
sequence {xn} in X as follows:

xn = Txn– for n≥ . (.)

Considering thatT is a non-decreasingmapping togetherwith (.), we have x = Tx � x.
Inductively, we obtain

x � x � x � · · · � xn– � xn � xn+ � · · · . (.)

Assume that there exists n such that xn = xn+. Since xn = xn+ = Txn , then T has a
fixed point which ends the proof. Suppose that xn �= xn+ for all n ∈ N. Thus, by (.), we
have

x ≺ x ≺ x ≺ · · · ≺ xn– ≺ xn ≺ xn+ ≺ · · · . (.)

Taking (.) into account, we derive that

F
(
d(xn,Txn),d(xn–,xn),d(xn–,xn),d(xn,xn+),d(xn–,xn+), 

) ≤ . (.)

By the triangle inequality, we have

d(xn–,xn+)≤ d(xn,xn+) + d(xn–,xn).

Since F is non-increasing in the fifth variable, the inequality (.) turns into

F
(
d(xn,Txn),d(xn–,xn),d(xn–,xn),d(xn,xn+),d(xn,xn+) + d(xn–,xn), 

) ≤ ,

and by using the property of F, there exists a function φ ∈ � such that

d(xn,xn+) ≤ d(xn,xn–) – φ
(
d(xn,xn–)

)
≤ d(xn,xn–), (.)

which implies that {d(xn,xn+)}∞n= is a non-increasing sequence of positive numbers.
Hence, there exists L≥  such that

lim
n→∞d(xn,xn+) = L. (.)

We shall show that L = . Suppose, on the contrary, that L > . Since φ is a lower semi-
continuous function, we have

φ(L) ≤ lim inf
n→∞ φ

(
d(xn,xn+)

)
.

Letting n → ∞ in (.), we derive that

L ≤ L – lim inf
n→∞ d(xn,xn+)≤ L – φ(L), (.)
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which is possible only if φ(L) = . It is a contradiction. Hence L = , that is,

lim
n→∞d(xn,xn+) = . (.)

We shall show that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is
not a Cauchy sequence. This means that there also exists ε >  for which we can find
subsequence {xn(k)}, {xm(k)} of {xn} with n(k) >m(k) > k such that

d(xn(k),xm(k))≥ ε. (.)

We can choose n(k) corresponding to m(k) in a way that it is the smallest integer with
n(k) >m(k) > k such that

d(xn(k)–,xm(k)) < ε. (.)

By using the triangle inequality together with (.),

d(xn(k),xm(k)) ≤ d(xn(k),xn(k)–) + d(xn(k)–,xm(k))

≤ d(xn(k),xn(k)–) + ε. (.)

Combining (.) and (.),

ε ≤ d(xn(k),xn(k)–) + ε.

Letting k → ∞ in the inequality above together with (.), we derive that

lim
k→∞

d(xn(k),xm(k)) = ε, (.)

ε ≤ d(xn(k),xm(k)) ≤ d(xn(k),xn(k)–) + d(xn(k)–,xm(k)–) + d(xm(k)–,xm(k)), (.)

d(xn(k)–,xm(k)–) ≤ d(xn(k),xn(k)–) + d(xn(k),xm(k)) + d(xm(k)–,xm(k)). (.)

Combining (.) and (.), we get

ε – d(xn(k),xn(k)–) – d(xm(k)–,xm(k)) ≤ d(xn(k)–,xm(k)–)

≤ d(xn(k),xn(k)–) + d(xn(k),xm(k))

+ d(xm(k)–,xm(k)). (.)

Letting k → ∞ in (.) together with (.) and (.), we find that

lim
k→∞

d(xn(k)–,xm(k)–) = ε. (.)

On the other hand, by using the triangle inequality,

d(xn(k)–,xm(k)–) ≤ d(xn(k),xn(k)–) + d(xn(k),xm(k)–), (.)
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which yields that

d(xn(k)–,xm(k)–) – d(xn(k),xn(k)–) ≤ d(xn(k),xm(k)–) < ε. (.)

Letting k → ∞ in (.) together with (.) and (.), we obtain that

lim
k→∞

d(xn(k)–,xm(k)) = ε. (.)

Analogously, we have

lim
k→∞

d(xn(k),xm(k)–) = ε. (.)

Since (.), we get

F

(
d(Txn(k)–,Txm(k)–),d(xn(k)–,xm(k)–),d(xn(k)–,Txn(k)–),
d(xm(k)–,Txm(k)–),d(xn(k)–,Txm(k)–),d(xm(k)–,Txn(k)–)

)
≤ ,

which is equivalent to

F

(
d(xn(k),xm(k)),d(xn(k)–,xm(k)–),d(xn(k)–,xn(k)),
d(xm(k)–,xm(k)),d(xn(k)–,xm(k)),d(xm(k)–,xn(k))

)
≤ . (.)

By continuity of F , letting k → ∞ in (.), we get

F(ε, ε, , , ε, ε) ≤ , (.)

which contradicts F. Hence, {xn} is a Cauchy sequence. Since X is a complete metric
space, we have limxn = x∗ ∈ X. Since T is continuous,

x∗ = lim
n→∞xn+ = lim

n→∞Txn = T
(
lim
n→∞xn

)
= Tx∗. �

We remove the continuity condition of the mapping T in Theorem  by replacing the
condition that X is regular.

Theorem Let (X,d,�) be a partially orderedmetric space which is complete and regular.
Assume that T : X → X is a non-decreasing map, and let T satisfy

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F ∩ F. Then T has a fixed point.

Proof Following the line in the proof of Theorem , we get a Cauchy sequence {xn} as it is
defined above. Since X is a complete metric space, we have limxn = x∗ ∈ X. Since (X,d) is
regular, we have x∗ � xn ∀n ∈ N.
Hence, taking x := xn and y := x∗ in equation (.), we have

F
(
d
(
Txn,Tx∗),d(

xn,x∗),d(xn,Txn),d(
x∗,Tx∗),d(

xn,Tx∗),d(
x∗,Txn

)) ≤ 
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for all n ∈N. Since F is continuous, letting n→ ∞, we have

F
(
d
(
x∗,Tx∗), , ,d(

x∗,Tx∗),d(
x∗,Tx∗), ) ≤ .

Hence, by F, we have d(x∗,Tx∗)≤ , which implies that x∗ = Tx∗. �

We generalize the main result of Berinde [] in the framework of partially ordered
metric spaces.

Theorem  Let (X,d,�) be a partially ordered metric space which is complete. Assume
that T : X → X is a continuous map satisfying x � Tx ∀x ∈ X, and let T satisfy

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F. Then
(p) Fix(T) �= ∅;
(p) for any x ∈ X , the Picard iteration {xn}∞n= converges to a fixed point x∗ ∈ X of T ;
(p) the following estimate holds:

d
(
xn+i–,x∗) ≤ ki

 – h
d(xn,xn–), n = , , , . . . , i = , , . . . ;

(p) if additionally F ∈ F, then the rate of convergence of the Picard iteration is given by

d
(
xn+,x∗) ≤ kd

(
xn,x∗).

Proof Let x ∈ X be arbitrary. Since T is non-decreasing, we have x � Tx. We define a
sequence {xn} in X as follows:

xn = Txn– for n≥ . (.)

Considering that T is a non-decreasing mapping together with (.), we have x = Tx �
x. Inductively, we obtain

x � x � x � · · · � xn– � xn � xn+ � · · · . (.)

Assume that there exists n such that xn = xn+. Since xn = xn+ = Txn , then T has a
fixed point which ends the proof. Suppose that xn �= xn+ for all n ∈ N. Thus, by (.), we
have

x ≺ x ≺ x ≺ · · · ≺ xn– ≺ xn ≺ xn+ ≺ · · · . (.)

Taking (.) into account, we derive that

F
(
d(xn,Txn),d(xn–,xn),d(xn–,xn),d(xn,xn+),d(xn–,xn+), 

) ≤ . (.)

By the triangle inequality, we have

d(xn–,xn+)≤ d(xn,xn+) + d(xn–,xn).

http://www.journalofinequalitiesandapplications.com/content/2012/1/217
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Since F is non-increasing in the fifth variable, the inequality (.) turns into

F
(
d(xn,Txn),d(xn–,xn),d(xn–,xn),d(xn,xn+),d(xn,xn+) + d(xn–,xn), 

) ≤ ,

and by F, we have ∃k ∈ [, ) such that

d(xn,xn+) ≤ kd(xn,xn–), (.)

which implies that {xn}∞n= is a Cauchy sequence. Since X is a complete metric space, we
have limxn = x∗ ∈ X. Since T is continuous,

x∗ = lim
n→∞xn+ = lim

n→∞Txn = T
(
lim
n→∞xn

)
= Tx∗

and this proves (p).
(p): follows by the proof of (p).
(p): follows by equation (.).
(p): Taking x := xn and y := x∗ in equation (.), we have

F
(
d
(
xn+,Tx∗),d(

xn,x∗),d(xn,xn+), ,d(
xn,Tx∗),d(

x∗,xn+
)) ≤ .

By the triangle inequality, we have d(xn,xn+) ≤ d(xn,x∗) + d(x∗,xn+), and hence by as-
sumption F, we have

F
(
d
(
xn+,x∗),d(

xn,x∗),d(
xn,x∗) + d

(
x∗,xn+

)
, ,d

(
xn,Tx∗),d(

x∗,xn+
)) ≤ .

Again, by assumption F, this implies that ∃k ∈ [, ) such that d(xn+,x∗) ≤ kd(xn,x∗).
�

Remark  Let F ∈ F such that F(t, t, t, t, t, t) = t – kt where k ∈ [, ). If we take
F = F inTheorem, thenwe get themain result of Ran andReurings (Theorem. of []).

We get the same results by removing the continuity condition of the mapping T in The-
orem  and by adding the condition that X is regular.

Theorem Let (X,d,�) be a partially orderedmetric space which is complete and regular.
Assume that T : X → X satisfies x� Tx ∀x ∈ X and

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F. Then
(p) Fix(T) �= ∅;
(p) for any x ∈ X , the Picard iteration {xn}∞n= converges to a fixed point x∗ ∈ X of T ;
(p) the following estimate holds:

d
(
xn+i–,x∗) ≤ ki

 – h
d(xn,xn–), n = , , , . . . , i = , , . . . ;

http://www.journalofinequalitiesandapplications.com/content/2012/1/217


Gül and Karapınar Journal of Inequalities and Applications 2012, 2012:217 Page 8 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/217

(p) if additionally F ∈ F, then the rate of convergence of the Picard iteration is given by

d
(
xn+,x∗) ≤ kd

(
xn,x∗).

Proof Following the line in the proof of Theorem , we get a Cauchy sequence {xn} as it
is defined above. Since X is a complete metric space, we have limxn = x∗ ∈ X. Since (X,d)
is regular, we have x∗ � xn ∀n ∈ N. Hence, taking x := xn and y := x∗ in equation (.), we
have

F
(
d
(
Txn,Tx∗),d(

xn,x∗),d(xn,Txn),d(
x∗,Tx∗),d(

xn,Tx∗),d(
x∗,Txn

)) ≤ 

for all n ∈N. Since F is continuous, letting n→ ∞, we have

F
(
d
(
x∗,Tx∗), , ,d(

x∗,Tx∗),d(
x∗,Tx∗), ) ≤ .

Hence, by F, we have d(x∗,Tx∗) ≤ , which implies that x∗ = Tx∗ and this proves (p).
The rest of the proof is the same as the proof of Theorem . �

Remark  Let F ∈ F such that F(t, t, t, t, t, t) = t –kt where k ∈ [, ). If we take F =
F in Theorem , then we get the main result of Nieto and Rodríguez-López (Theorem .
of []).

Remark  If we take φ(t) = kt in Theorem  (respectively, Theorem ) where k ∈ [, ) we
get (p) of Theorem  (respectively, Theorem ).

3 Uniqueness of a fixed point
In this section, we investigate the uniqueness of fixed points in the theorems above. In or-
der to assure the uniqueness of fixed points, we need the following notion on the partially
ordered metric space (X,�) which is called the comparability condition:

(C) For every x, y ∈ X , there exists z ∈ X such that either x� z and y � z or z � x and z � y.

We also require the following condition:

(F) F ∈ F is non-increasing in the fourth variable and such that F(u, v, ,u + v,u, v) ≥ 
for all u, v > .

Adding condition (C) and F to the hypotheses of Theorem , we obtain the uniqueness
of the fixed point:

Theorem  Let (X,d,�) be a partially ordered metric space which is complete and which
satisfies (C). Assume that T : X → X is a continuous map satisfying x � Tx ∀x ∈ X, and let
T satisfy

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F ∩ F ∩ F. Then T has a unique fixed point.
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Proof Due to Theorem , we guarantee that T has a fixed point. Suppose x and y are fixed
points of T with x �= y.
We need to examine two cases:
Case (i): If x and y are comparable, then

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

which is equivalent to

F
(
d(x, y),d(x, y), , ,d(x, y),d(x, y)

) ≤ , (.)

which contradicts F. Hence x = y.
Case (ii): If x and y are not comparable, then by (C) there exists z such that x � z and

y� z. Then

F
(
d(Tx,Tz),d(x, z),d(x,Tx),d(z,Tz),d(z,Tx),d(x,Tz)

) ≤  for all z � x, (.)

which is equivalent to

F
(
d(x,Tz),d(x, z), ,d(z,Tz),d(x, z),d(x,Tz)

) ≤ . (.)

By F, F is non-increasing in the fourth variable, and hence we have

F
(
d(x,Tz),d(x, z), ,d(z,x) + d(x,Tz),d(x,Tz),d(z,x)

) ≤ , (.)

which contradicts F. Hence, we have x = y. �

Adding condition (C) and F to the hypotheses of Theorem , we obtain the uniqueness
of the fixed point.

Theorem Let (X,d,�) be a partially orderedmetric space which is complete and regular.
Let (X,d,�) also satisfy condition (C). Assume that T : X → X satisfies x � Tx ∀x ∈ X and

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F ∩ F ∩ F. Then T has a unique fixed point.

Proof The proof is the same as the proof of Theorem . �

Adding condition (C) to the hypotheses of Theorem , we obtain the uniqueness of the
fixed point:

Theorem  Let (X,d,�) be a partially ordered metric space which is complete. Let
(X,d,�) also satisfy condition (C). Assume that T : X → X is a continuous non-decreasing
map, i.e., x � Tx ∀x ∈ X, and let T satisfy

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F ∩ F. Then

http://www.journalofinequalitiesandapplications.com/content/2012/1/217
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(p) T has a unique fixed point;
(p) for any x ∈ X , the Picard iteration {xn}∞n= converges to a fixed point x∗ ∈ X of T ;
(p) the following estimate holds:

d
(
xn+i–,x∗) ≤ ki

 – h
d(xn,xn–), n = , , , . . . , i = , , . . . ;

(p) if additionally F ∈ F, then the rate of convergence of the Picard iteration is given by

d
(
xn+,x∗) ≤ kd

(
xn,x∗).

Proof The proof is the same as the proof of Theorem . �

Adding condition (C) and F to the hypotheses of Theorem , we obtain the uniqueness
of a fixed point:

Theorem  Let (X,d,�) be a partially ordered metric space which is complete and regu-
lar. Let (X,d,�) also satisfy condition (C). Assume that T : X → X satisfies x � Tx ∀x ∈ X
and

F
(
d(Tx,Ty),d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

) ≤  for all x � y, (.)

where F ∈ F ∩ F. Then
(p) T has a unique fixed point;
(p) for any x ∈ X , the Picard iteration {xn}∞n= converges to a fixed point x∗ ∈ X of T ;
(p) the following estimate holds:

d
(
xn+i–,x∗) ≤ ki

 – h
d(xn,xn–), n = , , , . . . , i = , , . . . ;

(p) if additionally F ∈ F then the rate of convergence of the Picard iteration is given by

d
(
xn+,x∗) ≤ kd

(
xn,x∗).

Proof The proof is the same as the proof of Theorem . �
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