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Abstract

This paper deals with the construction of anisotropic curl-free wavelets that satisfy
the tangent boundary conditions on bounded domains. Based on some assumptions,
we first obtain the desired curl-free Riesz wavelet bases through the orthogonal
decomposition of vector-valued 2. Next, the characterization of Sobolev spaces is
studied. Finally, we give the concrete construction of wavelets satisfying the initial
assumptions.
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1 Instruction

Due to their potential use in many physical problems, like the simulation of incompressible
fluids or electromagnetism, curl-free wavelet bases have been advocated in several papers
and all results focus on the cases of R? and R® [1-4]. Moreover, it is questionable whether
they are appropriately called bases and whether they can be used to characterize Sobolev
spaces. However, it is reasonable to study the corresponding wavelet bases on bounded
domains because of some practical use. At the same time, the boundary conditions, the
stability and the characterization of Sobolev spaces are also necessary in some applica-
tions such as adaptive wavelet methods. In references [5, 6], anisotropic divergence-free
wavelets which satisfy the specific boundary conditions on the hypercube are studied. In-
spired by the fact that a div-free space and a curl-free space form the orthogonal Helmholtz
decomposition, we mainly study the anisotropic curl-free wavelet bases satisfying the tan-
gent boundary conditions on bounded domains in this paper, which is organized as fol-
lows. In Section 2, based on some assumption, the desired curl-free wavelets are con-
structed through the orthogonal decomposition of vector-valued L2. Section 3 is devoted
to studying the characterization of Sobolev spaces. We give the concrete construction of
wavelets satisfying the initial assumption in the final section.

For two 2D vectors & = (i1, )T and v = (v1,v5)7, & x v is defined as
UXV=uUVy — UsVy.
Then for #(x,y) = (u1(x,y), uz(x,7))T, we define the 2D curl-operator by
Clzﬁ"ll_;t =: (31, 82) X Ijl = 81142 — 321/!1
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and for #(x,,2) = (u1, 3, u3)”, the 3D curl-operator is defined by
curlii = (31,35, 33) X 1 = (dpu3 — 3z, D31y — i3, kg — Do) .

2 Decomposition of L2(/")"
In this part, we will construct curl-free wavelets that satisfy tangent boundary conditions
by the orthogonal decomposition of vector-valued L.

Let I = (0,1). For n = 2,3, we firstly define the following spaces:

H(curl;[") = {Zt e LZ(I”)n scurlu € L2(I2) or L2(13)3},
Ho(curl; I") =: {ii € H(curl;I") : ik x 1 = 0 or 0 on boundary r},
H(I") =: Ho(curl0; I") =: {& € Ho(curl; I") : curlic = 0 or 6}
For a scalar function ¢(x, y), define c7>rlqb =: (320, —31¢)". Then integration by parts shows
H(1?) LewrtH'(12) and M (1%) L curtH (1),

Let L2 = L2(I), L*° =: {u e L% fol u(x) dx = 0}. Furthermore, set

2(r2)?

L2(13)3 I QPRI X PQLP QL2 x L2 QL2 QLY

=L*QL* x*®L*;

B[ =H{I"nNI?*e - ®L*), n=12
For = 3, we define H}(I®) =: H*(I*) N (L* ® L*° ® L>°) and
BP) =HE)n(I*el*L*),  H(P)=H)n(I*eL* o L.

Finally, let (") =: HU") N L2(I")", n = 2,3.

The following result will be proved in Section 4:

Assumption 2.1 lhge exist bi-orthogonal Riesz bases W = \Iléz),l U ‘IJEZ'an and U0 =
\IIC(Z)ﬂ U \Ilc(zlznp for L2(I")" (of wavelet type) such that

v CHIY) (n=23), B2, carlf\() or

comp

oo curl(]qll(ls) X ﬁ%(lg) x I/-?;(IS))

comp

Proposition 2.1 It holds that ) (175(%}”,, and \TJSZ,W are Riesz bases for ﬁ(l "y (n=2,3),

curl’

67;11":[1(12) and curl(HN(I?) x HY(I?) x HY(I®)), respectively.
Proof Forany i1 € H(I™) (n = 2,3), we know

(%) LeurlH (1) and (1) Leurl(HL(IP) x HY (1) x HA(1%)),
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then i = (&, U) 12uy W = (&, i) 12gnyn Wiy with 17l 2gmyn = 11t B0 12mp 2. Fi
—
nally, it is easy to verify by the definition of cur/ and curl that

crlH(12) c 12(1?)” and  curl(AL(1®) x HA(1?) x AL(1%)) € L2(13)’,

the remaining results can be proved similarly. O

Proposition 2.2 The following decompositions hold:

(1) = H(P) &* curlH (12),

12(B)’ = H(PP) @* curl(H}(P) x Hy(I?) x H}(%)).
Proof We only prove the case of n = 3, the others can be proved similarly. Since

= 12 g0 3, 3) ARG v®  _ 7 w® a®
u= (u’ wcurl>L2(13)3 \churl + (u’ \IICOWIP>L2(13)3 \Dcump - <Ll, \IJCOWIP>L2(13)3 \IJCOV”p

for any i € H(I%)*, then H(I*)* C curl(H(I®) x HL)(1%) x HL(1?)). On the other hand,
since H(I?) L curl(HN(I?) x HL(I?) x H3(1?)), then curl(H-(I%) x HA(I%) x HY (%)) € H(?)*.
Therefore, L2(I3)? = H(I3) &+ curl(HM(I®) x HLX(I?) x HL(I?)). O

Now, we consider the orthogonal decomposition of L2(I")". Let L> = L*° @+ A. Then
there are the following orthogonal decompositions:
R2QLI-I*QL’®" AQL2 2RI -I’QLX & 12® A;
L2®L2®L2:L2,0®L2®L2®LA®L2®L2;
PRUQL=QL" L I>’®A®L%;

PPQI’QL*=1’QL*QL* o1 I’ QL*>® A.

Therefore, we obtain the following decomposition:

= A®IL? 0
12() = 12(1?)” &+ ot ) 2.1
. ARL*®L?
Py =12(B)’ o* 0
0
0 0
ot | PAQL? | ot 0 . (2.2)
0 I’QL*® A

o — ~

By Proposition 2.2, LX(I2)? = H(?) & curlH(1?), L2(IP) = H(®) & curl(H () x
]7%(13) X I’-E(IS)). Moreover,

A®L? —
®© , 0 C curlHl(Iz),
0 I’® A
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AQRL*QL? 0 0
0 N PeasLl?|, 0 C curlH'(P°)°.
0 0 L’QL>® A

Finally, we obtain L2(1%)? = H(I%) @ curlH'(I?) and L2(I%)? = H(I%) &" curlH\(P)?.
Now, we will construct Riesz bases for H(I") (n = 2,3), C7)I"1Hl([2) and curlH'(I?)3. For
n = 2, we define the embedding EE?;,E% :L2(I) — L*(I*) by

(EGv) (o) = viw)er,  (EG)v) (o, x2) = v(x)es,

E{12 LZ(I) ——>L2(I2)2 by (Egi)z}ﬁ)(xl,xz):Zvi(xl,xz)éi.

i=1
For 1 = 3, define Ef}), E{3), E(3) : L*(I) — L*(I°)? by

(Eg’}) V) = v(%2)v(x3)éy, (E%V) = v(x)v(x3)és, (Eg)}v) = v(x)v(x2)é3,

—

E;f?2’3}2L2(13)3__>L2(13)3 by (Eg’zg )(x1,x2,x3 ZVi(xth;xB)_éi.

i=1

It is obvious that Eﬁ‘)Z] =1, Efi)m] = I. Moreover, the image satisfies
(2) 2 g\7 2 T,
ImEy) = (A®L%0)',  ImEp) =(0,L>® A) ;

ImEY) = (A®1*®1%0,0)",  ImEy) =(0,I*® A®L%0),

(3) T
ImEg; =(0,0,L>’QL*® A)".
Furthermore, we know from (2.1) and (2.2) that L*(I?)* = ImE{l} e+ ImE(g)} @+ Im E{1 2)

1*(P)’ = ImE) @ ImE(y) @* ImE) @ ImE, 5.

2 1(72
Since Im(E 12}|H 2)) CH(I?), Im(E 12}ICWIH1 12)) C curlH*(I*) and
Im(EDy 5 | q)) € H(P Im(EY) 7103 X FL 0 < T IH'(P)°
(Eizalae) € 1), (Ett2,3)|curtatt )iy« ysy) C curl ' (I2)°,

we obtain L*(1%)? = Im(EEi)z} l72) & Im(Eg,) i) ot ImE B ) ot ImE%)} and L*(1%)% =
® 3) o 3)
Im(E{ )| 103) ©F IM(E s 3y | curtiid 1)< a3y i g)) O ImE gy & ImEY) &* ImE).
In view of Proposition 2.1, we obtain

CWI (n 2 3) are
Riesz bases for H(I") (n = 2, 3) \Imep UE \I/(1 UE Y and \I/wmp UE \I/ UE LIJ My
Eigi‘l!(l) are Riesz bases for curlH (%) omd curlH (I 3)3, respectively.

Theorem 2.1 In the situation ofAssumption 2.1, the collections W = \I/(”)

Note 2.1 In fact, ﬁ([") =HI") for n=2,3. O . §- = {1%‘ : A € V}, which is defined in

Section 4.
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3 Characterization of H™(I")"
This part will show that the curl-free wavelets constructed above can be used to charac-
terize Sobolev spaces. For n = 2,3 and m € N, define the following Sobolev spaces:

12[5"(1") ={aeH"(I")":iixfi=00rOonTl},
V(I") = Hy' (I") N H(I").
The following result will be verified in Section 4:

Assumption 3.1 The collection ¥ from Assumption 2.1 can be constructed so that,
normalized in H(I")", it is a Riesz basis for

o — —
5

H (I7) = = (I") N L2 (1)
Based on this assumption, we obtain:

Theorem 3.1 In the situation of Assumptions 2.1 and 3.1, the collection V., =: v or-

curl?
malized in H"(I")", is a Riesz basis for V(I").

Proof Since H(I") = ﬁ([”) =HI") ﬂLZ/(}”\)”, then for any u € \7(1"), we know 1z € 1;(6”(1")
and by Assumption 3.1,

i = (4, W)y, Wi H (1)

with ||Zz||%1m(1n)n =) g G ik V) gy - ||1//,7,||?{m(1,1)n, where 5 € W denotes the pri-

mal wavelets corresponding to v/. Furthermore, since # € H(I"), then

= ) I "
u= (M’ qjcurl)l}([”)” \churl in H™ (In)
with ”Zt”?{m(ﬂ)n = Z‘/N/E (I‘;(Yl)l |<;lr I;Z/>L2(1”')"‘|2 . ”wZ”]Z.[m(]n)n g

4 Construction of wavelets
In this section, we will give the construction of wavelets satisfying Assumptions 2.1 and 3.1.

Lemma 4.1 ([5, Corollary 3.3]) Suppose that the collections VW = {{; : . € V}and T = {%\ :
A € V} are bi-orthogonal in L*°(I). In addition, for some m <y <d € N,2 <y < deN,

inf u—v <27y u e HY(I)),
vespan(y:lr|<t) | 2y =27 Natllgay - ( D)
inf w=vlpm <279l (ue BAD),
vespan{%ﬂﬂg@} ” ”L 0 = ” ||H"«'(I) ( ( ))
fors<y, -l 220 ll2gy onspaniy : x| <€},
fors<¥, - llmsw 2251 - 2y on span{y < |x] < £}

Define the collections W* = {y) : A € V} and U= {J; :AeV}by

w;(x)::z‘“/o Vi (y)dy and J;(x)::—z-'l‘{f}k.
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Then it holds that

27 M5y, € V) is a Riesz basis for HYI), selo, ¥),

27yt ev

{2"“31% : & € V) is a Riesz basis for H'(I), s € [0,7),
{ is a Riesz basis for Hy(I), se€[0,y +1),

}
}
J
}

Z_WSIZ; : A € Vi is a Riesz basis for H¥(I), se [0,y -1),

2 1 .
HB(Z) - [L (1))H0(1)]s,2: IS [Or 1]:
H(I)NHy(I), s>1.

Moreover, W* and U~ are bi-orthogonal.

Note 4.1 It has been pointed out in [5] that such wavelet bases can be obtained by taking
standard bi-orthogonal wavelet bases for L2(I) that satisfy the corresponding Jackson and
Bernstein assumptions of d, d, y and y with H(I) and H(]) reading as H%(I) and H*(I)

(see [7]), and then removing those scaling functions without a vanishing moment.
The following result can be proved by the same method as Corollary 3.7 of [5].

Corollary 4.1 For0 <s<y and 0 <$<y -1, the sets

{(Z‘w") 18 ®~-~®1/qk®~~~®1//{n:)L:()q,...,)\n)e%:(V)”},

i=1

()

are Riesz bases for

Dl

%‘1®~~-®$Ak®---®$;n:x:(xl,..‘,xn)eﬁz(vyf}

J kth position
HyQL*Q - QL*QL* QL* Q-+~ Q L*N

kth position [?® -+ Q LI* @ H Q L* ® --- ® L*N

I’ - QL*QLQL*® - Q H)
and
|} kth position
HF®L2®.”®LZ®L2,O®L2®.”®L2Q

kth position [*® - ® 2@ H* ® L2 ® - -- ® L*N

IP’QL*® - QL*QLYQL*® - - H,
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respectively. For s =5 = 0, the corresponding collections are bi-orthogonal in [’ ® --- @ L* ®
L2’0®L2®"'®L2.

For A € %, we define the vector-valued wavelets

n + + 2 ~(n) - i T
ﬂ;,z::wh ®"'®wkk®"'®¢)\nek’ ﬂ,\,k:wh®"'®1/’?~k®"'®‘p/\nek'

o —

From Corollary 4.1 and the definition of H}(I"), we obtain

Proposition 4.1 For 0 <s<y and 0 <5<y —1, the sets

n _%
{(ZLLM") ﬂ;”;:lskfn,)\e%} and
i=1

H(Z) 2
i=1

are Riesz bases for the vector spaces

Dfead

—_

A

X

A
X

>

m

<

e, s’

(L2, HY (7)), s € [0,1];

o —

HYI"NH(Y,  s>1

and LT(IT)” N H (1), respectively. For s =5 = 0, the collections are bi-orthogonal Riesz
bases for L2(I")".

Now, we are in the position to apply the basis transform. Let A* be an orthogonal matrix
with its 1st row given by

1

Ai‘ = —
(0, 4y

@M., 20 = (... ) =t 0T

Such an example is known as the Householder transform

2e-a)e-a)"

A* = - —,
(@ —e))T(a—-e)
which is
(051 [0%)] o3
o o 2
A= (70 7? and A= 1-2 29
Oy —07 1 —(x£
a _ 03 _ %
3 1-oq 1-op
in the case n = 2 and n = 3. Defining
() (1) (n) 7/
Vil fu 1l ﬂx,l
: = A* and = A* :
(n) 7 (n) ~(n)
w)\,n 1//.(71) wk,n Iﬂ

—\n 2 n

Page 7 of 10
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Set
W =y 1<k<nreV) and B9 = (P :1<k<mireV).
Applying the property of an orthogonal transform, we infer the following result.

Proposition 4.2 For 0 <s<y and 0 <$<¥y —1, the sets

n ’%
i(ZéLW) w;’f,z:lfkfn,ke%} and
i-1
n _g
{(ZM) Wk 1§k§n,kev}
i-1

are Riesz bases for the vector spaces

(L2, H(I"),0, s € [0,1];

—

HYI") NH (Y, s>1

and W" NH (1), respectively. In particular, for s =3 = 0, the collections W and Q)
are bi-orthogonal Riesz bases for L*(I")".

In the following, we are mainly concerned with the cases # = 2 and n = 3 because of the

complicated form of curl operators in 7 > 3.

Theorem 4.1 Let \IJC(Z)VZ = {1//3’1) :heV)and (1?5;“;,, = {{5;",3 :2 <k <mheV). Then
i) v c HU) (n=2,3), §2,, C curl A (1%) or
OO, C curl(HN(I?) x HA(I?) x H:P?)).
(i) {0, 4%)-% 1//?’,2 :1 <k <n,x € V}isa Riesz basis for the vector valued space

HE () =: HI'(1") 0 L2 ().
Proof (i) It is easy to see that ﬂi”;{ € Ho(curl; I") for 1 < k < n, then

wi"l) = alﬂ(ﬁ + azﬂy”; oot anﬂif’i € Ho(curl;I").

—_— - o~
Furthermore, curltﬁff =0and curll//ﬁ) = 0. Therefore, ¥ ; C HU") (n = 2,3). In addition,

Ccuri

~o) o~ =) [ ot ® Y
Yo=Y —ap = ~ 2
’ —Ml —n2 —051‘/&1 ® Y,

1 —> ~ ~ —> 19
=——————curly;, ® ¥, € curlH'(I*).
(4M1 4 4l221)3

Page 8 of 10
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~ —_—
Therefore, we obtain \IJC(?,L,I, C curlH(I?). Finally, suppose that a, b and c are the solutions
of

b2l — 2Rl = 4,
—a23l 4 Ml = A,

—b2Ml 4 golal = A,
whose existence can be guaranteed by the orthogonality of A*. Then

An, ® U5, ® V3,
78 _ 4 J(S) A 1/7(3) A 1/~f(3) N 4.7 0F -
w2 =AnY,  +AnY, ) +AnY, o= 22%@1 ® 1£A2 ® 1/~/x3
Ay, @ Yy, @ Yy
a&)tl by J)»z (2 J}»g
= curl | by, ® Y5, ® Yy | € curl(H{(1°) x Hy(I%) x Hy(1%)).
C‘(p)»l ® 1;0}\2 ® ‘p)\;

Similarly, if a, b and c are the solutions of the equation

b2l — o2l = Aqy,
—a2P3! 4+ c2Ml = Ay

—b2Ml 4 golral = A,q,
then we can also obtain
" aJ}; ® J)Q ® ng
f'; =curl | by, @ Y;, @Y, | € curl(H} (I°) x Hy(I?) x Hy(I®)).
Cl//)q ® 1//)»2 ® ‘P{S

Therefore, @S’Z@ C curl(HN(I3) x HM)(I?) x HL(I3)).
(ii) Since y > m, taking s = m in Proposition 4.2, we know the set {(3_7, 4%~ 1//&”,2 :

—

1<k<mnre 6} is a Riesz basis for Ijl(l) (I") "NH™(I")". Furthermore, it is easy to verify

By () nH (1) = By () 0 12 = g (1) a
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