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1 Introduction
In 1956, Aczél [1] established the following inequality which is of wide application.

Theorem A Ifa; b; (i=1,2,...,n) are positive numbers such that ai -, a* > 0 or b} —
Y, b?>0, then

n n n 2

(st 30t) (-0 = (- 3. o
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It is well known that Aczél’s inequality (1) plays an important role in the theory of func-

tional equations in non-Euclidean geometry. Various refinements, generalizations and ap-

plications of inequality (1) have appeared in literature (see, e.g., [2-12], [13] and the refer-

ences therein).

One of the most important results in the works mentioned above is the exponential
generalization of (1) asserted by Theorem B.

Theorem B Let p and q be real numbers such that p,q # 0 and }7 + = =1, and let a;, b;
(i=1,2,...,n) be positive numbers such that a5 — Y, a’ >0 and b -y ", b? > 0. Then,
for p>1, we have
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Ifp <1 (p #0), we have the reverse inequality.

Remark 1.1 The case p > 1 of Theorem B was proved by Popoviciu [8]. The case p < 1 was
given in [10] by Vasi¢ and Pecarié.
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In another paper [11], Vasi¢ and Pecari¢ presented the following extension of inequal-
ity (1).

Theorem C Let a,; > 0, A; > 0, ai{ -y 2“2 >0, r=12,...,m, j=1,2,...,m, and let
Z;l,\ > 1. Then

m Iy n I’ Aj m n m
H(%’-Z%‘) =[Ta-2_[ ] 3)

Recently, it comes to our attention that an interesting generalization of Aczél’s inequality,
which was established by Wu and Debnath in [14], is as follows.

Theorem D Let a,; >0, A; >0, zzi;—zr 2%] >0,r=12,...,n,j=1,2,...,m, and let p =
min{} " 1% L 1}. Then

[1(e-2e) = TSl Tor a

j=1 r=2 j=1
1 1
and equality holds if and only if ajj =n" azj = - - =n" a,;, j=1,2,...,m for p <1, or
A Al A
a a a
ay _ 4y 1
=" T :---:—Zj, =2,3,...,mforp=1

@y Ay Ay

The purpose of this work is to give a reversed version of inequality (4). As application,
an integral type of the reversed version of the Aczél-Vasi¢-Pecari¢ inequality is obtained.

2 Reversed version of a generalized Aczél’s inequality

We need the following lemmas in our deduction.

Lemma 2.1 [5] Ifx;>0,1;>0,i=1,2,...,n,0<p <1, then

n n 1-p n p
i=1 i=1 i=1

The inequality is reversed for p > 1 or p < 0. In each case, the sign of the equality holds if
and only if x; = x; for all i,j=1,2,...,n

Lemma 2.2 [11] (Generalized Holder’s inequality) Leta,; >0 (j=1,2,...,m,r=1,2,...,n).
Ira#0,4<0(=23,...,m), 3" %/ <1, then

e 1(324) 0

r=1 j=1

The sign of the equality holds if and only if the m sets (an), (4y2), - . ., (@rm) are proportional.
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Lemma 2.3 Leta,j>0(r:1 2

oot j=1,2,...,m), let .y #0, A; <0 (j=2
lett —max{zl 1% L 1) Then

3,...,m), and

o[

ilﬂ[ﬂr;znl‘fl_[<2ﬂr,>r'

r=1 j=1 j=1

(7)

The sign of the equality holds if and only if the m sets (a,1), (61,«2)

.» (@) are proportional
for Z/ 1 A <Loraj=ag=--=ay,j= 1,2,...,mforzl 1 A >1.

Proof Case (I). When A; < 0, then t = 1. Obviously, inequality (7) is equivalent to inequal-
ity (6).

Case (II). When A; > 0 with Zm % > 1. Write Y7, L = ¢

j=1%; (¢ > 1), which implies

Z} . E = 1. By inequality (6), we have

s=1 r=1 j=1
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Consequently, according to (—1 =3 =)

1.1 .1 1
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by using inequality (6) on the right side of (8), we observe that
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Additionally, using Lemma 2.1 together with ¢ > 1, we find
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Combining inequalities (9) and (10) leads to inequality (7) immediately.

Case (III). When A; > 0 with Z/ 1 x_ < 1. Obviously, inequality (7) is equivalent to in-
equality (6).

The condition of the equality for inequality can easily be obtained by Lemma 2.1 and

Lemma 2.2. This completes the proof of Lemma 2.3. O

Remark 2.4 It is clear that the generalized Holder inequality (6) is a simple consequence

of Lemma 2.3 presented in this article.

Theorem 2.5 Let a,; >0, A1 #0, ;<0 (j=2,3,...,m), ag—zr 2“r] >0, r=1,2,.
j=1,2,...,m,andletr=max{2 u’l} Then

m Y n N i m
l_[(%’- ﬂr}) “l_[al; Zl_[ar;, (11)

r=2 j=1

1 1
and the equality holds if and only if ayj = n" asi = ---=n" a,, j=1,2,...,mfort >1, or
Al A1 A
a a a
11 21 nl
—)\j:_)»/:“-:_)»i’ ]:2,3,.,.,mf0r1':1.
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Proof Denote

n
A Aj Aj
] ] _ /A
ay — Z“r;’ =% (12)
r=2

and

1_[ ayj—n"" Z Ha,] =n"" l_[x, (13)
j=1

r=2 j=1

By using inequality (7), we have

1
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j=1 j=1 r=2 r=2 j=1
that is,
1
n o m-1 n ;
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Therefore, from (12), (13) and (15), we obtain

Amml

n
x>y ak ]_[ ay < ]_[ a. (16)
r=2

Hence, we obtain

o > g _ Zarm, (17)

that is,

-
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Therefore, we have
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By using (13), we immediately obtain the desired inequality (11). The condition of the
equality for inequality (11) can easily be obtained by Lemma 2.3. The proof of Theorem 2.5
is completed. d

If we set Z]'Zl )\i <1, then from Theorem 2.5, we obtain the following reversed version
]
of inequality (3).

Corollary 2.6 Let a;;>0, 4 70, ;<0 (j=2,3,...,m), 37 & <1, af]’! -y Za,, >0,
U
r=12,...,m,j=12,...,m. Then

<

n m

H(”U Z“rl) = l_[ @i = yj- (20)
j=1

j=1 r=2 j=1

Ifwesetm=2, 11 =p#0,A=g<0,an =a,, ap=b, (r=1,2,...,n), then from Theo-
rem 2.5, we obtain

Corollary 2.7 Leta, >0, b,>0 (r=12,...,n) a} =Y " ,a’ >0, b1 -Y" ,b! >0, p+#0,
q<0,p= max{% + é, 1}. Then the following inequality holds:

1 1
n p n q n
<a§’ - Zaf) (b’{ -3 bz) >n'Payby - Y ayb. (21)
r=2 r=2

r=2

Remark 2.8 For = }1 = 1, inequality (21) reduces to the famous Aczél-Vasi¢-Pecari¢ in-

equality (2).

3 Application
As application of the above results, we establish here an integral type of the reversed ver-
sion of the Aczél-Vasi¢-Pecari¢ inequality.

Theorem 3.1 Let A1 >0, ;<0 (j=2,3,...,m), Z;Zlkj =LletA;>0(j=12,...,m) and
let fi(x) (j =1,2,...,m) be positive Riemann integrable functions on [a,b] such that A].kj —
J2F @) dx > 0. Then

1
T m b m
( / A0 dx) >[]4- / [ [ dx. (22)
Jj=1 j=1 4 j=1
Proof For any positive integer #, we choose an equidistant partition of [4, b] as

b-a

—a —a
a<a-+ < o<a+—k<--<a+ (n-1)<b,

b-a b-a
xr=a+——Kk, Axy = , k=12,...,n
n n

Since the hypothesis A;\i - f: ﬁ\’ (x)dx>0 (j=1,2,...,m) implies that

'—nlgrochf< kb- “)> 250 (=12...,m),
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there exists a positive integer N such that

MEEONEY kb—a)\ b-
A/,\’—E ff’(a+M) a>0 foralln>Nandj=1,2,...,m.

n n
k=1

By using Theorem 2.5, we obtain that for any # > N, the following inequality holds:

“ oy e kb-a)\b- g
1|47 - 208" (s 252 22

j=1 k=1
m 1
= N k(b — b—a\>r7
zl—[Aj— ﬁ(u+ ( a)) ( a) " (23)
' ' n n
j=1 k=1 L j=1
Since
21
> =b
j=1
we have

Fa- S (e )| 552, o

In view of the hypotheses that f;(x) (j = 1,2,..., m) are positive Riemann integrable func-
tions on [a, b], we conclude that ]_[/’f1 fi(x) and j;)"‘ (%) are also integrable on [a, b]. Passing
the limit as n — 0o on both sides of inequality (24), we obtain inequality (22). The proof
of Theorem 3.1 is completed. d
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