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1. Introduction
Let f: I € R — R be a convex function defined on the interval I of real numbers and
a <b. The following double inequality;

f(a;b> = bia/b‘f(x)dxff(a);f(b)

is well known in the literature as Hermite-Hadamard inequality. Both inequalities
hold in the reversed direction if fis concave.

In [1], Orlicz defined s-convex function in the second sense as following:

Definition 1. A function f: R* — R, where R" = [0, ), is said to be s-convex in the
second sense if

flax+By) = «@’f(x) + B (¥)

forall x, y € [0, ), o, B =0 with o + B =1 and for some fixed s € (0, 1]. We denote
by K? the class of all s-convex functions.

Obviously one can see that if we choose s = 1, the above definition reduces to ordin-
ary concept of convexity.

For several results related to above definition we refer readers to [2-10].

In [11], Dragomir defined convex functions on the co-ordinates as following:

Definition 2. Let us consider the bidimensional interval A = [a, b] x [¢, d] in R* with
a <b, ¢ <d. A function f: A — R will be called convex on the coordinates if the partial
mappings f, : [a, b] = R, f(u) = flu, y) and f, : [¢, d] = R, fi(v) = flx, v) are convex
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where defined for all y € [c, d] and x € [a, D). Recall that the mapping f: A — R is
convex on A if the following inequality holds,

fx+ (1 =)z, y+ (1 —2)w) < Af(xy) + (1 —2)f(z w)

for all (x, ), (z w) € Aand A e [0, 1].

In [11], Dragomir established the following inequalities of Hadamard-type for co-
ordinated convex functions on a rectangle from the plane R*.

Theorem 1. Suppose that f: A = [a, D] x [¢, d] > R is convex on the co-ordinates on
A. Then one has the inequalities;

f<a;b,c;d)
;[bia/abf<x'czd)d“dicfcdfc;b#)dY]
= (b—a)l(d_c) f b f df(x, y)dxdy

111|:(bia) /abf(X,c)dx+ (bia) /abf(x,d)dx

d d
tang | fanae f(bIY)dy}

_fla ) +fla,d)+f(bc) +f(bd)
< A :

(1.1)

The above inequalities are sharp.

Similar results can be found in [12-14].

In [13], Alomari and Darus defined co-ordinated s-convex functions and proved
some inequalities based on this definition. Another definition for co-ordinated s-convex
functions of second sense can be found in [15].

Definition 3. Consider the bidimensional interval A = [a, b] x [c, d] in [0, )* with
a <b and c <d. The mapping f: A — R is s-convex on A if

fOx+ (1 =2z 2y + (1 —2Vw) < Xf(x,y) + (1 —A2)f(zw)

holds for all (x, y), (z w) € A with A € [0, 1] and for some fixed s € (0, 1].

In [16], Sarikaya et al. proved some Hadamard-type inequalities for co-ordinated
convex functions as following:

Theorem 2. Let f: A € R*> — R be a partial differentiable mapping on A := [a, b] x
o%f

l¢, d] in R? with a <b and ¢ <d. If
atos

is a convex function on the co-ordinates on

A, then one has the inequalities:

g < 0-aEd=0)
16
0%f 0%f 0%f 0%f (1.2)
5 Btas‘ (a,c)+ ‘8&35‘ (a,d) + ‘atas‘ (b:c)+ ‘Btas‘ (bd)

4



Ozdemir et al. Journal of Inequalities and Applications 2012, 2012:20
http://www.journalofinequalitiesandapplications.com/content/2012/1/20

where

fla,c) +f(a,d) +f(b,c) +f(b,d)

1 b pd
- s *oaog | [ S

b d
A= ; |:(b1a)/a [f(x c) + f(x, d)]dx + (dic)/c [f(a,y)+f(b,y)]dy:|.

Theorem 3. Let f: A € R* — R be a partial differ entiable mapping on A := [a, b] x

2,14
lc, d] in R? with a <b and ¢ <d. If ‘E}a; ,q > 1, is a convex function on the co-ordi-
tos

nates on A, then one has the inequalities:

PCEDIC
— 2
4(p+1)?
32f |7 (1.3)
‘Btas (a,c)+ ’aa a,d) + ’aa b)+ | g5 )
4
11

where A, ] are as in Theorem 2 and p + q =1,
Theorem 4. Let f: A € R* — R be a partial differentiable mapping on A := [a, b] x

2¢ 14
lc, d) in R* with a <b and ¢ <d. If ‘aaaf ,q 21, is a convex function on the co-ordi-
tos

nates on A, then one has the inequalities:

(b—a)(d—c)

<
Ul = 16

bd) |9 (1.4)

ad)+ ‘83 be)s

4

)+ ‘aa

otos otos

where A, ] are as in Theorem 2.
In [17], Barnett and Dragomir proved an Ostrowski-type inequality for double inte-

grals as following:

82
Theorem 5. Let f: [a, b] x [¢, d] —> R be continuous on [a, b] x [¢, d], f;, = X ;‘
S %3y
exists on (a, b) x (¢, d) and is bounded, that is
32f(x,
f//”H - sup JC67) < 00,
"leo (vy)e(ab)x(cd)| OXOY

Page 3 of 19



Ozdemir et al. Journal of Inequalities and Applications 2012, 2012:20
http://www.journalofinequalitiesandapplications.com/content/2012/1/20

then we have the inequality;

b d d b
/ / £, 1)deds — (b - a) / f(x )t — (d — c) / £(5,7)ds — (b — a)(d — )f (x.7)

[T ]

for all (x, y) € [a, b] x [c, d].
In [18], Sarikaya proved an Ostrowski-type inequality for double integrals and gave a

(1.5)

f//x,y

corollary as following:
Theorem 6. Let f: [a, b] x [¢, d] > R be an absolutely continuous function such that
the partial derivative of order 2 exists and is bounded, i.e.,

for all (t, s) € [a, b] x [¢, d]. Then we have,

3%f(t,s)
Jatas

3*f(t,)
dtas

<0

= sup
oo (wy)e(ab)x(cd)

a+b c+d

(ﬁl*%)(ﬂz*'ﬁ)f( 2 9 )+H(011,0!2r/31rﬂ2)+C(dlrﬂlz:ﬁhﬁz)

—(ﬂz—az)fubf(rf;d)m—(ﬁl—wl)[df(“;”,s)ds

b
- [ e = fte. 0+ (= ) e

—fd [(ar — a)f (a,s) + (b — Br)f (b, s)]ds + fh /df(t,s)dsdt (16)

- [[m —af+(b-p) (a+b—2u1)1+(a+b—2ﬁ|)1:|
= 2 8

Pf(t5)

atds

y [(az —Peld=p) (c+d—2a1)2+(c+d—2ﬁz)zi|
2 8

for all (a1, o), (By, B2) € [a, b] x [¢, d) with o <B, 0ty <Bo where

H(o, a2, 1, B2)
= (a1 — a)[(a2 — O)f (a, ¢) + (d — B2)f (a, d)]
+ (b= )2 — c)f (b. c) + (d — B2)f (b, d)]

and

G(alr o7, ,Blr 182)

(- a0 (@ - of (3 ¢) + @y (")

=) = (o5 ) - (037 |

Corollary 1. Under the assumptions of Theorem 6, we have

o-a@-ar (3" [ [

_(d—c)/abf<t,czd>dt—(b—a) /jf(a;b,s)ds

2
- 1 [|9%f(t.s)
— 16 datads

1.7)

(b —a)*(d — c)>.

oo
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In [19], Pachpatte established a new Ostrowski type inequality similar to inequality
(1.5) by using elementary analysis.

The main purpose of this article is to establish inequalities of Hadamard-type for co-
ordinated convex functions by using Lemma 1 and to establish some new Hadamard-

type inequalities for co-ordinated s-convex functions by using Lemma 2.

2. Inequalities for co-ordinated convex functions
To prove our main results, we need the following lemma which contains kernels simi-
lar to Barnett and Dragomir’s kernels in [17], (see the article [17, proof of Theorem
2.1]).

Lemma 1. Let f: A = [a, b] x [¢, d] > R be a partial differentiable mapping on A =

2
la, D] x [¢, d]. If ;af € L(A), then the following equality holds:
tos

f(a;b,cgd)
(d—c)/ (“;b,y)dy (b—a)/ (Hd)dx
+(b—a)(d_c)/ /f(x/}’)dydx

f( t—a, d-—s s—c)
w—axd—c)/ / Pl alrs) o aa+b—abd—mc+d—cd dsdt

where

a+b

(t—a) te [a,

Pl 1) -
a—byte<”;?b

and

aefey]

qa(y.s) = God)se (C;d,d:|

for each x € [a, b]l and y € ¢, d].
Proof. We note that

a%f t—a, d—s s—c
/ / p(x, 6)q(y, s) 5195 aa+b—ab'd—cc+d—cd dsdt.
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Integration by parts, we can write

; a+b
?f (b—t t—a, d—-s s—c
2
= , t— b, d)dt
/Cq(ys)/a ( a)atas(b aa+b—a d—cc+d—c>
c

b ?f (b—t t—a, d—s s—
+fa;b(t—b)atas (b—aa+b—ab'd—cc+d—cd>dt ds

a+b

[ e-o? (? aa+;:zb,§:zc+;:id)]f

a+b
2 Of (b—t t—a, d— L5T¢
- b, d dt
/; as<b—a‘”b—a d—c"Ta-
af t—a, d—
|:(t—b) < aa+b—ab'd d>i|a+b
booof t—a, d— s—c¢
/a+b <b—aa+b—ab,d d d)dt
2

_(b—a)/ q(y/S){ <a;b'j_c“;:id)

of (b—t t—a d—s s—c
—‘/a 2 (b—aa+b—ab'd—cc+d—cd>dt]ds

c+d
of fa+b d—s s—c

—(p— 2 _

=(b—a) /C (s C)Bs< ) ,d_cc+d_cd>d5

d of fa+b d—s s—c
+‘/c+d(5—d)8]:( ) ,d_cc+d_cd>ds
2
, c+d
B 9 o NOf (b=t t—a d-s s—c
fa ‘/C (s c)as (b—aa+b—ab'd—cc+d—cd ds

d df t—a, d—s s—c
+fc+d(5 d) <b—aa+b—ab'd—cc+d—cd)ds:|dt}'
2

By calculating the above integrals, we have

B-0-a@-ar(";" 3"

a+b d—s s—c
—(b—a)/cf< ) ,d_cc+d_cd)ds

b o b—t t—a, c+d
—(d - b, d
(d=0) af<b—aa+b—a 2 ) '

bopd (ph—t t—a, d—s s—c
b, d ) dsdt.
Lﬁf(b—aa+b—a d—cc+d—c> st
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Using the change of the variable x = b- ta+ L= “p and d—sc+ *7C4, then
c

b—a""b-a =a-cTa-
dividing both sides with (b - a) x (d - ¢), this completes the proof.
Theorem 7. Let f: A = [a, b] x [¢, d] —> R be a partial differentiable mapping on A

_ o*f
=[a, b] x [¢, d]. If ‘Btas

is a convex function on the co-ordinates on A, then the fol-

lowing inequality holds;

‘f(a;b'czd) _(dic)ldf(a;b”Ddy_(bia)fff(”czd)dx
1 b d

+w—@mﬂmllfmﬂmh

Sw_mwwqrvm@ %ﬁW)‘%ﬁW@‘%ﬂ“@H

64 dtas

Proof. We note that

C=f(a;blczd>_(dic)/cdf<a;b,y>d}’ b— )/ ( C+d>
1 b opd
+(b—a)(d—c)/a /C f(x, y)dydx.

From Lemma 1 and using the property of modulus, we have

C
= b — )=o)
3%f t—a, d—s s—c
/ / |p(x,t)q(y,s)|‘atas< —aa+b—ab'd—cc+d—cd> dsdt
82
Since o is co-ordinated convex, we can write
s
o= !
T (b—a)d—c)
. a+b )
b—t|o*f d—s s—c
2 (- d)||d
X/c. [a05)] /a (¢ a)[b—a dtds (a'd—cc+d—c )H !

a+b

+/a 2 (t— )[t—a
+/ab;b(b_t)[b:;

b t—a
favv o], 7"
2

a%f d—s s—c

atds (b'd—cc+d—cd> i|dt
2 _ _
8f<a,d s s—¢

atas

a%f d—s s—c \|]
9t0s <b'd—cc+d—cd)‘ dt]ds.

‘dt
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By computing these integrals, we obtain

R [/ a0 )|’8t8< ”;:Zd)‘
/ |q(y'5)|‘ata ( ”Z:‘OH“

2
Using co-ordinated convexity of ’ aat g{ again, we get
s
(b—
€= 54—
c+d c+d
Sl P M B R P AT |
X‘[ (s c)[ 3ras (a,c)||ds+ j (s—¢) Btas( ,d)| |ds
d d—s|d? d —c|d?
+/.C+d(dfs)[dii at;:(a,c) ]ds+/c+d(dfs)[fiicc'aﬁi(a,d)uds
2 2

c+d c+d

a3 v ool
+/Cd+d(d_5)[j:z E)atzafs(b,c) ]d5+/cd+d(d—5)[2:i ;gs(b,d)uds]_
2 2

By a simple computation, we get the required result.
Remark 1. Suppose that all the assumptions of Theorem 7 are satisfied. If we choose

2
o°f is bounded, i.e.,
atos
a%f(t, 32f(t,
9] Ly [P0
0S| oo (ts)e(ab)x(cd)| 910s
we get
b—a)(d—c)| d%f(t,
o < = —0)| 2*f(1.5) o
16 tds | o

which is the inequality in (1.7).
Theorem 8. Let f: A = [a, b] x [¢, d] = R bea partial differentiable mapping on A =

[, b] x [c, d]. If 82f

,q > 1, is a convex function on the co-ordinates on A, then the

following mequaltty holds;
ql < (b—a)d—c)

2
a(p+1)P
1
(2.2)
f 32f q 32]0 32f q
aras @ C) aras 09 as @ aras D)
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where C is in the proof of Theorem 7.

Proof. From Lemma 1, we have

1
= b ay@-o

t t—a, d—s s—c
// |p(x,t)q(y,5)|‘ata (5 sawy tn i en i ) s

By applying the well-known Hoélder inequality for double integrals, then one has

1 b pd p 1
IC| < (b—a)d—0) {(/ﬂ /; [p(x 0)a(y, s)| dtds) )

1 (2.3)
t—a, d—s s—c \| q
< 8t85( +b—ab'd—cc+d—cd> det>
32f q
Since . is co-ordinated convex function on A, we can write
s
32f (b—t t—a, d—s s—c \|
atds (b—aa+b—ab'd—cc+d—cd)
b—t d—s\|ad%f
= (b—a) (d—c) Btas(a'c)
b—t\ (s—c\| %
2.4
+<b—a><d—c> dtds (a &
t—a\ (d—s 2f( )
" b—a d—c) |0tds
+<t—a> (s—c) o%f
b—a d—c) |dtds
Using the inequality (2.4) in (2.3), we get
il < (b—a)(d—zc)
a(p+1)P
1
92 q 2 q 2 q 2
’ 0,0 +‘af(b,c) +‘af(a,d) ‘” q
otas otds otas ata
4
where we have used the fact that
1 Wl
b pd
p b—a)d—c)] P
</ / Ip(x, t)q(y,s)|”dtds> _ [b=a) 2)] :
4(p+1)P

This completes the proof.
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Remark 2. Suppose that all the assumptions of Theorem 8 are satisfied. If we choose
o

is bounded, i.e.,
atas

3*f(t.s)
atas

3%f (¢, s)
atas

sup
9] (t s)e(a,b)x(c,d)

we get

(b—a)(d—c)| % (t5s)

2 atds
4(p+1)P o

IC| < (2.5)

9*f(t,s)
atos

Theorem 9. Let f: A = [a, b] x [¢, d] > R bea partial differentiable mapping on A =
f

which is the inequality in (1.3) with ‘

o]

la, b] x [¢, d ,q > 1, is a convex function on the co-ordinates on A, then the

following mequalzty holds;

o < b-a@=0
= 16
f o’f orf T |9 q (2.6)
’8t8 (“’C) ‘ ACE +’ 0

where C is in the proof of Theorem 7.
Proof. From Lemma 1 and applying the well-known Power mean inequality for dou-
ble integrals, then one has

1

C

= b a)d—o)
b—t t—a. d—s s—c¢

/f [p(x )y s)] am( aa+b_ab,d_cc+d_cd>‘dsdt

1

[ 2.7
= (b—a)l(d_c) (/ / |P(xrf)61(%5)|dsdt> 1 (2.7)

1
t t—a, d—s s—c \|’ q
[//ho(xrt)q(y, s)| Ms( aa+b_ab,d_cc+d_cd> dsdt:|
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2,14
Since ;t Bf is co-ordinated convex function on A, we can write
s
32f (b—t t—a, d—s s—c \|
atds <b—aa+b—ab'd—cc+d—cd>
b—rt\ (d—s\|of 9
= (b—a) (d—c) Btas(a' )
b—t\ (s—c\ | 9
2.8
" (b—a) (d—c) atas(“’d) 8
t—a\ (d—s\|d*f 9
i (b - a) (d - c) Btas(b' )
t—a\ [s—c\|d*f 1
¥ (b—a) (d—c) atas(b'd) ’
If we use (2.8) in (2.7), we get
1
1 b opd kq
IC| < (b—a)(d—c){(/a /c |p(x/t)q(y,s)|dsdt>
bopd ; b—t\ [d—s\|df T b1\ (s—c\ |0 p a
X/a /C. Ipx 0a(5)] (b—a) <d—c) 3tas(a'c) +<b—a> (d—c) atas(“’ )

1
DD () ) e ]

Computing the above integrals and using the fact that

1 1
(/b/d [p(x, Da(y. 5)|dtds> T _ <(b —“)jéd— C)2> q

we obtained the desired result.

3. Inequalities for co-ordinated s-convex functions
To prove our main results we need the following lemma:
Lemma 2. Let f: A € R*> — R be an absolutely continuous function on A where a <b,

2
c<dandt Ae [0,1], if 88 / € L(A), then the following equality holds:
t

oA
_(-a)d0)
(r1 +1)(r2 + 1)
where
b _ (@) +raf @ d) +1if (b, 6) + rirof (b, )

(rn +1(ra + 1)
" (b—a)l(d_c) /ab/jf(w)dxdy
_(rlri1> dic_/cdf(b,)/)d}/—(Tlil>di6/6df(a,y)dy
- <rzril) bia/abf(x’d)dx_ (Tzil)bia/abf(xfc)dx

Page 11 of 19
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and

E=/01/01((r1+1)t—1)((r2+1)x—1)83;J;(tb+(1—t)a,mJ,(l_,\)C)dtdk

for some fixed ry, r, € [0, 1].

Proof. Integration by parts, we get
1
E=/ (z+1)A—1)
0

x UO ((r + 1)t — 1)3613]; (th+ (1 —t)a, rd + (1 — A)c)dt:| da

1 +1)i—
=/0 ((r2+1)x—1)[(("(bi);) R g{(tb+(1—t)a,Ad+(1—A)c)|8

T1+1 l()f
—b_afo M(m(l—t)a,xm(l—x)c)dt]dx

1 -
- n of 1 of
_/0 (2 + )2 1|:b—a8k (bad+ (1=2)9+, ) (@id+ (1= 1))
n+l (19
“p—a | g @+ (1 =0aid+ (1 —2))dt|dr
- 0

n ((n+r-1 (2 + 1) 1
=l f(b')hdJr(l_}h)C)‘(l’_(b—a)(d—c)/o F(b,2d + (1= 1)0)dn
1 ((n+1)r—

1 (p+1) 1
Tboa  d-c flakd+ (1 =2)9)l6 = (b—a)(d-c)/é f(a.xd+ (1 = 1))
rn+1 f

el fol [/01((r2+1)x—1)§/\(tb+(1 —t)a,xd+(1_x)5)d1]dt,

Computing these integrals, we obtain

B - a)l(d _ gl@a) +nf(ad)+nfb.e)+nnfbd)

1 1
—ri(r2 + 1)/ F(b,Ad + (1 — A)c)da — (r2+1)/ fa, rd+ (1 — A)c)dx
°1 L
—1a(r + 1)/ F(tb+ (1 = t)a, d)dt — (11 + 1)/ f(tb+ (1 = t)a, c)dt
0 0
+(r1 + 1)(r2 + 1)/1 /1f(tb+ (1—1t)a,rd+(1— x)c)dm] .

Using the change of the variable x = th + (1 -¢f) aandy =Ad + (1 -A) cfor t, 1

b—a)(d—-
[0, 1] and multiplying the both sides by Eﬁ +6;)((rz . 3 , we get the required result.

Theorem 10. Let f: A = [a, b] x [¢, d] € [0, )* — [0, =) be an absolutely continu-

. 0%f
ous function on A. If ot

has the inequality:
Dl < (b—a)(d—c)
(r1 + 1)(ra + 1) (s + 1)* (s + 2)?

82
x | MS f (a,c)
Ator

32
+ ML ‘ f (a,d)
atoA

2
+KR ‘ T o)
dton

2
+KN‘ of (b,d)H
dton

is s-convex function on the co-ordinates on A, then one

(3.1)
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where
s+2
1
M=<s+1+2(r1+1)( ) —rl)
I8} +1
1

(1_2 + 1)S+1

L=ry(s+1)+

(1_2 + 1)S+1 -

s+1
L]
R=s+1+n, — 1
1‘2+l

r s+1
8=T2< 2 )
T2+1

Proof. From Lemma 2 and by using co-ordinated s-convexity of

a’f

, we have;
OtOA

_ (b—a)d—0
|D| - (Tl + 1)(1'2 + 1)

1 1 82f
Xfo /0 }((r1+1)t71)((r2+1))»71)|‘8tak(tb+(1ft)a,kd+(lf)\)c)

_ (b—a)(d—c)
T (r+1)(r2+1)

% /01 [/01 [((r + 1)t = 1)((r2 + 1)r = 1)
{f 32f a’f

atoA atoA
By calculating the above integrals, we have

dtdx

(b, d + (1 — A)e)

+(1—¢)

(a,2d + (1 — A)c)

Jar]

1 2
/O |((r + )t —1)[ ¢ ‘ o7 (b, Ad + (1 — 1)c)

otoA
0°f }dt
LA
1
2
_ forl +1 (1—(r+ 1)) {15 ‘aata];(b,)»d+ (1 —=2)c)
o°f }dt

dton
(b, Ad + (1 — A)c)

Ja
s+1 2
s+ 1)1(5 +2) |:<r1(s +1) +2(r1 1 1) - 1) ‘Bataj; (b, 2d + (1 — X)c)

+<5+1+2(r1+1)( n )M—rl)‘azf (a,kd+(1—)»)c)i|.

+(1 - 1) (a,2d + (1 — 1))

+(1-1)°

(a,Ad + (1 = 2)c)

a’f
atoA

1
+/ 1 ((r1+1)t—1){t2
r+1

92f

=00

(a,Ad + (1 —2)c)

mn + 1 atoA

(3.2)
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By a similar argument for other integrals, by using co-ordinated s-convexity of
o%f
atoxr

, we get

2

/|((T2+1))~—1)|H (bxd+(1—k)c) a;;(a,xm(l—x)c)

1

|

< +1 — s a2f . f
= /Orz (1 (Tz + 1))\-) {)\ (b,d) + (1 S (b C) }
1
+/ 1 ((72+1))‘_1){)»5 aa];(ad)+(1— 881;(516)}
T +1
- 1 1 3%f
S5+ 1)(s+2) [(Tz + 1) atax(b'd)‘
1
+ |:T2(S+ 1)+ (2 + 1)1 - ] ’ataf(a,d)‘

[_1(1) N;;f;(b,c)

r s+1 82
ol ) L
T2+1

araf (49
By using these in (3.2), we obtain the inequality (3.1).

Corollary 2
(1) If we choose r; = r, = 1 in (3.1), we have

+ +f(b,c)+f(b, a
‘ﬂmc)'ﬂmd)4fwc)'ﬂbd)-;{dj_cl Uxay)fﬂmynm}

—; [bia/b [f(x,d)+f(x,c)]dx} + (b_a)l(d_c) abfcdf(x,y)dxdy
(b—a)(d—0) 2

= 454 1)2(s+2) ( +2s>
§ [251” ( o) BtBA(b ‘”D ( 2i1)<

dtoA
(2) If we choose r; = r, = 0 in (3.1), we have

(3.3)

T

aor ®)]

ator

d b
‘f(aw)— P (%0 R T

1 b pd
+(b—a)(d—c)/a /Cf(x,y)dxdy

_ (b=a)d-o
T (s+1)%(s+ 2)2

x |:(s+l)

otoA

0+ 00 |

‘8 oA
Theorem 11. Let f: A = [a, b] x [¢, d] € [0, <)* — [0, =) be an absolutely continu-
p

ous function on A. If ‘ a°f p — 1 is s-convex function on the co-ordinates on A, for
oo
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some fixed s € (0, 1] and p > 1, then one has the inequality:

1 1
b bma@—o (1) (e
Dl ) s 1) 1 1 2
(rn+D)Pr+1)P@p+1)P
1 (3.4)
aZf q aZf q 82f q aZf q q
3t (”’C)+’atax (”’d“}atax (b’C)Jr}atax (0.d)
(s+1)?
for some fixed ri, v, € [0, 1], where ¢ = pf X

Proof. From Lemma 2 and using the Holder inequality for double integrals, we can

write

1
_ b-a)d-o) 1ot i TR, p
ID| < (T1+1)(T2+1)<f0 fo |((ry + 1)t = 1)((r2 + 1)A 1)|dtdx)

([

In above inequality using the s-convexity on the co-ordinates of

1

a?.f q q
atak(ﬂH(l —t)a,rd+(1—2A)c dtdk) .

32f q
A

on A and

calculating the integrals, then we get the desired result.
Corollary 3
(1) Under the assumptions of Theorem 11, if we choose r; = r, = 1 in (3.4), we have

fa,c) +f(a,d) +f(b,c) +f(b,d)
4

d b
-, { oo [ ren s, [ - f(x,c)]dx}

1 b pd
+(b—a)(d_c)_/; /;f(x,y)dxdy

_(b-a)d-9) 65
= 2
4(p+1)P
1
82f q aZf q 82]( q aZf q q
‘atax (“’C)+‘atax (“’d)+‘atax 0+ 50| &

(s+1)?
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(2) Under the assumptions of Theorem 11, if we choose r; = r, = 0 in (3.4), we have
1 [ 1 b
fwo-, " [ rana—, " [ o

1 b pd
+(b—a)(d_c)/a ‘/Cf(x,y)dxdy

~ (b—a)(d-c)
- 2
(p+1)r
aZf q 82f q 82f q
st | @O aan 3192, (b’c)+‘ata)\ (b.d)
(s+1)2

Remark 4. If we choose s = 1 in (3.5), we obtain the inequality in (1.3)

Theorem 12. Let f: A = [a, b] x [¢, d] < [0, )2 = [0, =) be an absolutely continu-
82]( q
Ao
fixed s € (0, 1] and q > 1, then one has the inequality:

ous function on A. If is s-convex function on the co-ordinates on A, for some

p < E-9d=9 ( (1+)(1 +73) )

I - (T] + 1)(T2 + 1) 4(T1 + 1)(T2 + 1)
‘ ’f
atoA

q

of

(@a)| +mL|, (a (b.d)

+ML‘

‘ 32f
(S 1)2(5 2)2

KN‘

atoA

for some fixed ri, v, € [0, 1].
Proof. From Lemma 2 and using the well-known Power-mean inequality, we can

write

o (b=a)b— 1) 1)

ID| < (s 1)(r2 + 1)(/ / [((r1+ 1)t = 1)((r2 + 1A 1)|dtd,x>

U / (D= 1)(2 + 2= 1) M(tb+(1 —a,ad+ (1= 1)) dtdk]q.
a2f q
Since St is s-convex function on the co-ordinates on A, we have
82f q
‘8 8A(tb+ (1 =t)a,rd+(1—2r)
’f I f I
< ‘ (b Ad+ (1 —21)c) +(1—t)‘ (a,kd+(1—k)c)
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and
82]( q
‘8t8k (th+(1—=2t)a,rd+ (1 —A)c
. 82f q ; aZf q
<A 19 (b,d)+£(1—21) . (b¢)
; ] BZf q ; ) a2f q
+A5(1—1) 853 (a,d)+(1—=2)°(1—19) 859 (a,c)
hence, it follows that
1
Dy < E=Od=0) ((L+r)(1+13) T
T (D) (s 1) \4(r + 1) (2 + 1)
1,1 . 92f |7 b
-1 1)r—-1 A ,
([ [l ne= s va-np e 21 T e
82f q 32f q (3.6)
+£(1—=24) ara (bo)y+2°(1—1) 953 (a,d)
1
N N 82f I q
+(1=2)(1-1) 8532 (a, c)} dtdk)
By a simple computation, one can see that
1 1 o 32 | .
x(/o /0 |((r + 1)t —1)((r2 + 1)A — 1)| { €2 s | @A)
J o | a1l L
+*(1=2) e (bc)y+A2°(1—1) Ston (a,d)
. 1
N S 82f a
+(1=2)P1 -1 S0 (a, c)} dtdk)
2 q 2 q 2 q 2 q
MS af(a,c) +ML‘8f(a,d) +KR’af(b,c) +KN’af(b,d)
OLoA JALtIA AtIA OLOA

(s+1)°(s+2)°

where K, L, M, N, R, and S as in Theorem 10. By substituting these in (3.6) and sim-
plifying we obtain the required result.
Corollary 4
(1) Under the assumptions of Theorem 12, if we choose r; = r, = 1, we have
‘f(ﬂrc) +f(a,d) +f(bc) +f(b,d)
4
! ! ‘ b d ! ' d d.
o lal. [T sl b [T s e
1 b pd
“waa—g ], [ Ty

S (b—al(d—c)(i>1$(s+215>$

o2f
EIENS

q

1 T 82
b,d
2541 *oran 09

q+(s+ ! )‘ 7y (a,d)

25+1 ]| 3taA
2 2
(s+1)7(s+2)

q a2
3

L
'atax

(a,¢)

(b.o)
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(2) Under the assumptions of Theorem 12, if we choose r; = r, = 0, we have

1 b pd
@0+ g | | sy

d b
oo [ rena= b o

1\
<-a-of})

q q

92 a2
f (b, C) f
dtoA otoA

(s+1)*(s+2)°

(6 1) (b,d)

+ ‘

Remark 5. Under the assumptions of Theorem 1.2., if we choose ry = ry = 1 and s =
1, we get the inequality in (1.4).
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