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Abstract

Let {X,X,,n > 1} be a sequence of i.i.d. random variables with zero mean, set

Sh=> 1 X EX? =07 >0,and Al€) = Y o2, P(ISn] > ne). In this paper, the authors
discuss the rate of approximation of o by €?A(€) under suitable conditions, improve
the results of Klesov (Theory Probab. Math. Stat. 49:83-87, 1994), and extend the work
He and Xie (Acta Math. Appl. Sin. 2012, doi:10.1007/510255-012-0138-6).
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1 Introduction and main results
Let {X,X,,,n > 1} be a sequence of i.i.d. random variables, set S, = ZZ:I Xk, and A(e) =
> o2 P(1S4| > ne). Heyde [1] proved that

eli_I)% er(e) =02,
whenever EX? = 62 < oo and EX = 0.

There are various extensions of this result: Chen [2], Gut and Spatara [3], Lanzinger and
Stadtmiiller [4]. Liu and Lin [5] introduced a new kind of complete moment convergence;
Klesov [6] studied the rate of approximation of o2 by €2A(¢) and proved the following
Theorem A.

Theorem A Let {X, X,,,n > 1} be a sequence of i.i.d. random variables with zero mean, if
EX?=0%>0, and E|X|? < oo, then

€’Me)—o?=0(e"?), ase—0.

Recently, He and Xie [7] obtained Theorem B which improved Theorem A. Gut and
Steinebach [8] extended the results of Klesov [6].

Theorem B Let {X, X, n > 1} be a sequence of i.i.d. random variables, and 0 < § <1, if

EX =0, EX?>=06%>0 and E|X|*** < oo,
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then

e2re)—o? = o), s=1
o(€®), 0<d8<1.

Let G be the set of functions g(x) that are defined for all real x and satisfy the following
conditions: (a) g(x) is nonnegative, even, nondecreasing in the interval x > 0, and g(x) # 0
for x # 0; (b) ﬁ is nondecreasing in the interval x > 0.

Let Gy be the set of functions g(x) € G satisfying the supplementary condition (c)
lim,_, '%(2 = 0. Obviously, the function g(x) = |x|® with 0 < § < 1 belongs to G, and does
not belong to Gy if § = 1. The purpose of this paper is to generalize Theorem B to the case
where the condition E|X|**% < oo is replaced by a more general condition E|X|2g(X) < co
in which the function g belongs to some subset of G. Denote Tg(v) = EX%g(X)I(1X] > v),
T,(v) is a nonnegative nonincreasing function in the interval v > 0, and lim,_, o T4(v) = 0

with EX%g(X) < oo. Now we state our results as follows.

Theorem 1.1 Let {X,X,;;n > 1} be a sequence of i.i.d. random variables with zero mean
and EX? = 0% > 0, if EX*g(X) < 0o for some function g(x) € G, and

=1
Z ) < 00, (1.1)

n=1

then

ere)—o? = O(em) + o(l)(hl(e) +f1(e)), ase — 0, (1.2)

where fi(€) = Zi[ﬁ]ﬂ ng(l\/ﬁ)’ h(e) = €2 25521] g(j@'
Theorem 1.2 Under the conditions of Theorem 1.1, and g(x) € G, then

e’r€) —o? = 0(1)(m(e) +fie)), ase— 0. (1.3)

Throughout this paper, we suppose that C denotes a constant which only depends on

some given numbers and may be different at each appearance, and that [x] denotes the

integer part of x.

2 Proofs of the main results
Before we prove the main results we state some lemmas. Lemma 2.1 is from [7]. ®(x) is

the standard normal distribution function, ®(x) = ﬁ I e 12 dt.

Lemma 2.1 Let {X, X, n > 1} be a sequence of i.i.d. standard normal distribution random

variables. Then

o0
2 © €?
2 2 22 3
ere) =€ —/ e Pdt=1-—+0(e’), ase—0. (2.1)
gwﬂ i 2
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If {X,,n > 1} is a sequence of independent random variables with zero mean and finite
variance, and put EX/2 =0/, B, = Z/ 107 2, Bikelis [9] obtained the following inequality:

1 n
P(J—B_n ;X, <x> — d(x)

n

Z/ u? dVi(u)
1 Jlul>elx) B

< C[B;1(1+ )

n

_ -3
+Bn3/2(1+ |x|) Z/l I |u|3dv,(u)},

j=1
for every x, where Vj(x) = P(X; < x) is the distribution function of the random variable X,

By applying the above inequality to the sequence of i.i.d. random variables with zero mean

and variance 1, and letting |x| = € /n, we have the following lemma.

Lemma 2.2 Let {X, X, n > 1} be a sequence of i.i.d. random variables with zero mean and

EX? = 1. Then for any given € > 0, we have
o 2
P(|S, |>ne)—— et dt
V2 Je
CA+e/n)? u? dV (u)
[ul>1+e/n)/n
Cn? (1 +e/n)2 lul®> dV (u),
lu|<(L+e/n)/n
where V(x) =

P(X < x) is the distribution function of a random variable X.

Proof of Theorem 1.1 Without loss of generality, we suppose that 2 =1, 0 < € < 1, and
write

2 2 —2/2
€“Me)=1+e€ E —/ e dt,
w1 V27 Jeyn

where

2 RO
= 22( |S |>}’l€ E/Eﬁe_t /zdt>.

Applying Lemma 2.1, we obtain

2
ne)=T+1- >+ o(€?),

then

2 [o¢]
€
e2re)-1= - €2 ;Rn +0(€?
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here R, = P(|S,| > ne) — J% ff\o/z e 2 dt. By Lemma 2.2,

|R;| < Riy + Roy,
where

Ry, =C+ eﬁ)‘zf w2 dv(u),

|u|>(L+e/m)/n
Ry =Cn™ (1 + e4/n)3 lul®> dV (u).
lul<(+e/m)/n

‘We obtain

e2r(e) -1 :GZZRM +522R2n +0(€?). (2.2)

n=1 n=1

Firstly, we estimate € ) 7, Ry,,. Note that

(]

o) o)
GZZRM=622R1"+€2 Z Rln =: T1+T2.
n=1 n=1

n=[}2]+1
Applying the condition EX?g(X) < oo, we have

lim u’g(u)dV(u) = 0.

n=>00 Ji1s 4

Therefore, for any n > 0, there is an integer Np such that /i Ui u’g(u)dV (u) < n, when-

ul>
ever n > Ny. Hence

(5]
No p)
T, < Ce? 2/ u? dV(u) + Ce? Z 1+ eﬁ)_zf u? dV (u)
n=1 Jlul>vn HeNo#1 lul>(L+e /) /n
(]
62 1

2 2
= CENoCE ) et r )

(5]
< 1
< Ce?| N, +1n —_—
( ’ ;g(ﬁ))

N
= Chl&)(% + 77)
2 1

2 W)
< Ch(€)(No€ + 1)

= o(l(e)), (2.3)
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where i (€) = €2 Z .For T3, noting that g(x) € G, we have the following inequality:

n=1 gf
T, < Cé* / u* dV(u)
2= Z n62 |u|>/n(l+e/n)
n= [ ]+1
> 1
<C _ W g(u) dV (u)
Z ng(Vn(l + ey/n)) Jyujs fiee ¢

C *g(u)dV
= g ng(\/—) \u|>—ug(u) (u)

< CTgG)fl(e). (2.4)

Next, we estimate the second term of (2.2). Note that

o0 o0
€Y Ry = C Y m (1 +e/n)” lul® dV (u)
n=1 n=1 | <(Vn(1+e/m))12

+CEZZVI 121+ e/n)3 / lul® dV (u)
(e /m)V2 <|ul</n(l+e/n)

=1+ /2.

For J;, we can write

(%] o
Ji = C€2<Z+ Z )n_1/2(1+eﬁ)_3f lu dV (u)

n=l th |M|§(ﬁ(1+fﬁ))l/2

= Ju + 2.

Noting that 7 is nondecreasing in the interval x > 0, we have

=C 3dv
Ju = Ce Z\/—lJre\/— /u< Jitise s 1/2|M| (u)

[ ]
1

< Ce?
= ;n“‘*(l+eﬁ)5’2g((ﬁ(1+eﬁ))l/2) S rre T

1

2
=Ce Z n1/4~g(n1/4)

= Chy(e), (2.5)

2g(u)dV (u)

(5]
where h2(€) = 62 Znil W
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Similarly, we can obtain

1
= Cé? 34v
]12 ‘ ; «/_(1+6f ,/|u|< Jn(l+e/n)) 1/2|u| (u)
; T VAR T s E0
_; 65/21/13/2 (n1/4)
- Cie) (2.6)

NG

1
wherefz(e) = Z:.;[%Hl W
For /5, we write

o0
J = Ce? + n 21+ e/n)3 lu®dV (u)
; 2 (ViLre i) <lul< e /)

1
=[L]+1
n [52]+

=t Jo1 + /2.
Using the properties of g(x) by simple calculation, it follows that
(5]

Jo1 = CGZZn_1/2(1+eﬁ)_3 lu|®dV (u)
=t (Ve A2 <lul< J(1+e /)

L1
< 1
T

n=1

“ / 12g(u) dV (u)
(Vr(l+e/m)2<|ul</n(1+e/n)

No %)
(Z Z) T gV

n=1  n=Np+1

1)
<N°+n2g(f))

= 0(1’11(6)), (27)
and
Jn<Ce Y wilreyn) jul® v (u)

T (Jr(Lse Jm)2<lul< /r(Lre )
-4
o0

<C u g(u) dV (u)
; \/_) (e /m)V2<|u|</n(1+e/n) g
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oo

canl}) 5

-[L
rz-[é2 ]+1

< cr, (f £ (©).

From (2.2) to (2.8), we conclude that

1
ng(y/n)

ere)-1< C%fg(é) + CTg(ﬁ

Since

Je € i n
and
(] (5] )
ha(e) = € Zl ol = cg; 7R =Cve

by (2.9), we have
e2re)-1= 0(61/2) + 0(1)(f1(e) + hl(e)).

This completes the proof of Theorem 1.1.

> : )
Proofof Theorem 1.2 By the conditions g(x) € Gy, and lim,_, poe)

g(/n)
Vng(Yn)

is an integer Nj such that < n, whenever n > N;. We have

(5]

U
e = Z I g(f 2

(]
n
< Ce2N; + €2 Z
n=N1+1 g(ﬁ)

and

1 1 &
NG 2(€) < e Z 5/4g(f)

T o)fie)
n

L) 1(€) + oDl (€) + Chy(€).

(2.8)

(2.9)

O

=0, forany 5 > 0, there

(2.10)

(2.11)
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By (2.9)-(2.11), note that Tg(ﬁ) =0(1), as € — 0, we have
€x(e) —o? =0(1)(I(e) +fi(€)), ase — 0.
This completes the proof of Theorem 1.2. d

Remark 2.1 If g(x) = |x]°, 0 < § < 1, then fi(€) = O(e?), h1(€) = O(€?). By Theorem 1.2, we
get

ere)-o? = 0(68), ase — 0.

Remark 2.2 Ifg(x) = |x|,§ = 1, then ﬁfz(e) = O(e), fi(€) = O(e), h1(€) = O(€), ha(e) = O(e).
By (2.9), we get

e2r(e)—02=0(e), ase— 0.
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