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1. Introduction
If A,B,X are operators on a complex separable Hilbert space such that A and B are positive,
then for every unitarily invariant norm ||| - |||, the function fiv) = ||| A"XB"" + A""XB'||| is
convex on the interval [0, 1], attains its minimum at v = é, and attains its maximum at
v =0 and v = 1. Moreover, flv) = f{1 - v) for 0 < v < 1. Thus, for every unitarily invariant
norm, we have the Heinz inequalities (see [1])

11
A2XB2

2” < |[|A"XB'" + AYXBY||| < [IIAX + XBl|| . (1.1)

In this article, we use the convexity of the function
f(v) = ||A"XB'"" + A""XB"||

on [0, 1] to obtain new refinements of the inequalities (1.1). Our analysis enables us
to discuss the equality conditions in (1.1) for certain unitarily invariant norms. When
we consider |||7]||, we are implicitly assuming that the operator T belongs to the norm
ideal associated with ||| - |||. Our results are better than those in [2].

2. Main results
The following Hermite-Hadamard integral inequality for convex functions is well
known (see p. 122 in [3], also see Lemma 1 in [2]).

Lemma 1 (Hermite-Hadamard Integral Inequality). Let f be a real-valued function
which is convex on the interval |a, b]. Then

()2, [T

In [2], Kittaneh obtained several refinements of the Heinz inequalities by using the
previous lemma. In the following, we will use the following lemma to obtain several

better refinements of the Heinz inequalities.
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The following lemma can be proved by using the previous lemma.

Lemma 2. Let f be a real-valued function which is convex on the interval [a, b].
Then

a+b 1t 1 a+b f(a) +£(b)
(57 =, b o= | (r@ear (57) e <70
Proof. Using the previous lemma, we can easily verify the inequality
1 b b
(@2 () s 7O
Next, we will prove the following inequality.

bia fabf(t)dt < i (f(a)+2f(“;b> +f(b)).

From the previous lemma, we have

1 1 g b
b—a[af(t)dtzb—a /a f(t)dt+ﬁ§bf(t)dt

_1 (f@+f(5) b—a f(?)+f(@) b-a
“b-a 2 2 2 2

L@ () erw).

Applying the previous lemma to the function flv) = |||A"XB'” + A"XB"||| on the

interval [g, 1 - y] when 0 < u < ;, and on the interval [1 - 4, y] when ; <u<1,we
obtain refinement of the first inequality in (1.1).

Theorem 1. Let A, B, X be operators such that A, B are positive. Then for 0 < u <1
and for every unitarily invariant norm, we have

11
2HA2XBZ <

1 o
=122y '/ ||A*XB' " + A''XB" || dv
—2ul ),

IA

; <| |A#*XB'# + AYTHXBH|| + 2 HA;XBé

||A*XB'" " + A'HXB || .

D (2.1)

Proof. First assume that 0 < u < ; Then it follows by the previous lemma that

LG R v

m

< (o2 (M) - )

S+ =)
< 5 ,

IA
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and so
1 1 1-#
1(G)=0 [ o
<5 (s (3))
= f(w).
Thus,
11 1 1-u
ZHAZXBZ < 1—2M/M ||A"XB' =" + A'"XB" || dv

< ; <|||A“XBl‘“ + AHXBM | +2HA§XB§ D @2)
<||A*XB'"* + A'HXB*|| .

Now, assume that ; < < 1. Then by applying (2.2) to 1 - y, it follows

that

11 1 Iz
2 HAZXBZ < / ||A"XB'"" + A''XBY||| dv
2[,L -1 1—u

=< ; <|||A"XB1“ +A"HXBH | +2HA§x3§ D @3)
< ||A*XB'* + A'HXBM||.

Since

1—
lim | ' ‘ / ' ||A'XB'~" + A''XB"| | dv

= lim ; <|||A”XBl_“ +AVTHXB || +2}HA§XB§

)

M=

’

11
-2|aixs3

the inequalities in (2.1) follow by combining (2.2) and (2.3).

Applying the previous lemma to the function fiv) = [||JA"XB"" + A¥"XB"||| on the
interval [u, 1] when 0 <pu <), and on the interval [}, u] when J <u <1, we
obtain the following.

Theorem 2. Let A, B, X be operators such that A, B are positive. Then for 0 < u <1
and for every unitarily invariant norm, we have

2p+1 3-2u1 3-2n 2u+1
HA4XB4+A4XB4
5 1
1o f2 ||AYXB! = + A*"XB" || dv
R (2.4)
1 2p+1 3-2u 3-2n 2u+1 1 1
54<|||A“XBI*“+A1*#XBM|||+2H‘A 4 XB 4 +A 4 XB 4 ||+]||A2XB2 )

11
A2XB2

IA

; (| |A“XB'# + AYEXBH||| + 2 H

).
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The inequality (2.4) and the first inequality in (1.1) yield the following refinement of
the first inequality in (1.1).
Corollary 1. Let A,B,X be operators such that A, B are positive. Then for 0 < u <1

and for every unitarily invariant norm, we have

1 1
]|
2p+1 3-2n 3-2n 2p+1
§HA4XB4 +A 4 XB 4 }
2 1
< / * | |ATXB! Y + ATXB| | dv
11 —=2ul (J, (2.5)

1 1— 1— 2u+1 3-2u 3-2u 2u+1
4<|||A"XB KA “XB“|||+2H‘A 4 XB 4 +A 4 XB 4

).

Applying the previous lemma to the function fiv) = |||A"XB'" + A XB"||| on the

11
A2XB2

IA

+

)

11
A2XB2

IA

; <| |A“XB'# + AYEXBH||| + 2 H

IA

[|A“XB'# + A'*XB"| .

interval [0, y] when 0 < u < ;, and on the interval [y, 1] when ; < u <1, we obtain

the following theorem.
Theorem 3. Let A, B, X be operators such that A, B are positive. Then

(1) for 0 <u < éand for every unitarily norm,

Loon M
)HAzXB 24 A 2XB2‘H

IA

! /M ||A"XB' " + A'""XB"| |dv
0 (2.6)

A

1 mo K 1P H - 1
<, (nax«xBi +2[[A2XB" 2 + 472 X2 || 4 4 + xBI ¥ 4 A1 xB )

IA

; (IIAX + XB||| + || A" + XB'™# + A""*XB"||).

(2) for ; < < land for every unitarily norm,

1
) lu/ [|A"XB' " + A''XB"||| dv
- "

T+p 1-p 1-p 1+p
'HAZXBZ +A 2 XB 2

IA

(2.7)

A

1 l+p 1—p 1—p 1+
=4 [|JAX + XBJ|| +2||A 2 XB 2 +A 2 XB 2

o ||A"XB!# + AT FXBY| |)

IA

1
(IIAX + XBJ|| + || A*XB'~#* + A'#XB"|||).

2

Since the function flv) = |||A"XB"" + A'"XB"||| is decreasing on the interval [0, il

and increasing on the interval [;, 1], and using the inequalities (2.6) and (2.7), we

obtain the refinement of the second inequality in (1.1).
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and for every unitarily invariant norm, we have

(1) for 0 < u < ;omd for every unitarily norm,

|[|A*XB'~* + A'HXB* | |

L

< ||a2xB 2 v a'2xB2 ||

1 . v 1-v 1-v v
< /|||AXB + AUXB || dv

mJo

1 WM PR - 1
<, (1AX+xBIl+ 2[[A2XB' 2 + AT 2XB2 || + [ arxB + AT xB )
< ; (IIAX + XBJ|| + || A*XB"~* + A""*XB"||) .
< |IIAX + XBl||.

(2) for ; < u < land for every unitarily norm,

||A*XB~# + A’ XB* ||

T+p 1-p 1—p 1+p
H‘A 2 XB 2 +A 2 XB 2
1

IA

IA

1
/ ||AXBL + A*XB || dv
1—unJy

1+p 1—pn 1—pn T+p
<|||AX+XB|||+2H‘A 2 XB 2 +A 2 XB 2

< Lll + ||| A*XB' T + ATTHXBH|| |>

IA

:12 (IIAX + XB||| + | |A“XB** + A**XB" | |)

IA

[IIAX + XB]|| .

It should be noticed that in the inequalities (2.6) to (2.9),

lim b [ [[ATXB + AUXB | do
u=0 Jo

1
lim | / || AXB! + ATXBY || dv
w11 = J,

= |||AX + XB||| .
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