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Abstract

In the present paper, we deal with the composition of carathéodory and homotopy
operators for differential forms satisfying the A-harmonic equation in the bounded
and convex domain. We obtain estimates for the composition and the form of
inequalities with weights. Moreover, we also obtain the composition for the gradient,
carathéodory, and homotopy operators. Then we obtain the W'® norm estimates for
the composition operators.
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1 Introduction

The purpose of this paper is to establish the inequalities for the composition of the ho-
motopy operator T and the carathéodory operator G applied to differential forms in R”,
n > 2. The homotopy operator 7 is widely used in the decomposition and the L?-theory of
differential forms. And in [3], we have extended the homotopy operator to the domain that
is deformed to every point. In the meanwhile, the carathéodory operator G form classic
examples to discuss boundedness and continuity of nonlinear operators and play an im-
portant part in advanced functional analysis, and in [4] we have extended it to differential
forms. In many situations, we need to estimate the various norms of the operators and
their compositions.

Throughout this paper, we always assume that €2 is a bounded and convex domain and
Bisaballin R”, n > 2. Let o B be the ball with the same center as B and with diam(o B) =
o diam(B), o > 0. We do not distinguish the balls from cubes in this paper. For any subset
E C R”, we use |E| to denote the Lebesgue measure of E. In [2], we have the estimate for
I T () l:

| T@)], ;< 2"ou-10()(diam ) 2] (L1)

p

forallu e L, (£, Ah), where F ¢ Qisbounded and convex. And for carathéodory operator,

we obtain
[f(s, a))| <al(s) + blwfP'’??, seQuwe L"l(Q, /\l).

With these estimates, we can obtain the estimates for the composition of them. Finally, we
obtain the W' norm estimates for the composition operator.

The main theorems are proved by reference to Chap. 7 of [1].
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2 Some preliminaries about differential forms
The majority of notations and preliminaries used throughout this paper can be found in
[1]. For the sake of convenience, we list briefly them in this section.

Let e, ey,..., e, denote the standard orthogonal basis of R”. Suppose that Al = AlR") is
the linear space of /-covectors, generated by the exterior products e; = e;; Ae;, A+ Aey,
corresponding to all ordered /-tuples I = (i1,4y,...,i1),1 <iyj<ip<---<iy<m[=0,1,...,n.
The Grassmann algebra A = @, A’ is a graded algebra with respect to the exterior prod-
ucts. For @ = Zale; € A and B = B’ € A, the inner product in A is given by («, 8) =
Yol B with summation over all /-tuples I = (i, is, ..., i;) and all integrals [ = 0,1,...,1n. We
define the Hodge star operator x: A — A by

* = SigN(T) 0ty iy, i (K1, %05y X) Ay A - Adxy,
where w = &jy iy,...i, (X1, %2, . . . %) doxyy Adxiy A+ - Adxy isak-form, 7w = (i, ..., ik, f1s -+ s fuk)
is a permutation of (1,2, ..., n) and sign(r) is the signature of the permutation. The norm
of @ € A is given by the formula |«|? = (@, o) = (e A %) € A =R.

A differential /-form  is a Schwartz distribution on € with values in A/(R"). We use
D'(R, A') to denote the space of all differential /-forms, and L”(£2, A) to denote the /-forms

w(x) = Zw(x) de = Za),»l,,'z,m,il(x) dxil A\ dx,»2 VANEIEEAN dxil
I
with all coefficients w; € L(€2, R). Thus, L7(2, A'), p > 1, is a Banach space with norm

1p pl2 1/p
oty = ol q = ([ o) = ([ (Slorl ) as)
1

The space L} (S, AY) is the subspace of D'(2, A’) with the condition

2\ P2 1/p
) dx) < 00.

The Sobolev space W'?($2, A!) of I-forms is W'?(Q, A!) = LP(Q, A)NLF (2, A!). The norms
are given by

n

lerll o = ( /Q (Z

i=1

o

8x,'

ol = (diam Q) wllpe + Volpe. (2.1)

We denote the exterior derivative by d : D'(£2, A — D(Q, A" forl=0,1,...,n—1, which

means

n

Wiy iy,.., iy (%)

do@) =Y > e dxx Adxy Adxiy A - Adx,.
k=1 1<ij<--<ij<n <

Its formal adjoint operator is defined by
d = (1" xdx:D'(Q,A") - D(QAY), 1=0,1,...,n-1,

which is called the Hodge codifferential.
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In [3], we define an operation K, for any y € © and we construct a homotopy operator
T : C®(Q, Al) - C>(R, Al) by averaging K, over all points y € Q:

Te= /Q VOK,(¢"w) dy, (2.2)

where ¥ in C°(U) is normalized so that fQ ¥ (y)dy = 1. We obtain the following decom-
position for the operator 7:

w=d(Tw) + T(dw). (2.3)
From [2], we know that for any differential form u € LZC(Q, A, 1=1,2,...,n,1< p< o0,
we have

V(1w o < Cu@lulpe (2.4)

[ Tullpo < C(2) diam(B)[|u||p,0- (2.5)

where u(B) is flatness of 2 (see [2]). See [5—13] for more details of differential forms and
its applications.

Then we define the carathéodory conditions and carathéodory operator for differential
forms (see [4]).

Definition 2.1 For a mapping f : © x Al — Al, where  is an open set in R”, we say that
f satisfies carathéodory conditions if
1. For all most s € 2, f(s, w) is continuous with respect to w, which means that f can be
expanded as f (s, w) = ), fi(s, w) dxy, where f; : Q x Al — R and f;(s, w) is continuous
about w for all most s € ; and
2. For any fixed w = Y, wdx; € AL, f(s, w) is measurable about s, which means that each
coefficient function f;(s, ) is measurable about s for any fixed w € A’.

Throughout this paper, we assume that (s, ) satisfies the carathéodory condition (C-
condition). Similarly, we can define the continuity of f(s, w) about (s, ) €  x A’

Definition 2.2 Suppose that Q2 C R” is a measurable set (0 < mes Q2 < +00), and f: Q x
Al — Al.We define the carathéodory operator G : A — Al for differential forms by

Gaw(s) :f(s, a)(s)).

For the carathéodory operator, we have the similar result for differential forms as for the
functions (see [4]).

Theorem 2.1 The carathéodory operator G maps continuously and boundedly L' (2, A')
into LP2(Q, AY), if and only if, there exists b > 0, a(x) > 0, a(x) € LP2(Q) satisfying the fol-
lowing inequality:

Lf(x, a))| <a(x)+ b|w|!% (x eQuwe /\l). (2.6)

Here, we suppose p; = pa.
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We define Muckenhoupt weights (see [1]).

Definition 2.3 A weight w satisfies the A,(€2)-condition in a subset 2 C R”, where r > 1,
and write w € A,(R2) when

1 1 r-1
sup(—/wdx) (—/wl/(l_’) dx) < 00, (2.7)
8 \IBl JB |B| Ja

where the supremum is over all balls B C Q.
The following class of two-weight or A, (2)-weights appeared in [1] and [13].

Definition 2.4 A pair of weights (o), w,) satisfy the A, ,(2)-condition in a set B C RY,
write (w1, w;) € A, (B) for some L >1and 1<r<ocowith1/r+1/r =1, if

1 1/ar 1 A(r-1)
sup(—/wf dx) (—‘/(l/a)z)”("1> dx) <00
sca\|Bl Jg |Bl Js

for all balls B C €.
In the present paper, we deal with the A-harmonic equations formulated by d" A (x, du) =
B(x, du).

We also need the following weak reverse Holder inequality (Lemma 3.1.1 of [1]).

Theorem 2.2 Let u be a solution of the nonhomogeneous A-harmonic equation in a do-
main Q and 0 < s, t < 0o. Then there exists a constant C, independent of u, such that

leellsp < CIBI“"* |||, 5 (2.8)
for all balls B with pB C 2 for some p > 1.
For A,-weights w, we have the following reverse Holder inequality (Lemma 1.4.7 of [1]).

Theorem 2.3 If w € A,, r > 1, then there exist constants 8 > 1 and C, independent of w,
such that

lollgo < CIQI"Plwllq (2.9)
for all balls Q C RN,

3 Main results and proofs
Theorem 3.1 Letu € L),
equation in domain Q is bounded and convex and T : C*(, AY) — C®(Q, AFY) be the

homotopy operator. Assume that p >1 and w € A,(2) for some 1 <r < oo. Then T(G(u)) €

(Q,AD, 1=1,2,...,n 1< s < 00, be a solution of the A-harmonic

LS (2, A). Moreover, there exists a constant C, independent of u, such that

|T(Gw)| < C|B| diam(B)||[ls, 05,02 (3.1

s,B,w% —

for all balls B with pB C Q2 and any real number o with 0 <a <1.
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Proof We only need to prove the inequality holds. With (2.6) and (2.7), we have

|7(Gu), , = Cui)diam B| G|, ,
< CM(Q)diamB”zz(x) + b|u|||S,B
< Cu(Q) diam B(|a@)||, + bllulsz)

< Ciu() diam Bl ul) - (3.2)

Then just like the process of the proof for Theorem 7.3.14 in [1], we obtain the inequality.
We discuss the inequality with 0 < @ <1 and « = 1 separately. For 0 < « < 1, first we set
t = s/(1 — o). With Holder inequality, we obtain

1/s
760N 5, = ( [ (7G]0 )
(t—s)/st
< |76 [ o ax)
“\JB

- (6 [[oas) " 63

By (3.2), we obtain

| T(Gw)]), ; < Caa(S) diam Bl . (34)

Let m = s/(1 + a(r — 1)), then m < s. With (3.3) and (3.4) and using Theorem 2.2, we have
als
I7(G0) e = Corlsd dim Bl [ )
B

als
< cw,(sz)diamB|B|(m-t>/mf||u||m,,,3< / wdx) . (3.5)
B

And using Holder’s inequality again, we obtain

1/m
et = (/ |u|’"dx)
pB
1/m
= (/ (|u|a)°‘/sw_°‘/s)mdx>
pB
1/s ) a(r-1)/s
< (/ lul*w® dx) (/ 1/ w)V dx) (3.6)
pB pB

for all balls B with pB C Q. With (3.5) and (3.6), we find that

| T(G) ||, 5 e < Cara($2) diam BIBI" " |ue]

a(r-1)/s als
X ( (1/w)"-D dx) (/wdx) . (3.7)
pB B

Page5of 11
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As w € A,(2), we have

a(r-1)/s als
1/(r-1)
(/pB(l/w) dx) (/};a)dx)
r=1\ a/s
1/(r-1)
< ((/dex) (/pB(l/a)) dx) )
1 1 r=1\ a/s
r d - 1/(r—1)d ) )
('p ' <|pB|/ © ")(mm /,,B(”“’) g

< Gs|B|*"™". (3.8)
With (3.7) and (3.8), we have
| T(G@)) |, 0 < Core(B)diam Bz, (3.9)

for all balls Bwith pB C Q. This is just (3.1) with 0 < « < 1. Then we prove the case of & = 1.
First, with Theorem 2.3, we know

lwllgs < C71BIYPY8 | wlly g, (3.10)

here 8 >1 and C; > 0 are all constants. Let ¢ = s8/(8 — 1), then we know 1 < s < ¢ and
B =t/(t —s). With Holder’s inequality (3.2), and (3.10), we obtain

(@), = ( [ (TG ax)

< (( / |T(G(u))|tdx)l/t ( ‘/B (wl/s)st/(t—S> dx)(ts)/st)

= G| T(Gw) |, sllolls
< Csu(B) diam Bl|u| o 5| |15
< Copu(B) diam BIB| "' |||} | | 5

< Cou(B) diam BIB| ™" | wl|f% | ]|, 5. (3.11)
Set m = s/r. With Theorem 2.2, we have
el < Ciol Bl |[ua]| 1y, - (3.12)

And we use Holder’s inequality again

1/m
lllm,pn = (/ (Julw" ™) dx)
pB
1/s (r-1)/s
5( |u|swdx> ( (l/u))”(”_l)dx) . (3.13)
pB pB

With w € A,(2), we have

r=1\ 1/s
ol 311/l 5 <<( / wdx)( (1/w)1/(’-1>dx> )
pB pB
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1 1 r—1\ 1/s
- <|p3|r(—/ a)dx)(—/ (l/w)“("l)dx> )
|,OB pB |IOB| pB

< Cyl|B|™. (3.14)
With (3.11)-(3.14), we have

| T(Gw))], ., < Craps(B)diam BIBI™ | |}31BI" "™ |l 5

< Cpu(B) diam B|B|™" || 311 /o|l5, 1) o5l pB0

< Cizi(B) diamB”””s,pB,w (3.15)
for all balls B with pB C 2. Thus, we complete the proof. O

Actually by the method developed in [1], for the two weight (w1, w,) € A,;(2), we have
the following inequality.

Theorem 3.2 Let u € Lj (L, A, 1=1,2,...,1,1 < s < o0, be a solution of the A-harmonic

equation in domain Q is bounded and convex and T : C*(Q, AY) — C®(, A1) be the
homotopy operator. Assume that p > 1 and (o, ;) € A, (Q) for some 1 <r<oo, A > 1.
Then, T(G(u)) € LZSM(Q, AD). Moreover, there exists a constant C, independent of u, such
that

| T(Gw) |5, = CIBIdiam(B)ulls 5,05 (3.16)
for all balls B with pB C Q and any real number o with 0 <a <1.

Proof Lett=As/(A—a).As i =1+ (=5) | with Holder inequality, we have

t st

1/s 1/s
( / | T(Gu)| o dx) = ( / (\T(Gu)|w‘;“)sdx)
B B
1/t (t—s)/st
t o/s\St/(t-s)
< (/];|T(Gu)} dx) (/};((ol ) dx)

a/hs
< |T(Gw ||t,3( fB o} dx) (3.17)

for all balls B C Q. Then, from (3.2), we obtain

|T(Gw)|,, < Ciu() diam Bl ull,. (3.18)

Letm = m, then we know m < s < t. With (3.17) and (3.18) and Theorem 2.2, we have

1/s
(/|T(Gu)‘sa)f‘ dx)
B

alrs
< GBI diamBnunt,B( [ ot dx)
B

alrs
< G,|B||B| " ||u||m,p3< / ) dx) : (319)
B
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Then by the generalized Holder’s inequality, we have

1/m
el = (/ |u|’"dx)
pB
1/m
= (//)B(|u|a)g/sa)2"‘/s)mdx)

1/s a(r-1)/As
< ( |ul*wf dx) ( 1/ aw,)'D dx) (3.20)
pB pB

for all balls B with pB C €2, where we use % = % + =" Then with (3.19) and (3.20), we

obtain

1/s
( / | T(Gu)|*wf dx)
B

1/s
< CS|B||B|“7$M(Q)diamB<f |ulf S dx)
pB

a(r-1)

= alAs
x( / (1/w2)“<'-1>dx) ( / w%dx) ) (3.21)
pB B
Then, with (@), w;) € A,,(R2), we have
alks r=1\ a/is
(( / wi\dx) ( / (1/w2)”<”>dx) )
B pB
alks r=1\ a/is
5(( / w;dx) ( / (1/w2)“<’1>dx) )
pB pB
1 1 1 1/(r-1)\ a/As
oo (g [peo) (G [ (az) )
|pB| Jpp loB| J 8\ @}

< Cy| B, (3.22)

With (3.21) and (3.22), we have

1/s 1/s
( / | T(Gu)| o dx) < C;L(Q)diamB< / |ul o dx> (3.23)
B pB

for all balls B with pB C Q. 0

For the compositions of the gradient operator V, the homotopy operator T, the
carathéodory operator G, V o T o G, we obtain the local Sobolev-Poincaré embedding

theorem.

Theorem 3.3 Let uc L}

loc
equation in bounded and convex domain Q, T : C*°(, AY) = C®(Q, A1) be the ho-
motopy operator, V be the gradient operator and G be the carathéodory operator. Then
V(T(G(w))) € LS, (2, AD) and T(G(u)) € W(B). Moreover, there exists a constant C, inde-

loc

(Q,AY, 1=1,2,...,1n, 1 < s < 00, be a solution of the A-harmonic

Page 80of 11
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pendent of u, such that
IV(T(Gw)) |, < Cru()llulisp (3.24)
and
| T(G@)) | yyrs gy = C(D 55 (3.25)

Proof Actually, we only need to prove (3.16) and (3.17). From these two inequalities, the
remaining part of the theorem follows. From (2.4), we obtain

[V(T@)],0 < Cr(@lolpe (3.26)

for any w € I¥ (A'B). Let G(u) = w, we have

loc

[V(T(6w)),5 = Cr@] G|,
< Cp(@)([[a)] + Bllullos)
< Cua(Q)llulls . (327)

With the definition of W norm, (3.2), and (3.27), we have

“ T(G(”)) ” wlrg) = diam(B)™" H T(G(”)) ||s,B + ”V(T(G("‘))) ”5,3
< diam(B) ™ Cy () diam Bl|ul|s.5 + Cia(2) |t
< Cop(2) lluells - (3.28)

Thus, we obtain the inequality. O

Using the same method as in the proof of Theorem 3.1, we obtain the weighted inequality
for [IV(T(G(i)lls,p.e -

Corollary 3.4 Letu € Lj, (2, A, 1=1,2,...,m 1 < s < 00, be a solution of the A-harmonic
equation in bounded and convex domain Q, T : C*(Q2, A) — C®(2, AFY) be the homotopy
operator, V be the gradient operator and G be the carathéodory operator. Assume that p > 1
and o € A,(Q) for some 1 < r < co. Then V(T (G(w))) € LS, (2, AL). Moreover, there exists a

loc

constant C, independent of u, such that
IV(T(Gw))) ||, e < C(lllls,p00- (3.29)

For G(T'(u)), we also have the similar result.

Corollary 3.5 Letu e L, (Q,A!), [=1,2,...,n, 1 <s <00, be a solution of the A-harmonic
equation in a bounded, convex domain Q and T : C*(Q, Al) — C®(Q, A1) be the ho-
motopy operator. Assume that p > 1 and o € A,(2) for some 1 < r < 0o. Then G(T(u)) €

LS, (R, Al). Moreover, there exists a constant C, independent of u, such that
|G(T @), 50 < CIBIdiam(B)l[aclls,pp,0 (3.30)

for all balls B with pB C Q2 and any real number o with 0 <a <1.
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Proof If (3.22) holds, then G(T'(u)) € L;, (<2, Al follows. Hence, we only need to prove
(3.22). From (2.6) and (2.7), we have

|| G(T(M)) ||s,B = ||a(x) ||s,B + b” T(M) ||S,B
< Cu(2) diam(B)lutlls,5- (3.31)

Using the method in the proof of Theorem 3.1, we obtain the inequality. O

Actually for two weight (w1, w2) € A, (S2), for some A <1 and 1 < r < 0o, we have the
similar inequalities, with the method developed in the proof of Theorem 3.2.

Corollary 3.6 Let u e L} (2, A", [=1,2,...,n 1< s < oo, be a differential form satisfy-

loc
ing A-harmonic equation in a bounded, convex domain Q C RN and T : C®(Q,Al) —

C*®(R2, Al™Y) be the homotopy operator defined in (2.2). Assume p > 1 and (w1, w,) € A, (RQ)
forsome .. >1and 1 <r < oo. Then there exists a constant C, independent of u, such that

1/s 1/s
( / |V(Tw))[' o dx) < C|B|( / |ul s dx) (3.32)
B pB

for all balls B with pB C 2 and all real number o with 0 <« < A.

The above inequality is an extension of the usual inequality of A,-weights. If we choose
w1(x) = wa(x) = w(x) and A = 1in the two weighted inequalities, we obtain the A, (£2) weight

case.
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