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1 Introduction

Let D = {z: |z|] < 1} be the open unit disc of the complex plane C, 9D its boundary. Let
H(D) denote the space of all analytic functions in D and let B(D) be the subset of H(DD)
consisting of those f € H(D) for which |[f(z)| < 1 forall z € D. Also, dA(z) be the normalized
area measure on D so that A(D) = 1. The usual «-Bloch spaces B, and B, are defined as
the sets of those f € H(D) for which

I 15, = suplf'(2)| (1~ |I*)" < o0,
zeD
and
lim [ @)|(1-121)" = 0,
z|—
respectively. Now, we will give the following definition:

Definition 1.1 The (p,o)-Bloch spaces B, and B, are defined as the sets of those
f € H(D) for which

i, =2 suplr@) £ @)1 - )" <,

and

lim |f(2)] 2| (2)| (1 - 1212)" = 0,

lzl—>1
where 0 < p, @ < 0.
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Remark 1.1 The definition of (p, «)-Bloch spaces is introduced in the present paper for
the first time. One should note that, if we put p = 2 in Definition 1.1, we will obtain the
spaces B, and B, .

Remark 1.2 (p,«)-Bloch space is very useful in some calculations in this paper and it can
be also used to study some other operators like integral operators (see [12]).

If (X, d) is a metric space, we denote the open and closed balls with center x and radius r >
0 by B(x,7) := {y € X : d(y,x) < r} and B(x,7) := {y € X : d(y,x) = r}, respectively. The well-

known hyperbolic derivative is defined by f"(z) = ; —Vlj/f((?)lﬁ of f € B(D) and the hyperbolic
L+ (2)]

distance is given by p(f(z),0) := % 10g(1—|f(z)|) between f(z) and zero.
A function f € B(D) is said to belong to the hyperbolic a-Bloch class B, if

1l =supf (@) (1~ |2*)" < oo.
zeD
The little hyperbolic Bloch-type class B, , consists of all f € B,, such that
. * EEVAC
l;n_l)llf (z)(l |z| ) 0.

The Schwarz-Pick lemma implies B, = B(D) for all « > 1 with ||f|| 5, <1, and therefore,
the hyperbolic o-Bloch classes are of interest only when 0 < o < 1.

It is obvious that B, is not a linear space since the sum of two functions in B(D) does
not necessarily belong to B(D).

. [} /
Now, let 0 < p < 00, we define the hyperbolic derivative by f,(z) = %W of f e
B(D). When p = 2, we obtain the usual hyperbolic derivative as defined above.
A function f € B(D) is said to belong to the generalized hyperbolic (p,a)-Bloch class
B, if

por 1

|[f||B;‘a = su}gﬂj(z)(l — 122" < oc.

The little generalized (p, @)-hyperbolic Bloch-type class B, , , consists of all f € B;a such
that

lim @) (1~ 121%)" =0.

1-az
Mobius transformation related to the point a € D. For 0 < p,s < oo, the hyperbolic class
Q'(p, s) consists of those functions f € B(D) for which

Let the Green’s function of D be defined as g(z, a) = log m, where ¢,(z) = £ is the

2
Wy gy = itélg/@(fp(z)) &'(z,a) dA(z) < .
Moreover, we say that f € Q" (p,s) belongs to the class Q'(p,s, 0) if

Jim, /D (£,2)’¢ (z.a)dA(2) = 0.

When p = 2, we obtain the usual hyperbolic Q class as studied in [10, 11, 14].
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Remark 1.3 The Schwarz-Pick lemma implies that B;’a = B(D) for all @ > 1 with
”f”B,",,a <1 and therefore, the generalized hyperbolic (p,«)-classes are of interest only
when 0 < o < 1. Also Q'(p,s) = B(D) for all s > 1, and hence, the generalized hyperbolic
Q(p, s)-classes will be considered when 0 <s <1.

For any holomorphic self-mapping ¢ of I, the symbol ¢ induces a linear composition
operator Cy(f) = f o ¢ from H(D) or B(D) into itself. The study of a composition operator
C, acting on the spaces of analytic functions has engaged many analysts for many years
(see, e.g, [1-8, 11, 13, 16] and others).

Yamashita was probably the first to consider systematically hyperbolic function classes.
He introduced and studied hyperbolic Hardy, BMOA and Dirichlet classes in [18—20] and
others. More recently, Smith studied inner functions in the hyperbolic little Bloch-class
[15], and the hyperbolic counterparts of the Q, spaces were studied by Li in [10] and Li
et al. in [11]. Further, hyperbolic Q, classes and composition operators were studied by
Pérez-Gonzdlez et al. in [14].

In this paper, we will study the generalized hyperbolic (p, ®)-Bloch classes B;,a and the
hyperbolic Q" (p,s) type classes. We will also give some results to characterize Lipschitz
continuous and compact composition operators mapping from the generalized hyperbolic
(p,a)-Bloch class B;'a to Q'(p,s) classes by conditions depending on the symbol ¢ only.
Thus, the results are generalizations of the recent results of Pérez-Gonzalez, Réttyd and
Taskinen [14].

Recall that a linear operator 7' : X — Y is said to be bounded if there exists a constant
C > 0 such that | T(f)|ly < C||fllx for all maps f € X. By elementary functional analysis, a
linear operator between normed spaces is bounded if and only if it is continuous, and the
boundedness is trivially also equivalent to the Lipschitz-continuity. Moreover, T: X — Y
is said to be compact if it takes bounded sets in X to sets in ¥ which have compact closure.
For Banach spaces X and Y contained in B(D) or H(D), T : X — Y is compact if and only
if for each bounded sequence (x,) € X, the sequence (7x,) € Y contains a subsequence
converging to a function f € Y.

Throughout this paper, C stands for absolute constants which may indicate different
constants from one occurrence to the next.

The following lemma follows by standard arguments similar to those outlined in [17].
Hence we omit the proof.

Lemma 1.1 Assume ¢ is a holomorphic mapping from D into itself. Let 0 < p,s < 0o, and
0<a<oo Then Cy : B;,a — Q'(p,s) is compact if and only if for any bounded sequence
(fi)nen € B;a which converges to zero uniformly on compact subsets of D as n — oo, we
have lim,,_, 5 | Cofull g* (p,5) = O-

Using the standard arguments similar to those outlined in Lemma 1 of [9], we have the
following lemma:

Lemma 1.2 Let 0 < o < 00, then there exist two functions f,g € B;’a such that for some
constant C,

(I, @] +

g;(Z)\)(l - |z|2)a >C>0, foreachzeD.
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2 Natural metricsin 13, , and Q'(p, s) classes
In this section we introduce natural metrics on generalized hyperbolic «-Bloch classes
B, and the classes Q (p,s).

Let 0 < p,s < 00, and 0 < « < 1. First, we can find a natural metric in B;,a (see [14]) by
defining

14
2
)

d(f.8:8,,) = dg, (f,8) + If - £ll5,, +|f(0) - £(0) 6))

where

) e s @U@ g @@ e
dzs,,_a(f,g).—izg T POF "~ 1-@P 1-12P)".

For f,g € Q'(p,s), define their distance by

A(f,5Q (p,9)) = dg (£,0) + If — gllops + [F(0) —g(0)]?,
where
o (P IR ¢RI f
do (f,8) = <2§2§/D TET - leP gza)dAR) ) .

Now, we give a characterization of the complete metric space d(, -; B;,a).

Proposition 2.1 The class B;‘a equipped with the metric d(-, -; B;’a) is a complete metric

space. Moreover, B;,a,o is a closed (and therefore complete) subspace of B;,u

Proof Clearly d(f,g; B;,a) >0,d(f,g B;]a) =d(g.f; B;,(X). Also,
d(f,h;[)’;ya) < d(f,g;B;,a) +d( ,h;B;’a).

Moreover, d(f,f;B,,) = 0 forall f,g,h € B, ,.

It follows from the presence of the usual (p, ®)-Bloch term that d(f, g; B;,a) = 0 implies
f = g. Hence, (B;,a,d) is a metric space. Let (f,,)52; be a Cauchy sequence in the metric
space (B; d), that is, for any ¢ > 0, there is an N = N(¢g) € N such that

o’
a(f, m;B;,a) <e

for all n,m > N. Since (f,;) C B(D), the family (f,,) is uniformly bounded and hence normal
in . Therefore, there exist f € B(DD) and a subsequence (f,))*; such that f,; converges to
f uniformly on compact subsets, and by the Cauchy formula, the same also holds for the

derivatives. Let m1 > N. Then the uniform convergence yields

wam% @25
1-|f2)P 1-|fn(2)I?

(1= 121%)"

BB @) na .
= fim, 1-L@F  1-[f@P ‘(l_m) < lim d(fufoiBya) <€ (2)
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for all z € D, and it follows that

|lf||3;’a =< ”fm”l’ﬁ’pa +&.

Thus, f € B;,a as desired. Moreover, (2) and the completeness of the usual (p, «)-Bloch im-
ply that (f,,)°°, converges to f with respect to the metric d. The second part of the assertion
follows by (2). (I

Next, we give a characterization of the complete metric space d(-,; Q" (p, s)).

Proposition 2.2 The class Q' (p,s) equipped with the metric d(-,-;Q (p,s)) is a complete
metric space. Moreover, Q (p,s,0) is a closed (and therefore complete) subspace of Q (p,s).

Proof Forf,g,h e Q*(p, s), then clearly

- d(f.g;Q (,5) 20,

- d(f.f;Q (p.9) =0,

o d(f,g;Q (p,s)) = 0 implies f = g,

o d(f, g Q»(prs)) =dg.f; Q*(Prs)),

« d(f . Q (p,s) <d(f,gQ (p,5) +d(g. 15Q (p,5)).
Hence, d is metric on Q"(p, s).

For the completeness proof, let (f,)7°; be a Cauchy sequence in the metric space
(Q'(p,s),d), that is, for any & > 0 there is an N = N(¢) € N such that d(f,,f,:; Q' (p,5)) < &,
for all n,m > N. Since f,, € B(D) such that f,, converges to f uniformly on compact subsets

2

of D. Let m > N and 0 < r < 1. Then Fatou’s lemma yields
2_1p - )
f@12"f" (@) fm@)]2 f(2) (e a)dA(2)

/D(O,r) 1-|f(2)P 1 - [fu(2)IP

:/ lim (@157 f1(2) B fon (215712, (2)

oy~ 1-|fu(2)P 1-|fu(2)IP
i

< Jim |

6@)1E D) (@) 2 ()
and by letting » — 17, it follows that

2

&' (z,a) dA(z)

2
&(z,a)dA(z) < &%,

L= fu(2) P 1- |fm(@)P

2

b1p
V@12 fn(2) 2 (z,a) dA(z). )

. 2 2
/D(fp(z)) 2’ (z,a)dA(z) < 2e +2/D 1 |fu(2)?

This yields

p 2 2
”f”Q’(p,s) S 28 + 2||fm”Q*(p.s)’

and thus f € Q'(p,s). We also find that f, — f with respect to the metric of Q(p,s). The
second part of the assertion follows by (3). O

3 Lipschitz continuous and compactness of C;
Theorem 3.1 Let 0 < p <00, 0 <s <1, and 0 <a <1 Assume that ¢ is a holomorphic
mapping from D into itself. Then the following statements are equivalent:
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(i) Cy :B;,a — Q'(p,s) is bounded;
(i) Cy:B,, — Q*(p s) is Lipschitz continuous;
(iii) sup,cp fD Wgs z,a)dA(z) < co.

Proof First, assume that (i) holds, then there exists a constant C such that
1Csf g () < C|lf||5;,a: forallf e B;,a

For givenf € B, ,, the function f;(z) = f (tz), where 0 < £ < 1, belongs to B;w with the prop-

erty |[ﬂ||3p‘a < |[f||3p'a. Let f, g be the functions from Lemma 1.2 such that

W—% 2)| + g,

for all z € D, so that

1/(2)|
g =V o9 @+ oo

Thus,

2
| - g e araao

C/};}(((f ° tff’):,(z))z +((go t¢);(z))2)gg(z,a) dA(z)

< CICIP(If I, + el )-

This estimate together with the Fatou’s lemma implies (iii).
Conversely, assuming that (iii) holds and that f € B;,a, we see that

sup [ (If o () ' (z.0) dAL2)

ach JD

= sup / (£ ()% ()¢ 2,0 dA2)
acD JD

/ 2
<11, sup f (lj(ﬁ&gs(za)dA(z).

“ qeD Jo (1= |9 (2)1)>

Hence, it follows that (i) holds.
(ii) <= (iii). Assume first that Cy : B;,a — Q'(p,s) is Lipschitz continuous, that is, there
exists a positive constant C such that

d(f o $,g0$;Q (p,s)) < Cd(f, g B,,), forallf,geB

Taking g = 0, this implies

If o @llgws < C(If N5, + If 5, + F(0)|%), forallf B, (4)

Page 6 of 12
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The assertion (iii) for & = 1 follows by choosing f(z) =z in (4). If 0 < @ < 1, then

p
2

I%Lf(z 5 - ‘ / )2 ) dt + (£0))
2] dx p
< |V||Bp_a/0 a2 +|f(0)|?

115, g
= m + V(O) )
this yields
2r00) -s0)|* < L8 s o -co

Moreover, Lemma 1.2 implies the existence of f,g € B;w such that
If, (@) + g,(2)|(1- 2*)*>C>0, forallzeD. (5)

Combining (4) and (5), we obtain

14
2

V4
flls,, +lIglls;, + I1fllBue + I€lB,q + [£(0)]* + |g(0)]

|¢'(2)]*
LA S U d.
ZC/D(l PPt @A)

for which the assertion (iii) follows.
Assume now that (iii) is satisfied, we have

d(fop.go$iQp9) =dg, (fodgod)+Ilf od-godllaws
+|f((0)) - g(¢(0))]

/ 2
<dpg, (f,8) (sup f %g’(z,a) dA(z))

ach JD |¢(Z) |p)2o¢

p
2

1
2

¢’ (2)]?
+1If - gllB,q (Z‘;E / Wﬁ( a)dA(Z))

If - ¢llB,,
(1-a)

= Cd(f,g, B;,a)‘

)4
2

+|£(0) - g(0)]

Thus Cy : B;,a — Q'(p,s) is Lipschitz continuous and the proof is completed. O

Remark 3.1 We know that a composition operator C, : B,, — Q' (p,s) is said to be
bounded if there is a positive Constant C such that || Cpf ||Q s =< CIfIl Ba forallf e B
Theorem 3.1 shows that Cy : B,, — Q'(p,s) is bounded if and only 1f it is LlpSChltZ-

continuous, that is, if there exists a positive constant C such that

d(f o $,g0$;Q (p,s)) < Cd(f,&B,,), forallf,geB,,
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By elementary functional analysis, a linear operator between normed spaces is bounded
if and only if it is continuous, and the boundedness is trivially also equivalent to the
Lipschitz-continuity. So, our result for composition operators in hyperbolic spaces is the
correct and natural generalization of the linear operator theory.

Recall that a composition operator Cy : B;W — Q'(p,s) is compact if it maps any ball in
B, , onto a precompact set in Q (p, s).
The following observation is sometimes useful.

Proposition 3.1 Let 0 <p <00, 0 <s<1landO0 <o <1. Assume that ¢ is a holomorphic
mapping from D into itself. If Cy : B;'a — Q'(p,s) is compact, it maps closed balls onto
compact sets.

Proof If BC B,, is a closed ball and g € Q(p, s) belongs to the closure of Cy(B), we can
find a sequence (f,,)°; C B such thatf, o ¢ converges to g € Q (p,s) as n — co. But (f,)%2, is
a normal family, hence it has a subsequence (f,;)X; converging uniformly on the compact
subsets of D to an analytic function f. As in earlier arguments of Proposition 2.1 in [14],
we get a positive estimate which shows that f must belong to the closed ball B. On the
other hand, also the sequence (f,; o ¢);fl converges uniformly on compact subsets to an
analytic function, which is g € Q'(p,s). We get g = f o, i.e., g belongs to C4(B). Thus, this
set is closed and also compact. d

Compactness of composition operators can be characterized in full analogy with the

linear case.

Theorem 3.2 Let 0 <p <00, 0 <s<1,and 0 <o <1. Assume that ¢ is a holomorphic
mapping from D into itself. Then the following statements are equivalent:

(i) Cp:B,,— Q (p,s) is compact.

(ii)

’ 2
lim sup/ &gs(z, a)dA(z) = 0.
\

T b Jipier, A ()P

Proof We first assume that (ii) holds. Let B:= B(g, ) C B, ,, where g € B, , and § > 0, be a
closed ball, and let (f,)7°, C B be any sequence. We show that its image has a convergent
subsequence in Q' (p, s), which proves the compactness of C, by definition.

Again, (f,),2, C B(D) is a normal family, hence there is a subsequence (fy;)>*; which con-
verges uniformly on the compact subsets of I to an analytic function f. By the Cauchy
formula for the derivative of an analytic function, also the sequence (f,;j )7%; converges uni-
formly to f”. It follows that also the sequences (f,; 0 ¢)X; and (fn’l, o ¢); converge uniformly
on the compact subsets of D to f o ¢ and f’ o ¢, respectively. Moreover, f € B C B;,a since
for any fixed R, 0 < R <1, the uniform convergence yields

f/(Z)If(Z)Vzl_l _g/(z)|g(z)|177—1 Y
Iz\sII)e 1-|f(2)P 1-|g(2)? (1-1z)

+ suplf(@) —g@F (@) - g @|(1 - 12P)” + |£(0) - g(0)]F"
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L@ @IT g()g(z) 5
A RS i S

+ sup 0 (2) = gz)| [f @) -g@)|1-1z*)" + [f(O)—g(0)|g_1 <.

Hence, d(f, g B,,) < 4.

Let ¢ > 0. Since (ii) is satisfied, we may fix 7, 0 < 7 < 1, such that

sup
aeD J|¢p

/ OIS @E oy aa) <e.

@izr L=@(2)P)%
By the uniform convergence, we may fix Nj € N such that
W}o¢(0) —fo(0 |<5, for allj > Nj. (6)

The condition (ii) is known to imply the compactness of Cy : B, — Q(p,s), hence pos-

sibly to passing once more to a subsequence and adjusting the notations, we may assume

that

Ifi; 0 ¢ =f o dllops <& forallj>N,, for some N, € N. (7)
Now let

(@) =sup /.¢<z>|>,[(f”’ 0 9),(2) ~ (f 0 9,0 '¢ (2. @) dA),
and

L(a,r) = sup (5 0 8),(2) - (f 0 8),(2) ' (z,4) dA(2).
16(2)] o g

ach

Since (f,,)7 C Band f € B, it follows that

) = sup [ oo el readr

acD J|¢p

<L [ L, fe0Eada)
|p(2)|=r

achD

2
<dg: (fu.f) SuP/¢(Z>r %gs(z, )dA(z),

aeD - |¢’( )
where
Iy 0 D@15, 00V @) [(f 0 9)@)51(F 0 ) (2) |
L. _ j j _
U :4)= ‘ 1= [y 0 D@ 1= [(f o p) @I
Hence,

Ii(a,7) < Ce. (8)
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On the other hand, by the uniform convergence on compact subsets of D, we can find an
N3 € N such that for all j > N3,

thy © DI, @) |7 0 @I 9| _
1= 1, @@)P —fe@r |~

&%%@‘
for all z € D with |¢(z)| < r. Hence, for such j, we obtain

L(a,r) = sup (0 8),(2) - (f 0 ),(2)) ¢z, @) dA(2)
6(2)] o b

aeD

ﬁwf Calfopf D)) (2,0 dA)
|p(z)|<r

aeD

1

¢’ (2)I?
= 8(22]]8 ,/|¢(z)<r (1|¢—20tgg( z,a) dA(Z)) < Cg,

hence,
L(a,r) < Csg, 9)

where C is the bound obtained from (iii) of Theorem 3.1. Combining (6), (7), (8) and (9),
we deduce that f,, — f in Q' (p,s).
1,

As for the converse direction, let f,(z) := 312" foralln e N, n > 2.

nF 12| T (1 - |22

|lf||B =5 aeﬂ) 1 2 pnpa 1 |Z|np
< (2"_1 +1) supn7|z|7_1(l— |z|2)a. (10)
aeD

The function r%‘l(l — r)¥ attains its maximum at the point r =
we see that (10) has the upper bound

n-1 a
p—-1 o _ o o p-1
(27 +1)n (1 (Tn_l) (—a+n_1> < (27" +1).

Then the sequence (f,)°, belongs to the ball B(0, (2! + 1)) C B;,a

Suppose that C, maps the closed ball B(0, (277! + 1)) C Bpa

Q'(p,5); hence, there exists an unbounded increasing subsequence (n,»)]‘.’j1 such that the

into a compact subset of

image subsequence (Cyfy, );"’1 converges with respect to the norm. Since both (f,)2, and
(Cyfu;)7 converge to the zero function uniformly on compact subsets of D, the limit of

the latter sequence must be zero. Hence,

— 0, asj— oo. (11)

””7_1 & H Q)

Now letrj=1— ni For all numbers a, ; < a <1, we have the estimate
]

n2a-! 1
! > 14]). 12
1-a% ~el-a) (see [ ]) a2
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Using (12), we deduce
n? (¢(2)"7 19" (2)| 519 (2) |
ne g2 =P / / _ (z,a) dA(2)
|| / ”Q ®s) 2 aeﬂg |p1=r; 1- |¢nl (Z)lp gs
Cp / ¢ (2)|?
> —su ————¢*(z,a) dA(2). (13)

8¢ oeh gz (1= |¢(Z)I1’)2"gj

From (11) and (13), the condition (ii) follows. This completes the proof. O

For 0 < p < 00 and 0 < s < 0o, we define the weighted Dirichlet-class D(p, s) consists of
those functions f € H(D) for which

/D FOP I @ (1 - 12P) dA) < oo.

For 0 < p < 00 and 0 < s < 0o, the generalized hyperbolic weighted Dirichlet-class
D’ (p,s) consists of those functions f € B(D) for which

[ @) -y aae <.

The proof of Proposition 2.2 implies the following corollary:

Corollary 3.1 For f,g € D'(p,s). Then, D’ (p,s) is a complete metric space with respect to
the metric defined by
4

2

)

d(f,g: D (1,9)) = dp (5 (f,8) + If — &gl Dps + |f(0) —(0)

where

1
2 2

FEIf@IE ¢@lgE)5 ™

1-|f(2)P 1-|g(2)P

. (2 12\
dp(p9(f>8) = <2 izg/@ (1-12) dA(Z))

Moreover, the proofs of Theorems 3.1 and 3.2 yield the following result:

Theorem 3.3 Let 0 < p <00, -1<s<1, and 0 <a <1. Assume that ¢ is a holomorphic
mapping from D into itself. Then the following statements are equivalent:
(i) Cy:B,,— D'(p,s) is Lipschitz continuous;
(i) Cy:B,, — D'(p,s) is compact;
(iii)

¢ s
/Du_ﬁwu— l2I?)" dA(z) < cc.
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