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Abstract

By introducing two pairs of conjugate exponents and using the improved
Euler-Maclaurin summation formula, we estimate the weight functions and obtain a
half-discrete Hilbert-type inequality with the non-monotone kernel and the best
constant factor. We also consider its equivalent forms.
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1 Introduction
If a,,b, > 0,such that 0 <Y 2 a? <ocoand 0 < > ¢
Hilbert’s inequality as follows (cf. [1]):

b? < 0o, then we have the famous

nln n=1"n

where the constant factor 7 is the best possible.

Under the same condition of (1), Xin et al. [2] gave the following inequality:

1
0o 0 | ln(m/n)| [ee) 00 2
E E e aub, < co (,;:1 aﬁ ngzl bfl) , (2)

n=l m

where the constant factor cg =8 o, 2 i)"l); 7.3277* is the best possible. And Yang [3]
gave the integral analogues of (2).

In 1934, Hardy et al. [1] established a few results on the half-discrete Hilbert-type in-
equalities with the non-homogeneous kernel (see Theorem 351). But they did not prove
that the constant factors are the best possible. However, Yang [4] gave a result by introduc-
ing an interval variable and proved that the constant factor is the best possible. Recently,
Yang et al. [5-9] gave some half-discrete Hilbert-type inequalities and their reverses with
the monotone kernels and best constant factors.
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Recently, Yang [10] gave the following half-discrete Hilbert-type inequality with the non-
monotone kernel and the best constant factor 8:

1
o0 |1n(x/n Ian /‘ 2
x)dx <8 3

Z / max{x n} s Zﬂ Sl ®)
Obviously, for a half-discrete Hilbert-type inequality with the monotone kernel, it is easy
to build the relating inequality by estimating the series form and the integral form of weight
functions. However, for a half-discrete Hilbert-type inequality with the non-monotone
kernel, it is much more difficult to prove.

In this paper, by using the way of weight functions, we give a new half-discrete Hilbert-
type inequality with the non-monotone kernel as follows:

T L6 I VAl A= P )
;anfl x+n kZ: 2k +1)? (Z‘l/ fz(x)> , (4)

k
where the constant factor 8 ) 7, 2k+)1)

paper is to build the best extension of (4) with parameters and equivalent forms.

is the best possible. The main objective of this

2 Some lemmas
Lemma2.1 Ifx; € R, m € Z (Zisthe set of non-negative integers), [x1] = n1, p(y) = y—[y] —%
(y € R) is the Bernoulli function of first order [11], then we have (cf. [10])

x1 e
/ p(y)dy = —§1 (e1 € [0,1]). )
n
Lemma 2.2 Ifr>1, 1 +1=1, f(xy) := ll;fj,)‘ (’y—‘)% (x,y € (0,00)), N is the set of positive
integers, define the weight functions as follows:
1
[ee] 1 X s
() = / [InG)I <5> dx (neN), ©)
1 x+n \x
1
o [ In()l (%"
@ (%) ::; - (;) (x€1,00)). (7)

Then we have

> 1 1
w(n) <c = /(20:(—1)]‘[(](+ %)2 + i %)2:|, w (x) < ¢, (8)

Proof Setting u = 7 in (6), we have

* Inu *© nu
w(n):/ | |u_% du</ | |u_% du = c,.
1 u+l o u+l

Setting u = 2, then it follows

1 1 1 1

x (=1 x (=1 r

/f(x,y)dyzf ( nu)bf% du>s (1 ni) du’%+1=x—(slnx+sz). 9)
0 o u+l o t1 x+1
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For1§y<x,f(x,y):— ( )r we have

.x+_y _y
, _oaf 1 In(2) In(2) :|
B = [ G GraPyr e A
;[ 1 2x1n(2) 2x1n(2) :|
r l +
(y +x)yt*r (y—x)(y+x)2yr r(y x)(y+9c)y1+

1[ In(3) In(%) ]
+xr -+ = .
G- +x)yr ry-xpt

nl?
Fory>x, f(x,y) = 1(—’C)(ﬁ)%,we find

x+y y
[ In(2) In(2) ]
(x’ * 1 - 1
YT Ry ()t
1 [ 2x1n(2) 2x1n(2) ]
X7 + +
GOy -R) 02 -2+t

~ =

—X

[ In(}) In(}) }
=)y +x)y7 V(Y s

Define two functions as follows:

1 2x1n(2 2x1n(2
g1()/)=xr[ 1 _— xn(x)l_'_ xIn(%) l]’ y< %
Oy RO )y
g()’) = y y
@) =xr [y G yzx
T T -
1 In(2 In(2
hl(y)=xr[ n(x) n + n(xLl ]’ y<x,
h(y) = (y—x +x)yT =)y T
- 2x1In(%) 2x1In(2)
hy(y) = Tt e+ —, y=x
(y+x B )2y )y T
Then we have —f/(x,y) = g(y) — h(y). Setting a = ﬁ, b=— -, then a — b = % Define two
functions as follows:
_ a-a, y<x - ) -b, y<x;
gy = h(y) =
20), y =X, hy(y), y =X

Since g1(x — 0) — a = g»(x), hy(x — 0) — b = hy(x), then both g(y) and il(j/) (y € [1,00)) are
decreasing and continuous. Besides y = x, we have (-1)/g®(y) > 0, (=1)4?(y) > 0 (i = 0,1),
and g(oo) = h(00) = 0. By the improved Euler-Maclaurin summation formula (cf. [11], The-
orem 2.2.2) and (5), for &; € [0,1],¢; € (0,1) (i = 2,3), it follows
- [ sox ey
1
- [ overdr- [ somoar
1 1

:/loop(y)g(y)dy+a/lxp(y)dy— [/loop(y)fz(y)dwb/lxp(y)dy}
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X

" owgdy- [ ooitndys@-b)| [ oo)dy+
/ / / [

%]

p() dy]

&y

-2 + ‘%351(1) - %(a—b) - —%Z(gl(l) —a)+ %3(}11(1) —b) - %(a—b).
Sincegi(l)—a>g(x—0)—a=g(x) >0, (1) —b> h(x—0)—b = hy(x) >0, then we have

_/1 PO, (5,9 dy > —é(gl(l) —a)- é(a—b)

~ x7 €7 Inx 27 Inx 1 (10)
T 8(x+1) 4(x+1)2(x-1) 4r(x+1)(x-1) 16x2

By the improved Euler-Maclaurin summation formula [11], we have

o]

w0 = S fwh = [ fwndys fws [ oy

k=1

00 1 1 00
- [“rwnar- ([ senar- 0= [T o) e -ow,

where
1 00
0= [ Swndr-3fesn- [ o0k d.

1
Since —lzf(x, 1) = —%, in view of (9), (10), (i) for 1 <x <2, -2 > _1 we have

x-1

1

1
o 2 ’
0(x) > x+1(slnx+s)

x7 Inx x
2x+1) 8(x+1)

£+ Inx £ Inx 1
4x+1)2(x—-1) 4dr(x+1)(x—-1) 16a2

(ii) for x > 2, —ﬁ > —%, we have

1 1
e(x)zxrlnx s_l_#_l N Xr 52_1_ x+11
(x+1) 2 2x+1) 2r| x+1 8 16x2*+

x Inx 1 1 1 (6s+2r—3)x% Inx
> s =
6r(x+1)

Hence, for x > 1, we have 0(x) > 0, it follows @ (x) < ¢,. The lemma is proved. O
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Lemma 2.3 As the assumption of Lemma 2.2, if0 <& <2, R= (3 - ‘9)‘1, S=(+ 1%)‘1, then

we have

_ > ]
1=y nb=et / PO b e 8 - 0). (11)
P 1 X+n &

Proof 1t is obvious that R > 1, % + % = 1. Setting u = 7, we have

- e nul 1_
= E et — —urldy
1 u+l
n=1 n

00 1
= Zn’s’l /00 —l 1nu|u%’ldu+/n _lnu u%’ldu
= o u+l o u+l

n=
1

o S W 1
>CR/ 2 Vdx + R E n_s_l/‘ Inudu®
1 P 0
1
Ry ey
& 1+5+R 1+5+R

n=1

C;R -0(Q) (8 — 0+).

The lemma is proved. O

Lemma2.4 Ifp,r>1, % + % = }7 + % =1, a, > 0, f(x) is a non-negative measurable function,
then we have
it In(2)|f (x 4 o
Z §- [/ MG (<) dx] < cf/ x57UP (%) dx, (12)
— x+n 1
00 oo l X oo
q_4 | n(,,)|ﬂn q_ a
= xXr _— r 13
o [T 2 0

Proof By Holder’s inequality [12], in view of (6) and (7), we have
[/‘”Iln( )lf() }
1 X+n
* [In(3)I [ x4 i1 )
Al ]
()] (%" »_ )\ g,
=/ —(‘) x lf’p"‘)d’“[/l —(‘) " 1””‘]
_/1«00 |lIl( )|<n) ,_lfp(x)dx[ w(n)]p—l

X+n

1
) x r
Sn_gﬂcf—lf M<5> x%—lfp(x)dx,
1

X+n n

1
o0 00 ] X H
n=ety | = (f) x5 P ) dx

1
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n=1

[ & @) 2\ | »
R o
_ 1 * E-1gp » Oo’;’fp
=cf /1 w (x)x f(x)a,’xfc,/1 x5~ fP(x) dx.

Hence we have (12). Still by Holder’s inequality [12], (6) and (7), we have
iun(g)mn ‘o iun(gn X n%a !
£~ x+n - c~ x+n v ALy "
>\ » e [In(2)] /% ; q
| n --1
[“"‘)Z’“ } Z—(‘> e

o0 1
In(% x\ 7
<xtrgry G (%) nta
X+n n

IA

Then we have (13). The lemma is proved. O

3 Main results and applications
Theorem 3.1 Ifp,r>1, 1% + é =1+ 121, a,f(x) > 0 such that 0 < flooxg’lfp(x)dx <00,

> ni1al < oo, then we have the following equivalent inequalities:

N, [ G (e
1._;%/1 xt+n /f()z xX+n

n=1

<c,{/oox§_lf”(x)dxrian_laZ}q, (14)
1 n=1

p o0 | In(% p ® p

n=1

* © |In(%)]a, | >
]2=/1 x’f—1|:z %} dx<cZZn%_laZ, (16)
n=1

n=1

1 1
WD T ez

where the constant factors ¢, = Z,‘ﬁo(—l)k [ 1, &, ¢t are the best possible.

Proof By the Lebesgue term-by-term integration theorem [13], there are two kinds of rep-

resentation in (14). By the conditions of Theorem 3.1, (12) takes the form of a strict inequal-
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ity, and we have (15). By Holder’s inequality [12], we have

3 o b < 5 @)

n=1

By (15), we have (14). On the other hand, suppose that (14) is valid. Setting a,, :=
nEAL L0 IV g1y € N then it follows J; = Y22, n#1af. By (12), we have J < oc. If

J =0, then (15) is obvious value; if 0 < J < 0o, then by (14), we obtain

1

00 1 00 q
Zn%_laZ:h:I<cr{/ x5 fp(x)dx}p[Zn%_la } ,
1

n=1 n

1 18)
00 4 r 00 v 7
= an alt <c / x5 fPx)dxy .
n=1 1
Hence we have (15), which is equivalent to (14).
By Holder’s inequality [12], we have
1
% In(%)|a 0 p L
- [ o) [ = Z &} aes|["wpad i 19)

By (16), we have (14). On the other hand, suppose that (14) is valid. Setting f(x) :=
"I[ZOO “nxm‘””]q‘ , % € [1,00), then it follows J, = [, x51fP(x) dx. By (13), we have
Jo < 00.If J = 0, then (16) is obvious value; if 0 < J, < 00, then by (14), we obtain

1

/ooxl??’lfp(x)dxzjg =I<c,{/ooxf1f”(x)dx}p{2nzla3}q,
1 1

n=1

(20)

1

] 1
1 00 i 00 q
I = {/ xélfp(x)dx}q <Cr{2”%1“Z} .
1 n=1

Hence we have (16), which is equivalent to (14). Therefore (14), (15) and (16) are equivalent.

If the constant factor ¢, in (14) is not best possible, then there exists a positive number
K, with 0 < K < ¢,, such that (14) is still valid if we replace ¢, by K. For 0 < ¢ < gy, setting
j_’(x) = n%_!%_l, a, = n%_g_l (n € N), we have

I= i&n/m |1nx+)[£(x K{/locxf‘lfp(x)dx}p :inz‘lcﬂ}q

n=1 1

o) ) }, o N %
=K / x ¢ dx) 1+ n ¢
(e (o)

n=2

1 1
1\? *° 7 K
<K(—)p<1+/ x”dx)q =—(£+1)%1. (21)
& 1 &

By (11) and (21), we have cg — ¢O(1) < K(g + 1)% and for ¢ — 0%, by Fatou lemma [13], we
have ¢, < lim,_,¢+(cg — €0O(1)) < K. This is a contradiction. Hence we can conclude that

Page 7 of 8


http://www.journalofinequalitiesandapplications.com/content/2012/1/184

Xin and Yang Journal of Inequalities and Applications 2012, 2012:184 Page 8 of 8
http://www.journalofinequalitiesandapplications.com/content/2012/1/184

the constant ¢, in (14) is the best possible. If the constant factors in (15) and (16) are not the
best possible, then we can imply a contradiction that the constant factor in (14) is not the
best possible by (17) and (19). The theorem is proved. O

Remark Forp =g =r=s5=2,(14) reduces to (4). Inequality (4) is a new basic half-discrete
Hilbert-type inequality with the non-monotone kernel.
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