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Abstract

In this paper, we introduce new subclasses of p-valent starlike, p-valent convex,
p-valent close-to-convex, and p-valent quasi-convex meromorphic functions and
investigate some inclusion properties of these subclasses and investigate various
inclusion properties and integral-preserving properties for the p-valent meromorphic
function classes.
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1 Introduction
Let 3, denote the class of functions of the form

fle)=2z7+ Zak_pzk_p (p eN={1,2,.. .}), (1.1)
k=1

which are analytic and p-valent in the punctured unit disc U* ={z:z€ Cand 0 < |z| < 1}.
If f(z) and g(z) are analytic in U = U™* U {0}, we say that f(z) is subordinate to g(z), written
f <gorf(z) < g(z) (z € U), if there exists a Schwarz function w(z) in U with w(0) = 0 and
|[w(z)| <1, such that f(z) = g(w(z)) (z € U). Furthermore, if g(z) is univalent in U, then the
following equivalence relationship holds true (see [3] and [8]):

fl)<glz) < f(0)=g(0) and f(U)Cg(l).

For functions f(z) € X,, given by (1.1) and g(z) € ,, defined by
oo
gl2)=z7"+ Z bk_pzk’p (peN), 1.2)
k=1
the Hadamard product (or convolution) of f(z) and g(z) is given by

o0
— k—
(fxg)z)=2z7"+ E k—pbi_pz ¥ = (g *f)(2). (1.3)
k=1
© 2012 Mostafa; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2012/1/169
mailto:adelaeg254@yahoo.com
http://creativecommons.org/licenses/by/2.0

Mostafa Journal of Inequalities and Applications 2012, 2012:169
http://www.journalofinequalitiesandapplications.com/content/2012/1/169

Aglan et al. [1] defined the operator Q ,: ¥, — X, by:

7P+ a+ﬁ) Zk . l11“(k+/3) ak_pzk—p (ot >0; 8> —Lpe N;f c Zp)’

b/ (2) = (erpra) (1.4)
f(z) (x=0;8>-LpeN;fex,.
Now, we define the operator Hy 5  : X, — X, as follows:
First, put
L Te+B) g~ Tk+p)
GS (z)=2z7 AR eN) 1.5)
Bp '(B) k2:1: Ck+B+a) 0
and let G, | be defined by
G5 G _ 0;peN 1.6
B.p (2) * /317#() 212" (u> HZAS ). (1.6)
Then
Hyg f(2) = Gg,(2) xf(2) (f € Ep). 1.7)
Using (1.5)-(1.7), we have
_ I'(B) L(k+ B +a) ()i .
P AR 1.8
Hop/ =27+ 1 +ﬁ)Z Ck+ pDe 7* (9
where f € X, is in the form (1.1) and (v),, denotes the Pochhammer symbol given by
) Fv+n) |1 (n=0),
V= ——>"=
@) viv+1)---(v+n-1) (neN).
It is readily verified from (1.8) that
2(He 5 f @) = (o + BYHESL f(2) = (o + B+ PIHE 5 f(2) (1.9)
and
2(HSy (@) = nHSy f (2) = (e + p)HY , f (2). (1.10)
It is noticed that, putting ; =1 in (1.8), we obtain the operator
r I'tk+a+
Hypf(2) =2 ) Z ( ﬂ)ak_pzk‘”. (1.11)

I'a +B) I'(k+B)

Let M be the class of analytic functions /(z) with /(0) = 1, which are convex and univa-
lent in U and satisfy Re{k(z)} > 0 (z € U).

For 0 < n, y < p, we denote by X,5(n), £,K(n), £,C(n,y), and X,C*(n,y), the sub-
classes of X, consisting of all p-valent meromorphic functions which are, respectively,
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starlike of order 1, convex of order 5, close-to-convex functions of order y and type 7,
and quasi-convex functions of order y and type n in U.

Making use of the principle of subordination between analytic functions, we introduce
the subclasses X,5(n;¢), Z,C(n;¢), Z,K(n,y;6,%), and Z,K*(n,y;¢,%) (0 <n, y <p
and ¢,y € M) of the class ¥, which are defined by:

1 '/
Z,8(n;¢) = {fe zp:ﬂ(—zj:(g) - n) < ¢(2), in u},
1 a
XK (n;9) = {fe Zl,:m(—[1+ fo,(iz))] —17> < ¢(2), in L[},
,C(n, ;¢ w)—{feE :3g € 2,8(n; ) s.t L(_Zf/(z)_ ><¢(z) inU}
P n’y’ ’ - P g P T’, "p_y g(z) y ’ ’

and

Z,C*(n, 50, %)

1 '(2))
= {f € X,:3g e K ¢) s.t. p-vy (_ (ng((j)))

—y) < ¥(z), in L[}.

From these definitions, we can obtain some well-known subclasses of X, by special
choices of the functions ¢ and v as well as special choices of 1, y, and p (see [2, 5], and
(10]).

Now, by using the linear operator Hyg (¢>0,u>0,8>-1;peN)and for ¢,y € M,
0 <, y <p, we define new subclasses of meromorphic functions of X, by:

5,55, :9) = {f € Ty : Hyy f € TS5 9},
K5, () = {f € £, 1 Hyy f € £,K(m59)},

2,Ch, v ¥) = {f € Sy H g f € 5,C0, 750, 9) ),
and
,Con v ) = {f € 5y Hyp f € 5,C* (0, v50,9)}.

We also note that

zf'(2)

f@) e ,KE, () & - € 2,85, 9), (1.12)

and

fR) e Z,Ch,(nv50,9) & €%,Ch,(n,y;0.9). (1.13)

')
p

In particular, we set

1+Az
E},Sg# <n; m) = EPS;’;,M(U;A,B) (-1<B<A<1)
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and
1+Az
EPI(Ing« (7], m) = Zp[<g,u(7],A,B) (—1 <B<A < 1)

In this paper, we investigate several inclusion properties of the classes X,S; ,(n;¢),
K5, (0:9), Z,Ch,(n,v5¢,¥), and Z,Cg% (n,7;¢,¥) associated with the operator

o’
a T . .
Hy g . Some applications involving integral operators are also considered.

In order to establish our main results, we need the following lemmas.

Lemma 1 [4] Let ¢ and v be complex constants and let h(z) be convex (univalent) in U
with h(0) = 1 and Re{ch(z) + v} > 0. If

q(z) =1+qz+--- (1.14)

is analytic in U, then

q(z) + S_;E]Z% <h(z) (zel),

implies
q(z) < h(z) (zeU).

Lemma 2 [7] Let h(z) be convex (univalent) in U and v(z) be analytic in U with
Re{yr(z)} > 0. If q is analytic in U and q(0) = h(0), then

q(2) + ¥ (2)zq (2) < h(z) (zeU)
implies
q(z) < h(z) (zelU).
2 Some inclusion results
In this section, we give some inclusion properties for meromorphic function classes, which
are associated with the operator H;f fu Unless otherwise mentioned, we assume that o >

L,B>-1L,u>0,0<y,n<pandpeN.

Theorem 1 Forf(z) € X, ¢ € M with

max(Re{¢(2)}) < mip

[p+u—n a+ﬁ+p—n]
p-n " p-n [

then we have

Epsg'lt+1(n’¢) C EPS%,/L(']’(P) - Epsg;}(n’¢)' (2.1)
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Proof We will first show that

%585 w0, 8) C 2,85 (0, ¢).

Letf € £,55 ,,1(n;¢) and put

q(2) =

1 (}Uﬁmfww_ )
H, f@) )

where ¢(z) is analytic in U with ¢(0) = 1. Applying (1.10) in (2.3), we have

H, )
" HE, @)

Differentiating (2.4) logarithmically with respect to z, we have

=(p-nq@)+n-(p+n).

L (s @) )_ 2q'(2)
p—n< H @ ) T T T e ©€
Since
max(Relp@]) <mip 7T
we see that

Re{(p+u)-n-(p-ne@}>0 (zel).

u.

Page5o0of 11

(2.2)

(2.3)

(2.4)

Applying Lemma 1 to (2.5), it follows that g < ¢, that s, that f € X,5%  (1;¢). The proof of
the second part will follow by using arguments similar to those used in the first part with
fe EpSg'M(n; ¢) and using the identity (1.9) instead of (1.10). This completes the proof of

Theorem 1.

Theorem 2 For f(z) € E,, ¢ € M with

max(Re{¢(z)}) < min

zel zel

[p+u—na+ﬁ+p—n]
p-n " p-n [
5K, (1:8) C S,KS, (0:6) C T,KM i) (0< 1< psp € M),

Proof Applying (1.10) and using Theorem 1, we have

f@ € TKS, 50) &  Hp  f(2) e T,Kmn)

HO! ’
PN _w € 2,5(n;¢)
p
< Hgﬂ,uH <_pr(2)) € %,5(n; ¢)
o 955 o)

O
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€ ZpSh,.(m:0)

& Hyp, (—#) € X,S8(n; )

Ha /
o A ’“f ) 5 s00)

(2
p

Hy, f (Z) € X,K(n; )
& fl2) e K5 ,(n;9).

Also,
F@) € S,K%, () A p( € 5,59, ()
= T oy seig)
& Z(Haﬂ S € X,S(n; p)

& ﬁlJ € T,K(n; ¢)
& f(@) € TKE ! (n; 9).

This completes the proof of Theorem 2. d
Taking
1+A
9(0) = 7 T2 L1<B<A<lLizel)

in Theorem 1 and Theorem 2, we have the following corollary.

Corollary 1 Letf(z) € X, and

1+A ,(p+u—n a+B+p-n

< min s (-1<B<A<1).
1+B zeu\ p-n p-n

Then we have

5S4 (A, B) C ,85 (1A, B) C £,85 1 (n; A, B)
and

SpKg (14, B) C Z,K5 (1A, B) C T,Kg (A, B).

Now, using Lemma 2, we obtain similar inclusion relations for the subclass %,C3  (n;

V;¢,1/f)-

Theorem 3 Letf(z) € ¥, and

. (pru—n a+B+p—n
121:2(Re{¢(z)}<11215[1< >

p-n  p-n
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Then we have

5Ch a3 v30,9) C Z,C (05736, %) C ,Ch 3755 0)

0 <ny<pd ¥ eM).
Proof First, we will prove that
ZpCh v, 9) CEpC (750, 9).

Letf € £,C3 ,,1(n;v;¢, ). Then, from the definition of the class £,Cj  (n;v; ¢, ), there
exists a function g € £,55  (n;¢) such that

7 i Y <—Z(]Ij§’ﬁ'ﬂ+i((zz))) - y> <¥(z) (zel). (2.6)
B+l
Now, let
1 z2(H, g ,f (@) )
- _ ), 2.7
1) p-v < Hy,,8(2) y 27)

where g(z) is analytic in U with ¢(0) = 1. Applying (1.10) in (2.6), we have

1 < 2H /@) )

) 24 Hp,ﬂ,u+1g(z)
1 (H"ﬂ w('zf ) )
= -VY

p-v Hp,ﬂ,y,+1g(z)

Zf #f'(2)
(Z(H" )+ +wH,, (=) )
-y
p pﬂy,g +(p+:u/ ﬁug(z)
Zﬁu gﬁl’-( L )
+@+m————r

p y( e —y). (2.8)

p 124
Haﬂ g(z) (p M)

Since, by Theorem 1,

8(2) € 2S5 1 (n:9) C XS5, (n:9),

set

1 zZ(Hy 5 8(2))
b _ _ DB _ >’

where /1 < ¢ in U, and ¢ € M. Then, using (2.7) and (2.8), we have

Hyp <— zfp(z)) =[p-v)9@ +y]H, ,.8(2) (2.9)
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and

1 <ZG§mHJ&W >
p— - p— y
p-v Hp,ﬂ,p_Jrlg(Z)
e, (- LD)

. W—g+<p+m[<p Y)a(a) + ]
= ( Mo -y> (2.10)
p-vy pru—n—(p-nh
Differentiating both sides of (2.9) with respect to z and multiplying by z, we have
Z(Hz’ﬂrl/' /
T =(p-v)ed (@) - [ -v)a@) +v][(e - mh(2) +n]. (211)
pyﬁ,ug (2)

Making use of (2.6), (2.10), and (2.11), we have

1 (_Z<H§ﬁ,u+1f(z>> _y)zq(z)+ 2q'(2)

) u. (212
Py Hg,ﬁ,uﬂg(z) p+u—n-(@-nh) <Y(z), ze€ ( )

Since 71 < ¢ in U, and

r?eaJ(Re{h(z)} < %,
then
Refp+u-n-p-nhi}>0 (zel). (2.13)
Hence, putting
1

x(2) =

p+u-n-@p-nhk)}

in Eq. (2.12) and applying Lemma 2, we can show that g < ¢, that is, that f € £,C3 (1,
v;¢,¥). The second part can be proved by using similar arguments and using (1.9). This
completes the proof of Theorem 3. d

3 Inclusion properties involving the integral operator F,, 5

Now, we consider the generalized Libera integral operator F,, 5(f) (see [6] and [9]), defined
by

8 ‘ S+p-1 - - 3 k—
Fps(f)(z 5+p/(; AR f(t)dt:zp+k§5+kak_pz P (8> -p). (3.1)
From (3.1), we have

( Bk Eps(f) Z)) _SHUﬁnf - (8 +p)H, pﬂu Eps(f)lz (3.2)
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Theorem 4 Let ¢ € M with

tp-n

)
gl%c(ReM(z)}) < (6> -p).

Iff € £,55,,(n; $), then Fps(f) € £,85 , (n; ).

Proof Letf € £,5; ,(n;¢) and put

h(z) = (3.3)

1 (_z(H;,g,ﬂFp,(s(fﬂz))/_ )
p-n\  HJg,Fps()2) )

where / is analytic in U with /(0) = 1. Then, by using (3.2) and (3.3), we have

Hy /@
Hy 5, Fps(N)(2)

=(p-nh(z)+n-(p+39). (3.4)

Differentiating (3.4) logarithmically with respect to z, we have

~ zh (z)
_”> BT BT R

1 (}Uﬁmf&w
p-n Hypg f(2)

Applying Lemma 1, we conclude that # < ¢ (z € U), which implies that F,s(f) €
ZpSEu(m:9). O

Theorem 5 Let ¢ € M with

S+p—n

Q%(Re{qb(z)}) < (8 >-p).

Iff € K5, (n;¢), then F5(f) € Z,K5, (10; ).
Proof Applying Theorem 4 and (1.12), we have

'@

f(2) € S,K8, (1; ) € 5,8% (1;0)

= F <_pr(Z)>(Z) € X%,S5,,(n;0)

& - 159 ? ()@)€ 2,85, (n:0)
& Fu(N)@) e K3, 10).
This completes the proof of Theorem 5. d
From Theorem 4 and Theorem 5, we have the following corollary.

Corollary 2 Suppose that

1+A S§+p—-n
<
1+B p-n

(8>-p;-1<B<A<1).
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Then, for the classes £,S5 ,(n; ) and £,Kg ,(n; @), the following inclusion relations hold
true:
fe€%,85,(AB) = Fplf) e x,8;,(A B)
and
feZKg, (AB) = F(f) € ,K5 (A, B).
Theorem 6 Let ¢, € M with

rzrlezg(Re{Mz)} < 6;’# (8 >-p).

lff € Epcg,u(ﬂ, V;()b’ 1/f); then Fp,S(f) € Epcg,u(nr )/;¢» 1//)

Proof Letf € Eng,M(n, ¥;®,¥). Then, from the definition of the class X,Cy ,(n,y; ¢, ¥),
there exists a function g € X,53 | (1; ¢) such that

1 zZ(Hy, f(2))
< poul O _ y) <Y(2) (zel). (3.5)
p - y p,ﬂ,ﬂg(z)
Now, let
1 z(Hy )(2))
h) = ( pouppVE) y>, (3.6)
-7\ H, Fu@®
where /(z) is analytic in U with /(0) = 1. Applying (3.2) in (3.6), we have
1 < z(Hy g ,.f(2)) )
p_ Y p,ﬂ,ug(z)
! <<H§,ﬂ'u<—%(z»’ )
1 {z(H"ﬁ wEns CLD@) + (0 + H;  Fos(52) y}
p-v pﬂ/,, pé(g)(z))/+(p+8) DBo1 p,S(g)(Z)
2S5 Fps- L)) ) leg( L)
1 ;,ﬁ,ﬂFp,s(gI;(z) + (p+8) P pa(g(z)
- AT, Fpy(@) v 3.7)
pP-v 5., Fp08)@)
7 5 Fps @0 +P+5
DB P
Since g € %,53 ,(n;¢), then by Theorem 4, we have F,,5(¢)(z) € X,53 ,(n;$). Let
1 z(Hy )(2))
q(z) = < riutrs @) ) (3.8)
p=n Hp,ﬂ,u p,ég(Z)
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where g < ¢ in U. Then, using the same techniques as in the proof of Theorem 3 and
using (3.5) and (3.7), we have

1 <_ z(Hy g, f(2))
p-v Hy g g(2)

zh' (z) .
S+p-n-{@-nq2)

- V) = h(z) + v (2). (3.9)

Since Re{m} > 0, then applying Lemma 2, we find that & < v, which yields
Fps(f)(2) € ,C5 ,(n, ¥5 ¢, ¥). This completes the proof of Theorem 6. a

Remark Putting 1 =1 in the above results, we obtain the results corresponding to the
operator H, 4, defined by (1.11).
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