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1 Introduction
The modulation spaces Mp,q, p,q ∈ [,∞] were first introduced by Feichtinger in []
and []. Their classical definition is based on the notion of short time Fourier trans-
form (STFT). Recently, Kobayashi [] extended the classical definition to general case for
 < p,q ≤ ∞. For the more general definitions, involving different kinds of weight func-
tions, both in the time and the frequency variables, we refer the readers to []. During
the last ten years, modulation spaces have not only become useful function spaces for
time-frequency analysis, they have also been employed to study boundedness properties
of pseudo-differential operators, Fourier multipliers, Fourier integral operators and well-
posedness of solutions to PDE’s. For more details of the applications of these spaces, the
readers can see [–, , , , –] and references therein.
In this paper, we are mainly concerned about the boundedness of the hypersingular

integral operators along curves on weighted modulation spaces Mp,q
s (Rn) for  < p < ,

 < q ≤ ∞ and s ∈ R. From our results, we will see that modulation spaces are good sub-
stitutions for Lebesgue spaces.
Suppose α,β >  and

Kα(x) =
ei|x|–β

|x|n+α
η(x), for x ∈Rn \ {}, (.)

where η(x) is a smooth, compactly supported, radial function which is equal to  in the
unit ball.
Define the convolution operator

Tf (x) = (Kα ∗ f )(x), for f ∈ C∞


(
Rn). (.)
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It is well known that the Lp-boundedness of the operator T defined by (.) is closely re-
lated to the values of the parameters α and β . In [],Wainger proved that T is a bounded
operator on L if and only if α ≤ nβ

 . Interpolating this result with the result of weak type
(, ), Wainger obtained the Lp-boundedness of the operator T . Inspired by Wainger, in
[], the authors considered the mapping properties of the operator T on weighted modu-
lation Mp,q

s (Rn) for  ≤ p ≤ ∞,  < q ≤ ∞ and s ∈ R. In this paper, we extend such result
to the case  < p < . Our result is as follows.

Theorem . Assume  < α ≤ β

 . Then the operator T defined by (.) is bounded on
weighted modulation spaces Mp,q

s (Rn) for  < p < ,  < q ≤ ∞ and s ∈R.

The hypersingular integral operator along curves which is defined by

Tα,β f (x, y) = p.v.
∫ 

–
f
(
x – t, y – γ (t)

)e–π i|t|–β

t|t|α dt (.)

has been studied by many mathematicians (see [–, , , , ]), where x, y ∈ R and
α,β > . This operator is initially studied by Zielinski in his PhD thesis (see []). He
showed that if γ (t) = t, then Tα,β is bounded on L(R) if and only if β ≥ α. This result
was later improved by Chandrana in []. He considered the general homogeneous curves
γ (t) = |t|k or γ (t) = |t|k sgn t for k ≥  and proved that if β > α > , then the operator Tα,β

is bounded on Lp(R) for

 +
α(β + )

β(β + ) + (β – α)
< p <

β(β + ) + (β – α)
α(β + )

+ .

Recently, in [], the authors have considered themapping properties of the operatorTα,β

defined by (.) on weighted modulation spaces Mp,q
s (Rn) for  ≤ p ≤ ∞,  < q ≤ ∞ and

s ∈R. For the case  < p < , we prove the following result.

Theorem . Let γ (t) = |t|k or γ (t) = |t|k sgn t for k ≥  and the operator Tα,β be defined
by (.). If β ≥ α, then the operator Tα,β is bounded on Mp,q

s (R) for  < p < ,  < q ≤ ∞
and s ∈R.

In [], the authors extended the results of [] and [] to high dimensions. They inves-
tigated the Lp-boundedness of the operator

Tn,α,β f (x) = p.v.
∫ 

–
f
(
x – �θ (t)

)e–π i|t|–β

t|t|α dt, (.)

where θ = (θ, θ, . . . , θn) and

�θ (t) =
(
θ|t|p , θ|t|p , . . . , θn|t|pn

)
or sgn t

(
θ|t|p , θ|t|p , . . . , θn|t|pn

)
.

They proved thatTn,α,β is bounded on L(Rn) if and only if β ≥ (n+)α.While β > (n+)α,
the operator Tn,α,β is bounded on Lp(Rn) for β

β–(n+)α < p < β
(n+)α . Inspired by Chen, Fan,

Wang and Zhu, the authors of [] investigated the boundedness of the operator defined
by (.) on modulation spaces Mp,q

s (Rn) for  ≤ p ≤ ∞,  < q ≤ ∞ and s ∈ R. While for
 < p < , we prove the following result.
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Theorem . Suppose that p,p, . . . ,pn are distinct positive numbers and the operator
Tn,α,β is defined as (.). If β ≥ (n + )α, then Tn,α,β is bounded on Mp,q

s (Rn) for  < p < ,
 < q ≤ ∞ and s ∈R.

Obviously, Theorem . is the extension of Theorem . in []. Theorems . and . are
respectively the extensions of Theorems . and . in [].
In what follows, we always denote C to be a positive constant that may be different at

each place, but independent of the essential variables.
This paper is organized as follows. In Section , we give the definitions and basic prop-

erties of modulation spaces. Section  is devoted to the proofs of our main results.

2 Basic definition and important lemma
The following notations will be used throughout this paper. Let S(Rn) be the Schwartz
space of all complex-valued rapidly decreasing infinitely differentiable functions onRn and
S ′(Rn) be the topological dual of S(Rn). For a function f in S(Rn), its Fourier transform
is defined by f̂ (ω) =

∫
f (t)e–π iω·t dt, and its inverse Fourier transform is f̌ (t) = f̂ (–t). The

translation and the modulation operators are defined by

Txf (t) = f (t – x) and Mωf (t) = eπ iω·tf (t)

for every x,ω ∈Rn. For s ∈R and x ∈Rn, the weight function 〈x〉s = ( + |x|) s .
Let g be a non-zero Schwartz function and  ≤ p,q ≤ ∞ and s ∈ R, the weighted mod-

ulation space Mp,q
s (Rn) is defined as the closure of the Schwartz class with respect to the

norm

‖f ‖Mp,q
s

=
(∫

Rn

(∫
Rn

∣∣Vgf (x,w)
∣∣p dx) q

p
〈w〉sq dw

) 
q
,

with obvious modifications for p or q = ∞, where Vgf (x,w) is the so-called short time
Fourier transform (STFT), which is defined by

Vgf (x,w) = 〈f ,MξTxg〉 =
∫

e–π iw·yf (y)g(y – x)dy,

i.e., the Fourier transform F applied to f Txg .
Recently, the above definition has been generated by Kobayashi in [] to the case  <

p,q ≤ ∞. In his definition, the function g is restricted to the space�δ(Rn), which is defined
by

Definition . For δ > , we define �δ(Rn) to be the spaces of all g ∈ S(Rn) satisfying

supp ĝ ⊂ {
ξ : |ξ | ≤ 

}
and

∑
k∈Zn

ĝ(ξ – δk) = .

We may choose a sufficiently small δ, such that the function space �δ(Rn) is not empty.

Definition . Given a g ∈ �δ(Rn), and  < p,q ≤ ∞, s ∈ R, we define the modulation
spaceMp,q

s (Rn)to be the space of all tempered distributions f ∈ S ′(Rn) such that the quasi-

http://www.journalofinequalitiesandapplications.com/content/2012/1/165
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norm

‖f ‖Mp,q
s

=
(∫

Rn

(∫
Rn

∣∣f ∗ (Mwg)(x)
∣∣p dx) q

p
〈w〉sq dw

) 
q

is finite, with obvious modifications for p or q = ∞.

The following basic properties of modulation spaces, which play important roles in this
article, can be found in [] and [].

Lemma . Let  < p,q ≤ ∞ and g ∈ �δ(Rn). Then
() Different test functions g, g ∈ �δ(Rn) define the same space and equivalent

quasi-norms onMp,q
s (Rn).

() Let  < p ≤ p ≤ ∞ and  < q ≤ q ≤ ∞, then

Mp,q
s

(
Rn) ↪→Mp,q

s
(
Rn).

() If  < p,q < ∞, then S(Rn) is dense inMp,q
s (Rn).

To prove our main results, we need the definition of the Wiener amalgam space
W (FLp,L∞).

Definition . Let g ∈ �δ(Rn) and  < p < ∞, we define W (FLp,L∞) to be the space of
all tempered distributions f ∈ S ′(Rn) such that

‖f ‖W (FLp ,L∞) = sup
x∈Rn

(∫
Rn

∣∣(f · Txĝ)∨(w)
∣∣p dw) 

p
< ∞.

Lemma . Let  < p <∞ and K = ([ n
p ] + ). Define the space BK by

BK =
{
f ∈ CK(

Rn)∣∣∣ ∑
|α|≤K

∥∥∂αf
∥∥
L∞ < ∞

}
.

Then BK ⊂W (FLp,L∞).

The proof of Lemma . can be found in [].

Lemma . Let  < p < ,  < q ≤ ∞ and s ∈ R. If σ ∈ W (FLp,L∞), then the multiplier
operator σ (D) defined by

σ (D)f (x) =
∫

σ (ξ )f̂ (ξ )eπ ix·ξ dξ

is bounded on weighted modulation spaces Mp,q
s (Rn).

The proof of Lemma . can be found in [], we omit here.

http://www.journalofinequalitiesandapplications.com/content/2012/1/165
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3 Proof of themain results
In this section, wewill prove ourmain results. Firstly, we come to the proof of Theorem ..

Proof of Theorem . Our convolution operator T , which is defined by Tf (x) = (Kα ∗ f )(x),
may be realized on the transform side as a Fourier multiplier operator

T̂f (ξ ) =m(ξ )f̂ (ξ ),

where

m(ξ ) = K̂α(ξ ) =
∫
Rn

Kα(x)e–π ix·ξ dx.

By Lemma ., it suffices to prove m(ξ ) ∈ W (FLp,L∞). In accordance with Lemma .,
if we can prove ‖∂γm‖L∞ ≤ C for all |γ | ≤ ([ n

p ] + ), then we get the result. For |γ | = ,
in [], Wainger proved that ‖m‖L∞ ≤ C if and only if α ≤ nβ

 . Thus when α ≤ β

 , we also
have ‖m‖L∞ ≤ C. Therefore, in the following, we only need to prove ‖∂γm‖L∞ ≤ C for all
α ≤ β

 and  < |γ | ≤ ([ n
p ] + ).

Differentiating the function m(ξ ), and using the polar coordinate transformation, we
have

∂γm(ξ ) = (–π i)|γ |
∫
Rn

xγ · |x|–n–α · ei|x|–β
η(x)e–π ix·ξ dx

= (–π i)|γ |
∫
Sn–

(
x′)γ

∫ ∞


r|γ |–α–η(r)ei[r

–β–πrx′·ξ ] dr dx′.

Denote I(x′, ξ ) =
∫ ∞
 r|γ |–α–η(r)ei[r–β–πrx′·ξ ] dr. Choose θ ∈ C∞

 (R) supported in [  , ]
such that

∑∞
j= θ (jr) =  for all r. We can rewrite I(x′, ξ ) as

I
(
x′, ξ

)
=

∞∑
j=

∫ ∞


r|γ |–α–η(r)θ

(
jr

)
ei[r

–β–πrx′·ξ ] dr.

Set s = jr, then

I
(
x′, ξ

)
=

∞∑
j=

–j(|γ |–α)
∫ 




r|γ |–α–η
(
–jr

)
θ (r)ei[

jβ r–β––j+πrx′·ξ ] dr

=
∞∑
j=

–j(|γ |–α)Ij
(
x′, ξ

)
.

Let φ(r) = jβr–β – –j+πrx′ · ξ , then φ′(r) = –βjβr–β– – –j+πx′ · ξ and φ′′(r) = β(β +
)jβr–β– ≥ C · jβ for all r ∈ [  , ]. By Van der Corput lemma, we get

∣∣Ij(x′, ξ
)∣∣ ≤ C · – jβ

 .

Therefore,

∣∣I(x′, ξ
)∣∣ ≤ C ·

∞∑
j=

–j(|γ |–α) · – jβ
 = C ·

∞∑
j=

–j|γ | · –j( β
 –α) ≤ C.

http://www.journalofinequalitiesandapplications.com/content/2012/1/165
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Then for all α ≤ β

 and  < |γ | ≤ ([ n
p ] + ), we have ‖∂γm‖L∞ ≤ C. The proof of Theo-

rem . is completed. �

Next, we give the proof of Theorem ..

Proof of Theorem . Using Fourier transformation, the operator Tα,β can be written as

T̂α,β f (ξ, ξ) =mα,β (ξ, ξ)f̂ (ξ, ξ),

where

mα,β (ξ, ξ) = p.v.
∫ 

–
e–π i[ξ·t+ξ·γ (t)] · e

–π i|t|–β

t|t|α dt

=
∫ 


e–π i[ξ·t+ξ·tk ] · e

–π it–β

t+α
dt –

∫ 


eπ i[ξ·t–ξ·tk ] · e

–π it–β

t+α
dt

=m+
α,β (ξ, ξ) –m–

α,β (ξ, ξ).

In the following, we only need to consider m+
α,β (ξ, ξ), the other half can be dealt with

similarly. Take l = (l, l) ∈N, then, by Lemma . and Lemma ., it suffices to prove

∥∥∂ lm+
α,β

∥∥
L∞ ≤ C

for all |l| ≤ ([ p ] + ). Firstly, we consider the case  < |l| ≤ ([ p ] + ). Differentiate
m+

α,β (ξ, ξ), and then

∂ l
ξm

+
α,β(ξ, ξ) =

∑
l+l=|l|

Cl,l∂
l
ξ
∂
l
ξ
m+

α,β (ξ, ξ)

=
∑

l+l=|l|
Cl,l

∫ 


(–π it)l · (–π itk)le–π i[ξ·t+ξ·tk ] · e

–π it–β

t+α
dt

=
∑

l+l=|l|
Cl,l (–π i)

l+l
∫ 


tl+kl–α–e–π i[ξ·t+ξ·tk+t–β ] dt.

Denote

I =
∫ 


tl+kl–α–e–π i[ξ·t+ξ·tk+t–β ] dt

and

φ(s) = ξ · s + ξ · sk + s–β , G(t) =
∫ t


e–π iφ(s) ds,

then I =
∫ 
 t

l+kl–α–G′(t)dt.
The following proof will be decomposed into two cases.
Case . ξ > . Then the first and second derivative of φ about s is

φ′(s) = ξ + kξ · sk– – βs–β–

http://www.journalofinequalitiesandapplications.com/content/2012/1/165
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and

φ′′(s) = k(k – )ξ · sk– + β(β + )s–β– ≥ β(β + )s–β–

for k ≥  and s ∈ (, ).
By Van der Corput lemma, we get |G(t)| ≤ C · t β+

 and

|I| ≤ C · tl+kl–α– · t β+
 | +C · |l + kl – α – | ·

∫ 


t

β+
 · tl+kl–α– dt

= C · t β–α
 +l+kl | +C ·

∫ 


t

β–α
 +l+kl– dt

≤ C

for all β ≥ α.
Case . ξ < . In this case, the third derivative of φ satisfies

φ′′′(s) = k(k – )(k – ) · ξ · sk– – β(β + )(β + )s–β– ≤ –β(β + )(β + )s–β–

for all k ≥ . Van der Corput lemma indicates that |G(t)| ≤ C · t β+
 . Thus for  < |l| ≤

([ p ] + ), we have

|I| ≤ C · t β+
 · tl+kl–α–| +C ·

∫ 


t

β+
 · tl+kl–α– dt

= C · t β–α
 +l+kl | +C ·

∫ 


t

β–α
 +l+kl– dt

≤ C

for β ≥ α.
Hence |∂ l

ξm+
α,β (ξ, ξ)| ≤ C for all  < |l| ≤ ([ p ] + ). Using the same methods, we can

also prove |∂ l
ξm–

α,β (ξ, ξ)| ≤ C for all  < |l| ≤ ([ p ] + ). Thus for all  < |l| ≤ ([ p ] + ), we
have ‖∂ l

ξmα,β‖L∞ ≤ C. While for |l| = , in [], Zielinski proved that ‖mα,β‖L∞ ≤ C if and
only if β ≥ α. Therefore, for all β ≥ α and |l| ≤ ([ p ] + ), we have ‖∂ l

ξmα,β‖L∞ ≤ C, and
thenmα,β (ξ, ξ) ∈ W (FLp,L∞).
By Lemma ., we complete the proof of Theorem .. �

Finally, we turn our attention to the proof of Theorem ..

Proof of Theorem . By checking our proof in the following, we can assume �(t) =
(tp , tp , . . . , tpn ) and consider the operator

T *
n,α,β =

∫ 


f
(
x – �(t)

)e–π it–β

t+α
dt.

Using Fourier transformation, we get the Fourier multiplier of the operator T *
n,α,β is

m(ξ ) =
∫ 


e–π i[ξ ·�(t)+t–β ] · dt

t+α
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/165
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Denote l = (l, l, . . . , ln) ∈Nn \ {} such that
∑n

j= lj = |l|, then

∂ l
ξm(ξ ) = ∂

l
ξ
∂
l
ξ

· · · ∂ ln
ξnm(ξ, ξ, . . . , ξn)

= (–π i)|l|
∫ 


tpl+pl+···+pnln · e–π i[ξ·tp +ξ·tp+···+ξn·tpn+t–β ] · dt

t+α
.

Set δ =
∑n

j= pjlj, then

∂ l
ξm(ξ ) = (–π i)|l|

∫ 


e–π i[ξ ·�(t)+t–β ] · dt

t+α–δ
.

So ∂ l
ξm(ξ ) is the Fourier multiplier of the operator Tn,α–δ,β . Using the same methods as

in [], when β ≥ (n + )α ≥ (n + )(α – δ), ‖∂ l
ξm(ξ )‖L∞ ≤ C for all |l| ≤ ([ n

p ] + ). By
Lemma ., we finish the proof of Theorem .. �
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