Some properties of starlike harmonic mappings

Melike Aydog̃an ${ }^{1 *}$, Arzu Yemisci² and Yaşar Polatog̃lu ${ }^{2}$

"Correspondence:
melike.aydogan@isikun.edu.tr
${ }^{1}$ Department of Mathematics, Işık University, Mesrutiyet Koyu, Sile Kampusu, 34980, Istanbul, Turkey Full list of author information is available at the end of the article

Abstract

A fundamental result of this paper shows that the transformation

$$
F=\frac{a z\left(h\left(\frac{z+a}{1+\bar{a} \bar{z}}\right)+\overline{g\left(\frac{z+a}{1+\bar{a} \bar{z}}\right)}\right)}{(h(a)+\overline{g(a)})(z+a)(1+\bar{a} z)}
$$

defines a function in $S_{H S^{*}}^{0}$ whenever $f=h(z)+\overline{g(z)}$ is $S_{H S^{*}}^{0}$, and we will give an application of this fundamental result.
MSC: Primary 30C45; Secondary 30C55
Keywords: harmonic starlike function; growth theorem; distortion theorem

1 Introduction

Let Ω be the family of functions $\phi(z)$ which are regular in \mathbb{D} and satisfy the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$; denote by \mathcal{P} the family of functions

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

regular in \mathbb{D}, such that $p(z)$ is in \mathcal{P} if and only if

$$
\begin{equation*}
p(z)=\frac{1+\phi(z)}{1-\phi(z)} \tag{1.1}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$.
Next, let $s_{1}(z)=z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ and $s_{2}(z)=z+d_{2} z^{2}+d_{3} z^{3}+\cdots$ be regular functions in \mathbb{D}, if there exists $\phi(z) \in \Omega$ such that $s_{1}(z)=s_{2}(\phi(z))$ for all $z \in \mathbb{D}$, then we say that $s_{1}(z)$ is subordinated to $s_{2}(z)$ and we write $s_{1}(z) \prec s_{2}(z)$, then $s_{1}(\mathbb{D}) \subset s_{2}(\mathbb{D})$.

Moreover, univalent harmonic functions are generalizations of univalent regular functions; the point of departure is the canonical representation

$$
\begin{equation*}
f=h(z)+\overline{g(z)}, \quad g(0)=0 \tag{1.2}
\end{equation*}
$$

of a harmonic function f in the unit disc \mathbb{D} as the sum of a regular function $h(z)$ and the conjugate of a regular function $g(z)$. With the convention that $g(0)=0$, the representation

[^0]is unique. The power series expansions of $h(z)$ and $g(z)$ are denoted by
\[

$$
\begin{equation*}
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{1.3}
\end{equation*}
$$

\]

If f is a sense-preserving harmonic mapping of \mathbb{D} onto some other region, then, by Lewy theorem, its Jacobian is strictly positive, i.e.,

$$
\begin{equation*}
J_{f(z)}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}>0 \tag{1.4}
\end{equation*}
$$

Equivalently [1], the inequality $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ holds for all $z \in \mathbb{D}$. This shows, in particular, that $h^{\prime}(z) \neq 0$, so there is no loss of generality in supposing that $h(0)=0$ and $h^{\prime}(0)=1$. The class of all sense-preserving harmonic mappings of the disc with $a_{0}=b_{0}=0$ and $a_{1}=1$ will be denoted by S_{H}. Thus S_{H} contains the standard class S of regular univalent functions. Although the regular part $h(z)$ of a function $f \in S_{H}$ is locally univalent, it will become apparent that it need not be univalent. The class of functions $f \in S_{H}$ with $g^{\prime}(0)=0$ will be denoted by S_{H}^{0}. At the same time, we note that S_{H} is a normal family and S_{H}^{0} is a compact normal family [2].

Finally, let $f=h(z)+\overline{g(z)}$ be an element $S_{H}\left(\right.$ or $\left.S_{H}^{0}\right)$. If f satisfies the condition

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\operatorname{Arg} f\left(r e^{i \theta}\right)\right)=\operatorname{Re}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}\right)>0 \tag{1.5}
\end{equation*}
$$

then f is called harmonic starlike function. The class of such functions is denoted by $S_{H S}$ (or $S_{H S^{\circ}}^{0}$). Also, let $f=h(z)+\overline{g(z)}$ be an element $S_{H}\left(\right.$ or S_{H}^{0}). If f satisfies the condition

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta}\left(\operatorname{Arg} f\left(r e^{i \theta}\right)\right)\right)=\operatorname{Re}\left(\frac{z\left(z h^{\prime}(z)\right)^{\prime}-\overline{z\left(z g^{\prime}(z)\right)^{\prime}}}{z h^{\prime}(z)+\overline{z g^{\prime}(z)}}\right)>0 \tag{1.6}
\end{equation*}
$$

then f is called a convex harmonic function. The class of convex harmonic functions is denoted by $S_{H C}$ (or $S_{H C}^{0}$).

For the aim of this paper, we will need the following lemma and theorem.
Lemma 1.1 ([2, p.51]) If $f=h(z)+\overline{g(z)} \in S_{H C}$, then there exist angles α and β such that

$$
\begin{equation*}
\operatorname{Re}\left[\left(e^{i \alpha} h^{\prime}(z)+e^{-i \alpha} g^{\prime}(z)\right)\left(e^{i \beta}-e^{-i \beta} z^{2}\right)\right]>0 \tag{1.7}
\end{equation*}
$$

for all $z \in \mathbb{D}$.

Theorem $1.2([2, \mathrm{p} .108])$ If $f(z)+\overline{g(z)} \in S_{H}$ is a starlike function and if $H(z)$ and $G(z)$ are the regular functions defined by $z H^{\prime}(z)=h(z), z G^{\prime}(z)=-g(z), H(0)=G(0)=0$, then $F=H(z)+\overline{G(z)}$ is a convex function.

2 Main results

Lemma 2.1 Let $f=h(z)+\overline{g(z)}$ be an element of $S_{H C}^{0}$, then

$$
\begin{equation*}
\frac{G(\alpha, \beta,-r)}{\left(1+r^{2}\right)^{2}} \leq\left|h^{\prime}(z)+e^{-2 i \alpha} g^{\prime}(z)\right| \leq \frac{G(\alpha, \beta, r)}{\left(1-r^{2}\right)^{2}} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& G(\alpha, \beta, r)=2 \cos (\alpha+\beta) r+\sqrt{1+[2 \cos (\alpha+\beta)] r^{2}+r^{4}} \\
& \quad \cos (\alpha+\beta)>0
\end{aligned}
$$

Proof Using Theorem 1.2, we write

$$
\begin{aligned}
& p(z)=\left(e^{i \alpha} h^{\prime}(z)+e^{-i \alpha} g^{\prime}(z)\right)\left(e^{i \beta}-e^{-i \beta} z^{2}\right), \quad \operatorname{Re} p(z)>0, \\
& p(0)=\left(e^{i \alpha} h^{\prime}(0)+e^{-i \alpha} g^{\prime}(0)\right)\left(e^{-i \beta}-e^{i \beta} 0^{2}\right)=\cos (\alpha+\beta)+i \sin (\alpha+\beta) .
\end{aligned}
$$

On the other hand, since

$$
p(z)=[\cos (\alpha+\beta)+i \sin (\alpha+\beta)]+p_{1} z+p_{2} z^{2}+\cdots
$$

is regular and satisfies the condition $\operatorname{Re} p(z)>0$, with $\cos (\alpha+\beta)>0$, the function

$$
\begin{equation*}
p_{1}(z)=\frac{1}{\cos (\alpha+\beta)}[p(z)-i \sin (\alpha+\beta)] \tag{2.2}
\end{equation*}
$$

is an element of \mathcal{P} [4]. Therefore, we have

$$
\begin{equation*}
\left|p_{1}(z)-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{2 r}{1-r^{2}} \tag{2.3}
\end{equation*}
$$

After simple calculations from (2.3), we get (2.1).

Corollary 2.2 Let $f=h(z)+\overline{g(z)}$ be an element of $S_{H C}^{0}$, then

$$
\begin{align*}
& \frac{G(\alpha, \beta,-r)}{\left(1+r^{2}\right)^{2}(1-r)} \leq\left|h^{\prime}(z)\right| \leq \frac{G(\alpha, \beta, r)}{(1-r)^{3}(1+r)^{2}} \tag{2.4}\\
& \frac{|w(z)| G(\alpha, \beta,-r)}{\left(1+r^{2}\right)^{2}(1-r)} \leq\left|g^{\prime}(z)\right| \leq \frac{r G(\alpha, \beta, r)}{(1-r)^{3}(1+r)^{2}} \tag{2.5}
\end{align*}
$$

Proof Since $f \in S_{H C}^{0}$, then $g^{\prime}(z)=h^{\prime}(z) w(z)$ and the second dilatation $w(z)$ satisfies the condition of Schwarz lemma, then the inequality (2.1) can be written in the form

$$
\begin{equation*}
\frac{G(\alpha, \beta,-r)}{\left|1+e^{-2 i \alpha} w(z)\right|\left(1+r^{2}\right)^{2}(1-r)} \leq\left|h^{\prime}(z)\right| \leq \frac{G(\alpha, \beta, r)}{\left|1+e^{-2 i \alpha} w(z)\right|\left(1-r^{2}\right)^{2}} \tag{2.6}
\end{equation*}
$$

which is given in (2.4) and (2.5).

Corollary 2.3 Let $f=h(z)+g(z)$ be an element of $S_{C H}^{0}$, then

$$
\begin{align*}
& \frac{r G(\alpha, \beta,-r)}{\left(1+r^{2}\right)^{2}(1-r)} \leq|h(z)| \leq \frac{r G(\alpha, \beta, r)}{(1-r)^{3}(1+r)^{2}}, \tag{2.7}\\
& \frac{|w(z)| r G(\alpha, \beta,-r)}{\left(1+r^{2}\right)^{2}(1-r)} \leq|g(z)| \leq \frac{r^{2} G(\alpha, \beta, r)}{(1-r)^{3}(1+r)^{2}} \tag{2.8}
\end{align*}
$$

Proof Using Theorem 1.2 and Corollary 2.2, we obtain (2.7) and (2.8).
Theorem 2.4 Iff $=h(z)+\overline{g(z)}$ is in $S_{H S^{*}}^{0}$ and a is in \mathbb{D}, then

$$
\begin{equation*}
F=\frac{a z\left(h\left(\frac{z+a}{1+\bar{a} z}\right)+\overline{g\left(\frac{z+a}{1+\bar{a} z}\right)}\right)}{(h(a)+\overline{g(a)})(z+a)(1+\bar{a} z)} \tag{2.9}
\end{equation*}
$$

is likewise in $S_{H S}^{0}{ }^{*}$.
Proof For ρ real, $0<\rho<1$, let

$$
\begin{equation*}
F_{\rho}=\frac{a z\left(h\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)+\overline{g\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)}\right)}{(h(\rho a)+\overline{g(\rho a)})(z+a)(1+\bar{a} z)} \tag{2.10}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \frac{z F_{\rho z}-\bar{z} F_{\rho \bar{z}}}{F_{\rho}} \\
& \quad=1-\frac{z}{z+a}+\frac{\bar{a} z}{1+\bar{a} z}+\frac{(1-|a|) z}{(1+\bar{a} z)(z+a)} \cdot \frac{\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right) h^{\prime}\left(\rho\left(\frac{z+a}{1+\bar{a}}\right)\right)}{h\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)+\overline{g\left(\rho\left(\frac{z+a}{1+\bar{z}}\right)\right)}} \\
& \quad-\frac{\left(1-|a|^{2}\right) \bar{z}}{(1+\bar{a} z)(z+a)} \cdot \frac{\frac{\rho\left(\frac{z+a}{1+\bar{a} z}\right) g^{\prime}\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)}{h\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)+\overline{g\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)}} .}{} . \tag{2.11}
\end{align*}
$$

Letting $z=e^{i \theta}$ and $w=\rho\left(\frac{z+a}{1+\bar{a} z}\right)$ in (2.11) and after the straightforward calculations, we obtain

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}\right)=\frac{1-|a|^{2}}{\left|a+e^{i \theta}\right|^{2}} \operatorname{Re}\left(\frac{w h^{\prime}(w)-\overline{w \rho^{\prime}(w)}}{h(w)+\overline{\rho(w)}}\right)>0 \tag{2.12}
\end{equation*}
$$

and we conclude that

$$
F_{\rho}=\frac{a z\left(h\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)+\overline{g\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)}\right)}{(h(\rho a)+\overline{g(\rho a)})(z+a)(1+\bar{a} z)}
$$

is in $S_{H S^{\text {s }}}^{0}$ for every admissible ρ. From the compactness of $S_{H S^{n}}^{0}$ [2] and (2.11), we infer that $F=\lim _{\rho \rightarrow 1} F_{\rho}$ is in $S_{H S^{*}}^{0}$. We also note that this theorem is a generalization of the theorem of Libera and Ziegler [3].

Corollary 2.5 Let $f=h(z)+\overline{g(z)}$ be an element of $S_{H S^{s}}^{0}$, then

$$
\begin{align*}
& \frac{\frac{(1-k)|u|}{1-k|u|^{2}} G\left(\alpha, \beta,-\frac{(1-k) u}{1-k|u|^{2}}\right)}{\left(1+\frac{(1-k)^{2}|u|^{2}}{1-k|u|^{2}}\right)^{2}\left(1-\frac{(1-k)|u|}{1-k|u|^{2}}\right)} \leq\left|\frac{h(u)}{h(k u)+\overline{g(k u)}}\right| \leq \frac{\frac{(1-k)|u|}{1-k \mid u u^{2}} G\left(\alpha, \beta, \frac{(1-k) u}{1-k|u|^{2}}\right)}{\left(1-\frac{(1-k)|u u|^{3}}{1-k|u|^{2}}\right)^{3}\left(1+\frac{(1-k|u|}{1-k|u|^{2}}\right)^{2}}, \tag{2.13}\\
& \frac{\left|w\left(\frac{(1-k)|u|}{1-k|u|^{2}}\right)\right| \frac{(1-k)|u|}{1-k|u|^{2}} G\left(\alpha, \beta, \frac{(1-k)|u|}{1-k|u|^{2}}\right)}{\left(1+\frac{(1-k)^{2}|u|^{2}}{1-k|u|^{2}}\right)^{2}\left(1-\frac{(1-k) \mid u u^{2}}{1-k|u|^{2}}\right)} \\
& \quad \leq\left|\frac{g(u)}{g(k u)+\overline{g(k u)}}\right| \leq \frac{\frac{(1-k)|u|}{1-k|u|^{2}} G\left(\alpha, \beta, \frac{(1-k) u}{1-k|u|^{2}}\right)}{\left(1-\frac{(1-k|u|}{1-k|u|^{2}}\right)^{3}\left(1+\frac{(1-k)|u|}{1-k|u|^{2}}\right)^{2}} . \tag{2.14}
\end{align*}
$$

Proof Using Theorem 2.4, we have

$$
\left\{\begin{align*}
F & =\frac{a \cdot z \cdot h\left(\frac{z+a}{1+\bar{a} z}\right)}{(h(a)+\overline{g(a)})(z+a)(1+\bar{a} z)}+\frac{a \cdot z \cdot \overline{g\left(\frac{z+a}{1+\bar{a} z}\right)}}{(h(a)+\overline{g(a)})(z+a)(1+\bar{a} z)} \tag{2.15}\\
& =H(z)+\overline{G(z)} .
\end{align*}\right.
$$

If we apply Corollary 2.3 to $H(z)$ and $G(z)$ by taking

$$
u=\frac{z+a}{1+\bar{a} z} \quad \Leftrightarrow \quad z=\frac{u-a}{1+\bar{a} u}
$$

$a=k u,-1<k<1$ and after straightforward calculations, we get (2.13) and (2.14).

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors contributed equally and significantly to writing this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Işık University, Mesrutiyet Koyu, Sile Kampusu, 34980, Istanbul, Turkey. ${ }^{2}$ Department of Mathematics and Computer Science, Kültür University, E5 Freeway Bakirköy, 34156, Istanbul, Turkey.

Acknowledgements

The authors are very grateful to the referees for their valuable comments and suggestions. They were very helpful for our paper.

Received: 10 April 2012 Accepted: 6 July 2012 Published: 23 July 2012

References

1. Clunie, J, Sheil-Small, T: Harmonic univalent functions. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 9, 3-25 (1984)
2. Duren, P: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)
3. Libera, RJ, Ziegler, MR: Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spirallike. Trans. Am. Math. Soc. 166, 361-370 (1972).
4. Nehari, Z: Conformal Mapping. Dover, New York (1975)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: © 2012 Aydog̃an et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1029-242X-2012-163
 Cite this article as: Aydog̃an et al.: Some properties of starlike harmonic mappings. Journal of Inequalities and Applications 2012 2012:163.

