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University, Mesrutiyet Koyu, Sile
Kampusu, 34980, Istanbul, Turkey
Full list of author information is
available at the end of the article

Abstract
A fundamental result of this paper shows that the transformation

F =
az(h( z+a1+az ) + g( z+a1+az ))

(h(a) + g(a))(z + a)(1 + az)

defines a function in S0
HS*

whenever f = h(z) + g(z) is S0
HS*

, and we will give an
application of this fundamental result.
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1 Introduction
Let � be the family of functions φ(z) which are regular in D and satisfy the conditions
φ() = , |φ(z)| <  for all z ∈D; denote by P the family of functions

p(z) =  + pz + pz + · · ·

regular in D, such that p(z) is in P if and only if

p(z) =
 + φ(z)
 – φ(z)

(.)

for some function φ(z) ∈ � and every z ∈D.
Next, let s(z) = z + cz + cz + · · · and s(z) = z + dz + dz + · · · be regular functions

in D, if there exists φ(z) ∈ � such that s(z) = s(φ(z)) for all z ∈D, then we say that s(z) is
subordinated to s(z) and we write s(z) ≺ s(z), then s(D) ⊂ s(D).
Moreover, univalent harmonic functions are generalizations of univalent regular func-

tions; the point of departure is the canonical representation

f = h(z) + g(z), g() =  (.)

of a harmonic function f in the unit disc D as the sum of a regular function h(z) and the
conjugate of a regular function g(z). With the convention that g() = , the representation
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is unique. The power series expansions of h(z) and g(z) are denoted by

h(z) =
∞∑
n=

anzn, g(z) =
∞∑
n=

bnzn. (.)

If f is a sense-preserving harmonic mapping of D onto some other region, then, by Lewy
theorem, its Jacobian is strictly positive, i.e.,

Jf (z) =
∣∣h′(z)

∣∣ – ∣∣g ′(z)
∣∣ > . (.)

Equivalently [], the inequality |g ′(z)| < |h′(z)| holds for all z ∈D. This shows, in particular,
that h′(z) �= , so there is no loss of generality in supposing that h() =  and h′() = . The
class of all sense-preserving harmonicmappings of the disc with a = b =  and a =  will
be denoted by SH . Thus SH contains the standard class S of regular univalent functions.
Although the regular part h(z) of a function f ∈ SH is locally univalent, it will become
apparent that it need not be univalent. The class of functions f ∈ SH with g ′() =  will be
denoted by SH . At the same time, we note that SH is a normal family and SH is a compact
normal family [].
Finally, let f = h(z) + g(z) be an element SH (or SH ). If f satisfies the condition

∂

∂θ

(
Arg f

(
reiθ

))
= Re

(
zh′(z) – zg ′(z)
h(z) + g(z)

)
>  (.)

then f is called harmonic starlike function. The class of such functions is denoted by SHS*

(or SHS* ). Also, let f = h(z) + g(z) be an element SH (or SH ). If f satisfies the condition

∂

∂θ

(
∂

∂θ

(
Arg f

(
reiθ

)))
= Re

(
z(zh′(z))′ – z(zg ′(z))′

zh′(z) + zg ′(z)

)
> , (.)

then f is called a convex harmonic function. The class of convex harmonic functions is
denoted by SHC (or SHC).
For the aim of this paper, we will need the following lemma and theorem.

Lemma . ([, p.]) If f = h(z) + g(z) ∈ SHC, then there exist angles α and β such that

Re
[(
eiαh′(z) + e–iαg ′(z)

)(
eiβ – e–iβz

)]
>  (.)

for all z ∈ D.

Theorem . ([, p.]) If f = h(z) + g(z) ∈ SH is a starlike function and if H(z) and G(z)
are the regular functions defined by zH ′(z) = h(z), zG′(z) = –g(z), H() = G() = , then
F =H(z) +G(z) is a convex function.

2 Main results
Lemma . Let f = h(z) + g(z) be an element of SHC, then

G(α,β , –r)
( + r)

≤ ∣∣h′(z) + e–iαg ′(z)
∣∣ ≤ G(α,β , r)

( – r)
, (.)
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where

G(α,β , r) =  cos(α + β)r +
√
 +

[
 cos(α + β)

]
r + r,

cos(α + β) > .

Proof Using Theorem ., we write

p(z) =
(
eiαh′(z) + e–iαg ′(z)

)(
eiβ – e–iβz

)
, Rep(z) > ,

p() =
(
eiαh′() + e–iαg ′()

)(
e–iβ – eiβ

)
= cos(α + β) + i sin(α + β).

On the other hand, since

p(z) =
[
cos(α + β) + i sin(α + β)

]
+ pz + pz + · · ·

is regular and satisfies the condition Rep(z) > , with cos(α + β) > , the function

p(z) =


cos(α + β)
[
p(z) – i sin(α + β)

]
(.)

is an element of P []. Therefore, we have

∣∣∣∣p(z) –  + r

 – r

∣∣∣∣ ≤ r
 – r

. (.)

After simple calculations from (.), we get (.). �

Corollary . Let f = h(z) + g(z) be an element of SHC, then

G(α,β , –r)
( + r)( – r)

≤ ∣∣h′(z)
∣∣ ≤ G(α,β , r)

( – r)( + r)
, (.)

|w(z)|G(α,β , –r)
( + r)( – r)

≤ ∣∣g ′(z)
∣∣ ≤ rG(α,β , r)

( – r)( + r)
. (.)

Proof Since f ∈ SHC , then g ′(z) = h′(z)w(z) and the second dilatation w(z) satisfies the con-
dition of Schwarz lemma, then the inequality (.) can be written in the form

G(α,β , –r)
| + e–iαw(z)|( + r)( – r)

≤ ∣∣h′(z)
∣∣ ≤ G(α,β , r)

| + e–iαw(z)|( – r)
(.)

which is given in (.) and (.). �

Corollary . Let f = h(z) + g(z) be an element of SCH , then

rG(α,β , –r)
( + r)( – r)

≤ ∣∣h(z)∣∣ ≤ rG(α,β , r)
( – r)( + r)

, (.)

|w(z)|rG(α,β , –r)
( + r)( – r)

≤ ∣∣g(z)∣∣ ≤ rG(α,β , r)
( – r)( + r)

. (.)
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Proof Using Theorem . and Corollary ., we obtain (.) and (.). �

Theorem . If f = h(z) + g(z) is in SHS* and a is in D, then

F =
az(h( z+a

+az ) + g( z+a
+az ))

(h(a) + g(a))(z + a)( + az)
(.)

is likewise in SHS* .

Proof For ρ real,  < ρ < , let

Fρ =
az(h(ρ( z+a

+az )) + g(ρ( z+a
+az )))

(h(ρa) + g(ρa))(z + a)( + az)
(.)

then we have

zFρz – zFρz

Fρ

=  –
z

z + a
+

az
 + az

+
( – |a|)z

( + az)(z + a)
· (ρ( z+a

+az ))h
′(ρ( z+a

+az ))
h(ρ( z+a

+az )) + g(ρ( z+a
+az ))

–
( – |a|)z

( + az)(z + a)
· ρ( z+a

+az )g ′(ρ( z+a
+az ))

h(ρ( z+a
+az )) + g(ρ( z+a

+az ))
. (.)

Letting z = eiθ and w = ρ( z+a
+az ) in (.) and after the straightforward calculations, we

obtain

Re

(
zFz – zFz

F

)
=

 – |a|
|a + eiθ | Re

(
wh′(w) –wρ ′(w)
h(w) + ρ(w)

)
> , (.)

and we conclude that

Fρ =
az(h(ρ( z+a

+az )) + g(ρ( z+a
+az )))

(h(ρa) + g(ρa))(z + a)( + az)

is in SHS* for every admissible ρ . From the compactness of SHS* [] and (.), we infer that
F = limρ→ Fρ is in SHS* . We also note that this theorem is a generalization of the theorem
of Libera and Ziegler []. �

Corollary . Let f = h(z) + g(z) be an element of SHS* , then

(–k)|u|
–k|u| G(α,β , –

(–k)u
–k|u| )

( + (–k)|u|
–k|u| )( – (–k)|u|

–k|u| )
≤

∣∣∣∣ h(u)
h(ku) + g(ku)

∣∣∣∣ ≤
(–k)|u|
–k|u| G(α,β ,

(–k)u
–k|u| )

( – (–k)|u|
–k|u| )

( + (–k)|u|
–k|u| )


, (.)

|w( (–k)|u|
–k|u| )| (–k)|u|

–k|u| G(α,β ,
(–k)|u|
–k|u| )

( + (–k)|u|
–k|u| )( – (–k)|u|

–k|u| )

≤
∣∣∣∣ g(u)
g(ku) + g(ku)

∣∣∣∣ ≤
(–k)|u|
–k|u| G(α,β ,

(–k)u
–k|u| )

( – (–k)|u|
–k|u| )

( + (–k)|u|
–k|u| )


. (.)
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Proof Using Theorem ., we have

⎧⎪⎨
⎪⎩
F =

a.z.h( z+a
+az )

(h(a) + g(a))(z + a)( + az)
+

a.z.g( z+a
+az )

(h(a) + g(a))(z + a)( + az)
=H(z) +G(z).

(.)

If we apply Corollary . to H(z) and G(z) by taking

u =
z + a
 + az

⇔ z =
u – a
 + au

a = ku, – < k <  and after straightforward calculations, we get (.) and (.). �
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