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Abstract
LetA be a C*-algebra of real rank zero and B be a C*-algebra with unit I. It is shown
that if φ :A –→ B is an additive mapping which satisfies |φ(A)φ(B)| ≤ φ(|AB|) for
every A,B ∈A+ and φ(A) = I for some A ∈ As with ‖A‖ ≤ 1, then the restriction of
mapping φ toAs is a Jordan homomorphism, whereAs denotes the set of all
self-adjoint elements. We will also show that if φ is surjective preserving the product
and an absolute value, then φ is a C-linear or C-antilinear *-homomorphism onA.
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1 Introduction and preliminaries
In recent years, the subject of linear preserver problems is the focus of attention of many
mathematicians, and much research has been going on in this area. Here we refer to the
articles [–, –].
In what follows, let A and B be two C*-algebras with unit I . We say that a map-

ping φ : A –→ B is preserving (resp. sub-preserving) absolute values of a product if
|φ(A)φ(B)| = φ(|AB|) (resp. |φ(A)φ(B)| ≤ φ(|AB|)) for every A,B ∈ A, where |A| = A*A.
By a *-homomorphism we just mean a map φ :A –→ B which preserves the ring struc-
ture and for which φ(A*) = φ(A)* for every A ∈A. A map φ :A→ B is said to be a Jordan
*-homomorphism if it is R-linear, φ(A*) = φ(A)* and φ(A) = φ(A) for all A ∈ A. We also
say a map φ : A → B is unital if φ(I) = I . The class of all self-adjoint elements in a C*-
algebra A is denoted by As. We define A ◦ B = 

 [AB + BA] for all A,B ∈ As. It is known
that (As, +,◦) is a C*-algebra which is called a Jordan algebra.
In [], Molnar considered bijective mappings φ from a von Neumann algebra A �= C

which is a factor onto a von Neumann algebra which preserves a product and an absolute
value. He showed φ is of the form

φ(A) = τ (A)ψ(A) (A ∈A),

where ψ is either a linear or conjugate linear *-algebra isomorphism and τ :A –→ C is a
scalar function of Modulus .
It is the aim of this paper to continue this work by studying additive mappings φ from

a C*-algebra of real rank zero into a C*-algebra that sub-preserve product and absolute
value. In fact, we show that if the mapping φ which is an additive sub-preserving product

© 2012 Taghavi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2012/1/161
mailto:taghavi@umz.ac.ir
http://creativecommons.org/licenses/by/2.0


Taghavi Journal of Inequalities and Applications 2012, 2012:161 Page 2 of 6
http://www.journalofinequalitiesandapplications.com/content/2012/1/161

absolute value map from a C*-algebra A into a C*-algebra then φ is a contraction. More-
over, if A is a C*-algebra of real rank zero and φ(A) = I for some A in the closed unit ball
(As), then the restriction of mapping φ to As is a Jordan homomorphism. We will also
show that if φ is a surjective preserving product and absolute value andA is a C*-algebra
of real rank zero, then φ is aC-linear orC-antilinear *-homomorphism onA. All we need
about C*-algebras and von Neumann algebras can be found in [, ].

2 Themain results
Firstly, we need some auxiliary lemmas to prove our main result.

Lemma . Let A and B be two unital C*-algebras with unit I. If φ : A –→ B is a map
satisfying

∣∣φ(A)φ(B)∣∣ ≤ φ
(|AB|) (∀A,B ∈A+) (.)

then φ preserves positive elements. Moreover, if φ() = , then for all A,B ∈A+ we have

AB = BA =  ⇒ φ(A)φ(B) = φ(B)φ(A) = . (.)

Proof If A is a positive element in A, then |φ(A)φ(I)| ≤ φ(A). This means φ(A) is positive
and preserves positive elements.
Let A,B ∈ A+ and AB = BA = . By the assumption |φ(A)φ(B)| ≤ φ(|AB|) = . Thus

|φ(A)φ(B)| =  and hence φ(A)φ(B) = φ(B)φ(A) = . �

Lemma. LetA andB be two unital C*-algebras with unit I. If φ :A –→ B is an additive
mapping satisfying (.), then φ is order preserving and contraction (i.e. ‖φ(A)‖ ≤ ‖A‖) on
(As, +,◦).

Proof By Lemma . φ preserves positive elements. Hence additivity of φ implies that
φ is order preserving. And also, since every self-adjoint element is the difference of two
positive elements, φ preserves self-adjoint elements. Indeed, we show that φ maps the
part of positive (resp. negative) of A to the part of positive (resp. negative) of φ(A). In fact,
φ(A+) = φ(A)+ and φ(A–) = φ(A)–, where, A = A+ –A– and A+A– =  = A–A+.We just need
to show φ(A+)φ(A–) =  = φ(A–)φ(A+) because the decomposition of φ(A) is unique and
φ preserves positives. Applying Lemma . and the equation A+A– =  = A–A+, we get the
assertion.
The proof of R-linearity of φ is similar to the first step of the proof of [, Theorem ].

The details are omitted.
Now, we show φ is contraction on (As, +,◦). If A is a self-adjoint element. We can write

A = A+ –A–, where A+ and A– are positive elements. We have

φ(A) = φ(A+ –A–) = φ(A+) + φ(A–)

≤ φ
(
A+

) + φ
(
A–

) = φ
(
A+

 +A–
)

= φ
(
(A+ –A–)

)
= φ

(
A).
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Since φ is order preserving, observe

φ(A) ≤ φ
(
A) ≤ ∥∥A∥∥φ(I),

because A ≤ ‖A‖I . It implies that

∥∥φ(A)
∥∥ =

∥∥φ(A)
∥∥≤ ‖A‖,

since ‖φ(I)‖ ≤ . Taking square root, we obtain ‖φ(A)‖ ≤ ‖A‖, which yields φ is a contrac-
tion on (As, +,◦). �

Lemma. LetA andB be two unital C*-algebras with unit I. If φ :A –→ B is an additive
map satisfying (.) and

φ(U) = I, for some U ∈ (As), (.)

then φ is unital.

Proof By the hypothesis, there exists an operator U ∈ (As) such that φ(U) = I . Since φ is
order preserving by Lemma . and |A| ≤ ‖A‖I for every A ∈A, we have

I = φ(U) ≤ φ
(
U) ≤ ‖U‖φ(I) ≤ φ(I).

On the other hand, we have

φ(I) ≤ ∥∥φ(I)
∥∥I ≤ I,

because φ is contraction by Lemma .. Therefore, φ(I) = I . �

The following example shows that the condition (.) in Lemma . is necessary.

Example . Define an additive mapping φ : C[, ] –→ C[, ] by

φ(f ) = r · f

for all f ∈ C[, ], where r(t) = +t
 . Note that r is positive and r ≤ r. Obviously, φ is an

additive mapping satisfying

∣∣φ(f )φ(g)∣∣ = r|fg| ≤ r|fg| = φ
(|fg|),

for every f , g ∈ C[, ], but clearly there is not any λ ∈ R such that φ(I) = λI because
φ(I) = r.

Lemma . Let A be a C*-algebra of real rank zero and B be a unital C*-algebra with
unit I. If φ :A –→ B is an additive mapping satisfying (.), then

(i) for every self-adjoint operator A ∈A, we have

φ(A) = φ
(
A)φ(I) = φ(I)φ

(
A). (.)

(ii) N = {A ∈As : φ(A) = } is a closed ideal of (As, +,◦).
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Proof (i) Let E and F be mutually orthogonal projections. By Lemma . φ(E)φ(F) =
φ(F)φ(E) = , in particular, φ(I – E)φ(E) = φ(E)φ(I – E) = . That is, φ(E) = φ(E)φ(I) =
φ(I)φ(E).
Assume that A ∈ A is of the form

∑n
j= λjEj for some scaler λj ∈ R and finitely many

mutually orthogonal projections Ej, then

φ(A) =

[
φ

( n∑
j=

λjEj

)]

=
n∑
j=

λ
j φ(Ej)

=
n∑
j=

λ
j φ(Ej)φ(I) =

n∑
j=

λ
j φ(I)φ(Ej)

= φ
(
A)φ(I) = φ(I)φ

(
A).

Now, assume A is an arbitrary self-adjoint element. SinceA is a C*-algebra with real rank
zero, its every self-adjoint element can be approximated by the elements of the above form.
Hence the continuity of φ entails

φ(A) = φ
(
A)φ(I) = φ(I)φ

(
A),

for every self-adjoint operator A ∈A.
(ii) Let A ∈A be a self-adjoint element such that φ(I)φ(A) =  = φ(A)φ(I). We show that

φ(A) = .
Multiplying through equation (.) by φ(I) (on the left) we get  = φ(I)φ(A) =

φ(I)φ(A). Sinceφ(I) andφ(A) commute and by the assumption, we have  = φ(I)φ(A) =
φ(I)φ(A) ≥ φ(I)φ(|A|). This implies that

 = φ(I)φ
(|A|). (.)

Since A ≤ ‖A‖|A|, by using the order preserving property of φ we yield φ(A) =
φ(I)φ(A) = φ(I)φ(|A|) ≤ φ(I)φ(‖A‖|A|) = ‖A‖φ(I)φ(|A|) = . So φ(A) =  because φ(A)
is a self-adjoint element.
It follows N is a closed ideal of (As, +,◦) by the step  of [, Theorem .]. �

In the following theorem we would like to characterize the Jordan homomorphisms φ

which are additive mappings sub-preserving a product and an absolute value.

Theorem . Let A be a C*-algebra of real rank zero and B be a unital C*-algebra with
unit I. If φ :A –→ B is an additive mapping satisfying (.) and (.), then the restriction
of the map φ to As is a Jordan homomorphism.

Proof According to Lemma . and Lemma .(i) we yield the statement. �

Now we also show that the condition (.) in Theorem . is necessary.

Example . The same as in Example ., let A be a von Neumann algebra with a non
trivial center. Define an additive mapping φ :A –→A by

φ(A) =UA,
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whereU ∈ (A∩A′ )+ is invertible,U <U andU /∈C. Obviously, φ is an additivemapping
that satisfies in (.), but no nonzero multiple of φ is a Jordan homomorphism, because
if ψ(A) = λφ(A) with λ ∈ C is a Jordan homomorphism, then we obtain U = λ, that is a
contradiction.

In the following theoremwe show that if φ(I) is an injective operator and φ is an additive
mapwhich satisfies in (.), then the restriction of φ is a Jordan homomorphismmultiplied
by φ(I).

Theorem . Let A be a C*-algebra of real rank zero and B be a unital C*-algebra with
unit I. Ifφ :A –→ B is an additivemapping satisfying |φ(A)φ(B)| ≤ φ(|AB|) for every A,B ∈
A+ and φ(I) is an injective operator, then the restriction of mapping ψ :A –→ B is defined
by φ(A) = φ(I)ψ(A), to As is a Jordan homomorphism.

Proof Injectivity of φ(I) implies ψ is well defined. Let A ∈As. By applying Lemma ., we
can show φ(A)φ(I) = φ(I)φ(A). By the definition of ψ , we have

φ(I)ψ(A) = φ(I)ψ(A)φ(I),

φ(I)
(
φ(I)ψ(A) –ψ(A)φ(I)

)
= ,

φ(I)ψ(A) = ψ(A)φ(I).

This means φ(I) commutes with ψ(A) for every self-adjoint operator A ∈ A. Again, by
using Lemma ., we yield

φ(I)ψ
(
A) = φ(I)φ

(
A)

= φ(A) = φ(I)ψ(A),

φ(I)
(
ψ

(
A) –ψ(A)

)
= ,

ψ
(
A) = ψ(A).

This completes the proof. �

In [], Molnar considered bijective mappings φ from a von Neumann algebra A �= C
which is a factor onto a von Neumann algebra which preserves a product and an absolute
value. He showed φ is of the form

φ(A) = τ (A)ψ(A) (A ∈A),

where, ψ is either a linear or conjugate linear *-algebra isomorphism and τ : A –→ C

is a scalar function of Modulus . Below, we present the result where we do not assume
injectivity but φ is an additive map from C*-algebraA onto a C*-algebra of real rank zero
which preserves a product and an absolute value, and it is shown φ is a C-linear or C-
antilinear *-homomorphism.

Theorem . Let A and B be two unital C*-algebra with unit I. If φ :A –→ B is an ad-
ditive mapping satisfying |φ(A)φ(B)| = φ(|AB|) for every A,B ∈ A and φ(A) = I for some
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A ∈A, then φ is unital and the restriction of mapping φ toAS is a Jordan homomorphism.
Moreover, if φ is surjective and B be a C*-algebra of real rank zero then, φ is a C-linear or
C-antilinear *-homomorphism.

Proof By Lemma . φ preserves self-adjoint element. So φ(A) = φ(A), for all of self-
adjoint elements A, in particular, φ preserves projection. By the hypothesis, there is an
element U ∈A such that φ(U) = I . Then,

I = φ(U) =
∣∣φ(U)φ(U)

∣∣ = φ
(∣∣U∣∣).

Thus without loss of generality we can assume U is a positive element. Now, we have

I = φ(U) = φ
(|UI|) = ∣∣φ(U)φ(I)

∣∣ = ∣∣φ(I)∣∣ = φ(I).

So φ is a unital map.
And also we have

∣∣φ(A)∣∣ = ∣∣φ(A)φ(I)∣∣ = φ
(|A|) (A ∈A).

Therefore, φ is aC-linear orC-antilinear *-homomorphism onA by [, Theorem .].�
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