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1 Introduction
Let � be an open unit disc in the complex plane, and let H(�) be the class of all analytic
functions on �. The α-Bloch space Bα (α > ) is, by definition, the set of all function f in
H(�) such that

‖f ‖Bα =
∣∣f ()∣∣ + sup

z∈�

(
 – |z|)α∣∣f ′(z)

∣∣ < ∞.

Under the above norm, Bα is a Banach space. When α = , B = B is the well-known Bloch
space. Let Bα

 denote the subspace of Bα , for f

Bα
 =

{
f :

(
 – |z|)α∣∣f ′(z)

∣∣ →  as |z| → , f ∈ Bα
}
.

This space is called a little α-Bloch space.
Assume that μ is a positive continuous function on [, ), having the property that there

exist positive numbers s and t,  < s < t, and δ ∈ [, ), such that

μ(r)
( – r)s

is decreasing on [δ, ), lim
r→

μ(r)
( – r)s

= ,

μ(r)
( – r)t

is increasing on [δ, ), lim
r→

μ(r)
( – r)t

= ∞.

Then μ is called a normal function (see []).
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Denote (see, e.g., [, , ])

Bμ =
{
f : ‖f ‖Bμ =

∣∣f ()∣∣ + sup
z∈�

μ
(|z|)∣∣f ′(z)

∣∣ < ∞, f ∈H(�)
}
.

It is known that Bμ is a Banach space with the norm ‖ · ‖Bμ (see []).
Let Bμ, denote the subspace of Bμ, i.e.,

Bμ, =
{
f : μ

(|z|)∣∣f ′(z)
∣∣ →  as |z| → , f ∈ Bμ

}
.

This space is called a little Bloch-type space. When μ(r) = ( – r)α , the induced space Bμ

becomes the α-Bloch space Bα .
Throughout this paper, we assume that K is a right continuous and nonnegative nonde-

creasing function. For  < p < ∞, – < q < ∞, we say that a function f ∈ H(�) belongs to
the space Qk(p,q) (see, []), if

‖f ‖ =
{
sup
z∈�

∫
�

∣∣f ′(z)
∣∣p( – |z|)qK(

g(z,a)
)
dA(z)

} 
p
<∞,

where dA denotes the normalized Lebesgue area measure on �, g(z,a) is the Green func-
tion with logarithmic singularity at a, that is, g(z,a) = log 

|ϕa(z)| , where ϕa(z) = a–z
–az for

a ∈ �. When K(x) = xs, s ≥ , the space Qk(p,q) equals to F(p,q, s), which is introduced

by Zhao in []. Moreover (see []), we have that F(p,q, s) = B
q+
p and F(p,q, s) = B

q+
p

 for

s > , F(p,q, s) ⊆ B
q+
p and F(p,q, s) ⊆ B

q+
p

 for  ≤ s < . When p ≥ , Qk(p,q) is a Banach
space with the norm

‖f ‖Qk (p,q) =
∣∣f ()∣∣ + ‖f ‖.

From [], we know that Qk(p,q) ⊆ B
q+
p , Qk(p,q) = B

q+
p if and only if

∫ 


K

(
log


r

)(
 – r

)–r dr <∞.

Moreover, ‖f ‖
B
q+
p

≤ C‖f ‖Qk (p,q) (see [, Theorem .]).
Throughout the paper, we assume that

∫ 


K

(
log


r

)(
 – r

)qr dr < ∞,

otherwise Qk(p,q) consists only of constant functions (see []).
Let ϕ be a nonconstant analytic self-map of �, and let φ be an analytic function in �.

We define the linear operators

φCϕDf = φ
(
f ′oϕ

)
= φf ′(ϕ) and φDCϕ f = φ(foϕ)′ = φf ′(ϕ)ϕ′, for f ∈H(�).

They are called weighted composition followed and proceeded by differentiation opera-
tors respectively, where Cϕ and D are composition and differentiation operators respec-
tively. The boundedness and compactness of DCϕ on the Hardy spaces were investigated
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by Hibschweiler and Portnoy in [] and by Ohno in []. In [], Li and Stević studied the
boundedness and compactness of the operator DCϕ on the α-Bloch spaces. In [], Li and
Stević studied the boundedness and compactness of the composition and differentiation
operators between H∞ and α-Bloch spaces. In [], Yang studied the boundedness and
compactness of the operator DCϕ (or CϕD) from Qk(p,q) to the Bloch-type spaces.
In this paper, we investigate the operators φDCϕ and φCϕD from Qk(p,q) spaces to

Bloch-type spaces and little Bloch-type spaces. Some sufficient and necessary conditions
for the boundedness and compactness of these operators are given. Our results also gen-
eralize some known results in [].
Throughout this paper, constants are denoted byC, they are positive andmay differ from

one occurrence to the other. The notation A≈ Bmeans that there is a positive constant C
such that B

C ≤ A≤ CB.

2 Statement of themain results
In this paper, we shall prove the following results.

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal, p > , q > –, and K is a nonnegative nondecreasing function on
[,∞) such that

∫ 


K

(
log


r

)
( – r)min{–,q}

(
log


 – r

)χ–(q)

r dr <∞, (.)

where χA(x) denote the characteristic function of the set A. Then φDCϕ : Qk(p,q) → Bμ is
bounded if and only if

sup
z∈�

μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
< ∞, sup

z∈�

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
< ∞. (.)

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal, p > , q > –, and K is a nonnegative nondecreasing function on
[,∞) such that (.) hold. Then φDCϕ : Qk(p,q) → Bμ is compact if and only if φDCϕ :
Qk(p,q) → Bμ is bounded, and

lim
|ϕ(z)|→

μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
= ,

lim
|ϕ(z)|→

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
= . (.)

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal, p > , q > –, and K is a nonnegative nondecreasing function on
[,∞) such that (.) hold. Then φDCϕ :Qk(p,q) → Bμ, is compact if and only if

lim|z|→
μ

(|z|) |φ(z)(ϕ′(z))|
( – |ϕ(z)|) p+q+p

= , lim|z|→
μ

(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|
( – |ϕ(z)|) q+p

= . (.)

From the above three theorems, we get the following

http://www.journalofinequalitiesandapplications.com/content/2012/1/160
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Corollary . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Then the following statements hold.

(i) φDCϕ : B → B is bounded if and only if

sup
z∈�

(
– |z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) < ∞, sup
z∈�

(
– |z|) |φ(z)(ϕ′′(z)) + φ′(z)ϕ′(z)|

 – |ϕ(z)| <∞.

(ii) φDCϕ : B → B is compact if and only if φDCϕ : B → B is bounded, and

lim
|ϕ(z)|→

(
 – |z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) = ,

lim
|ϕ(z)|→

(
 – |z|) |φ(z)(ϕ′′(z)) + φ′(z)ϕ′(z)|

 – |ϕ(z)| = .

(iii) φDCϕ : B → B is compact if and only if

lim|z|→

(
– |z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) = , lim|z|→

(
– |z|) |φ(z)(ϕ′′(z)) + φ′(z)ϕ′(z)|

 – |ϕ(z)| = .

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal, p > , q > –, and K is a nonnegative nondecreasing function on
[,∞) such that (.) hold. Then the following statements hold.

(i) φCϕD :Qk(p,q) → Bμ is bounded if and only if

sup
z∈�

μ
(|z|) |φ(z)ϕ′(z)|

( – |ϕ(z)|) p+q+p
<∞, sup

z∈�

μ
(|z|) |φ′(z)|

( – |ϕ(z)|) q+p
< ∞.

(ii) φCϕD :Qk(p,q) → Bμ is compact if and only if φCϕD :Qk(p,q) → Bμ is bounded,
and

lim
|ϕ(z)|→

μ
(|z|) |φ(z)ϕ′(z)|

( – |ϕ(z)|) p+q+p
= , lim

|ϕ(z)|→
μ

(|z|) |φ′(z)|
( – |ϕ(z)|) q+p

= .

(iii) φCϕD :Qk(p,q) → Bμ, is compact if and only if

lim|z|→
μ

(|z|) |φ(z)ϕ′(z)|
( – |ϕ(z)|) p+q+p

= , lim|z|→
μ

(|z|) |φ′(z)|
( – |ϕ(z)|) q+p

= .

From Theorem ., we get the following

Corollary . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Then the following statements hold.

(i) φCϕD : B → B is bounded if and only if

sup
z∈�

(
 – |z|) |φ(z)ϕ′(z)|

( – |ϕ(z)|) < ∞, sup
z∈�

(
 – |z|) |φ′(z)|

 – |ϕ(z)| < ∞.

(ii) φCϕD : B → B is compact if and only if φCϕD : B→ B is bounded, and

lim
|ϕ(z)|→

(
 – |z|) |φ(z)ϕ′(z)|

( – |ϕ(z)|) = , lim
|ϕ(z)|→

(
 – |z|) |φ′(z)|

 – |ϕ(z)| = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/160
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(iii) φCϕD : B → B is compact if and only if

lim|z|→

(
 – |z|) |φ(z)ϕ′(z)|

( – |ϕ(z)|) = , lim|z|→

(
 – |z|) |φ′(z)|

 – |ϕ(z)| = .

3 Proofs of themain results
In this section, we will prove our main results. For this purpose, we need some auxiliary
results.

Lemma . Let ϕ be an analytic self-map of �, φ be an analytic function in �. Sup-
pose p > , q > –. Then φDCϕ (or φCϕD) : Qk(p,q) → Bμ is compact if and only if
φDCϕ (or φCϕD) : Qk(p,q) → Bμ is bounded and for any bounded sequence {fn}n∈N in
Qk(p,q) which converges to zero uniformly on compact subsets of � as n → ∞, and
‖φDCϕ fn‖Bμ →  (or ‖φCϕDfn‖Bμ → ) as n→ ∞.

Lemma . can be proved by standard way (see [, Proposition .]).

Lemma . A closed set K of Bμ, is compact if and only if it is bounded and satisfies

lim|z|→
sup
f∈K

μ
(|z|)∣∣f ′(z)

∣∣ = . (.)

Proof First of all, we suppose thatK is compact and let ε > . By the definition of Bμ,, we
can choose an ε

 -net which center at f, f, . . . , fn in K respectively, and a positive number
r ( < r < ) such that μ(|z|)|f ′

i (z)| < ε
 , for  ≤ i ≤ n and |z| > r. If f ∈ K, ‖f – fi‖Bμ < ε

 for
some fi, so we have

μ
(|z|)∣∣f ′(z)

∣∣ ≤ ‖f – fi‖Bμ +μ
(|z|)∣∣f ′

i (z)
∣∣ < ε,

for |z| > r. This establishes (.). �

On the other hand, ifK is a closed bounded set which satisfies (.) and {fn} is a sequence
inK, then by theMontel’s theorem, there is a subsequence {fnk }which converges uniformly
on compact subsets of� to some analytic function f , and also {f ′

nk } converges uniformly to
f ′ on compact subsets of �. According to (.), for every ε > , there is an r,  < r < , such
that for all g ∈ K, μ(|z|)|g ′(z)| < ε

 , if |z| > r. It follows that μ(|z|)|f ′(z)| < ε
 , if |z| > r. Since

{fnk } converges uniformly to f and {f ′
nk } converges uniformly to f ′ on |z| ≤ r, it follows that

limk→∞ sup‖fnk – f ‖Bμ ≤ ε, i.e., limk→∞ ‖fnk – f ‖Bμ = , so that K is compact.

Lemma . ([]) Let α >  and f ∈H(�). Then we have

sup
z∈�

(
 – |z|)α∣∣f ′(z)

∣∣ ≈ ∣∣f ′()
∣∣ + sup

z∈�

(
 – |z|)α+∣∣f ′′(z)

∣∣.

Proof of Theorem . First, suppose that the conditions in (.) hold. Then for any z ∈ �

and f ∈Qk(p,q), by use of the fact ‖f ‖
B
q+
p

≤ C‖f ‖Qk (p,q) and Lemma ., we have

μ
(|z|)∣∣(φDCϕ f )′(z)

∣∣
= μ

(|z|)∣∣φ′(z)ϕ′(z)f ′(ϕ(z)) + φ(z)
[
f ′′(ϕ(z))(ϕ′(z)

) + f ′(ϕ(z))ϕ′′(z)
]∣∣

http://www.journalofinequalitiesandapplications.com/content/2012/1/160
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≤ μ
(|z|)∣∣φ(z)f ′′(ϕ(z))(ϕ′(z)

)∣∣ +μ
(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]
f ′(ϕ(z))∣∣

≤ μ
(|z|)C |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
‖f ‖

B
q+
p

+μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
‖f ‖

B
q+
p

≤
{
μ

(|z|)C |φ(z)(ϕ′(z))|
( – |ϕ(z)|) p+q+p

+μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
}
‖f ‖Qk (p,q). (.)

Taking the supremum in (.) for z ∈ �, and employing (.), we deduce that

φDCϕ :Qk(p,q) → Bμ

is bounded.
Conversely, suppose that φDCϕ :Qk(p,q) → Bμ is bounded. Then there exists a constant

C such that ‖φDCϕ f ‖Bμ ≤ C‖f ‖Qk (p,q) for all f ∈ Qk(p,q). Taking the functions f (z) ≡ z, and
f (z) ≡ z

 , which belong to Qk(p,q), we get

sup
z∈�

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ < ∞ (.)

and

sup
z∈�

μ
(|z|)∣∣φ(z)(ϕ′(z)

) + ϕ(z)
[
φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]∣∣ < ∞. (.)

From (.), (.), and the boundedness of the function ϕ(z), it follows that

sup
z∈�

μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ < ∞. (.)

For w ∈ �, let

fw(z) =
 – |w|

( – w̄z)
q+
p
,

by direct calculation, we get

f ′
w(w) =

q + 
p

w̄

( – |w|) q+p
, f ′′

w (w) =
q + 
p

p + q + 
p

w̄

( – |w|) p+q+p
.

From [], we know that fw ∈Qk(p,q), for eachw ∈ �. Moreover, there is a positive constant
C such that supw∈� ‖fw‖Qk (p,q) ≤ C. Hence, we have

C‖φDCϕ‖ ≥ ‖φDCϕ fϕ(z)‖Bμ

≥ –
q + 
p

p + q + 
p

μ
(|z|) |φ(z)(ϕ′(z))(ϕ(z))|

( – |ϕ(z)|) p+q+p

+
q + 
p

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)||ϕ(z)|

( – |ϕ(z)|) q+p
, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/160
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for z ∈ �. Therefore, we obtain

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)||ϕ(z)|

( – |ϕ(z)|) q+p

≤ C‖φDCϕ‖ + p + q + 
p

μ
(|z|) |φ(z)(ϕ′(z))(ϕ(z))|

( – |ϕ(z)|) p+q+p
. (.)

Next, for w ∈ �, let

gw(z) =
( – |w|)
( – w̄z)

p+q+
p

–
p + q + 
q + 

 – |w|
( – w̄z)

q+
p
.

Then from [], we see that gw(z) ∈Qk(p,q) and supw∈� ‖gw‖Qk (p,q) < ∞. Since

g ′
ϕ(z)

(
ϕ(z)

)
= ,

∣∣g ′′
ϕ(z)

(
ϕ(z)

)∣∣ = p + q + 
p

|ϕ(z)|
( – |ϕ(z)|) p+q+p

,

we have

∞ > C‖φDCϕ‖ ≥ ‖φDCϕgϕ(z)‖Bμ

≥ p + q + 
p

μ
(|z|) |φ(z)(ϕ′(z))(ϕ(z))|

( – |ϕ(z)|) p+q+p
. (.)

Thus

sup
|ϕ(z)|> 



μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p

≤ sup
|ϕ(z)|> 



μ
(|z|) |φ(z)(ϕ′(z))(ϕ(z))|

( – |ϕ(z)|) p+q+p
≤ C‖φDCϕ‖ < ∞. (.)

Inequality (.) gives

sup
|ϕ(z)|≤ 



μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
≤

(



) p+q+
p

sup
|ϕ(z)|≤ 



μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ < ∞. (.)

Therefore, the first inequality in (.) follows from (.) and (.). From (.) and (.),
we obtain

sup
z∈�

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)||ϕ(z)|

( – |ϕ(z)|) q+p
< ∞. (.)

Inequalities (.) and (.) imply

sup
|ϕ(z)|> 



μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p

≤  sup
|ϕ(z)|> 



μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)||ϕ(z)|

( – |ϕ(z)|) q+p
<∞, (.)
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and

sup
|ϕ(z)|≤ 



μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p

≤
(



) q+
p

sup
|ϕ(z)|≤ 



μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ <∞. (.)

Inequality (.) together with (.) implies the second inequality of (.). The proof of
Theorem . is completed. �

Proof of Theorem . First, suppose that φDCϕ :Qk(p,q) → Bμ is bounded and (.) hold.
Let {fn}n∈N be a sequence in Qk(p,q) such that supn∈N ‖fn‖Qk (p,q) < ∞, and fn converges
to  uniformly on compact subsets of � as n → ∞. By the assumption, for any ε > , there
exists a δ ∈ (, ) such that

μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
< ε

and

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
< ε

hold for δ < |ϕ(z)| < . Since φDCϕ :Qk(p,q) → Bμ is bounded, it follows from the proof of
Theorem . that

M := sup
z∈�

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ < ∞,

M := sup
z∈�

μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ <∞.

Let K = {z ∈ � : |ϕ(z)| ≤ δ}. Then we have

‖φDCϕ fn‖Bμ = sup
z∈�

μ
(|z|)∣∣(φDCϕ fn)′(z)

∣∣ + ∣∣φ()f ′
n
(
ϕ()

)
ϕ′()

∣∣
≤ sup

z∈�

μ
(|z|)∣∣φ(z)f ′′

n
(
ϕ(z)

)(
ϕ′(z)

)∣∣
+ sup

z∈�

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣∣∣f ′
n
(
ϕ(z)

)∣∣ + ∣∣φ()f ′
n
(
ϕ()

)
ϕ′()

∣∣
≤ sup

z∈K
μ

(|z|)∣∣φ(z)f ′′
n
(
ϕ(z)

)(
ϕ′(z)

)∣∣
+ sup

z∈K
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣∣∣f ′

n
(
ϕ(z)

)∣∣

+ sup
z∈(�–K)

μ
(|z|)∣∣φ(z)f ′′

n
(
ϕ(z)

)(
ϕ′(z)

)∣∣
+ sup

z∈(�–K)
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣∣∣f ′

n
(
ϕ(z)

)∣∣ + ∣∣φ()f ′
n
(
ϕ()

)
ϕ′()

∣∣

≤ sup
z∈K

μ
(|z|)∣∣φ(z)f ′′

n
(
ϕ(z)

)(
ϕ′(z)

)∣∣
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+ sup
z∈K

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣∣∣f ′
n
(
ϕ(z)

)∣∣ + ∣∣φ()f ′
n
(
ϕ()

)
ϕ′()

∣∣

+C sup
z∈(�–K)

μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
‖fn‖Qk (p,q)

+ sup
z∈(�–K)

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
‖fn‖Qk (p,q)

≤ M sup
z∈K

∣∣f ′′
n
(
ϕ(z)

)∣∣ +M sup
z∈K

∣∣f ′
n
(
ϕ(z)

)∣∣
+ Cε‖fn‖Qk (p,q) +

∣∣φ()f ′
n
(
ϕ()

)
ϕ′()

∣∣. (.)

From the fact that fn →  as n → ∞ on compact subsets of �, and Cauchy’s estimate,
we conclude that f ′

n →  and f ′′
n →  as n → ∞ on compact subsets of �. Letting

n → ∞ in (.) and using the fact that ε is an arbitrary positive number, we obtain
limn→∞ ‖φDCϕ fn‖Bμ = . Applying Lemma ., the result follows.
Conversely, suppose that φDCϕ :Qk(p,q) → Bμ is compact. Then it is clear that φDCϕ :

Qk(p,q) → Bμ is bounded. Let {zn} be a sequence in � such that |ϕ(zn)| →  as n → ∞.
For n ∈N , let

fn(z) =
 – |ϕ(zn)|

( – ϕ(zn)z)
q+
p
.

Then supn∈N ‖fn‖Qk (p,q) < ∞ and fn converges to  uniformly on compact subsets of � as
n→ ∞. Since φDCϕ :Qk(p,q) → Bμ is compact, by Lemma ., we have limn→∞ ‖φDCϕ ×
fn‖Bμ = . On the other hand, from (.) we have

C‖φDCϕ fn‖Bμ ≥ –
q + 
p

p + q + 
p

μ
(|zn|) |φ(zn)(ϕ′(zn))(ϕ(zn))|

( – |ϕ(zn)|)
p+q+

p

+
q + 
p

μ
(|zn|) |φ(zn)ϕ′′(zn) + φ′(zn)ϕ′(zn)||ϕ(zn)|

( – |ϕ(zn)|)
q+
p

,

which implies that

lim
|ϕ(zn)|→

p + q + 
p

μ
(|zn|) |φ(zn)(ϕ′(zn))(ϕ(zn))|

( – |ϕ(zn)|)
p+q+

p

= lim
|ϕ(zn)|→

μ
(|zn|) |φ(zn)ϕ′′(zn) + φ′(zn)ϕ′(zn)||ϕ(zn)|

( – |ϕ(zn)|)
q+
p

, (.)

if one of these two limits exists.
Next, for n ∈ N , set

gn(z) =
( – |ϕ(zn)|)
( – ϕ(zn)z)

p+q+
p

–
p + q + 
q + 

 – |ϕ(zn)|
( – ϕ(zn)z)

q+
p
.

Then {gn}n∈N is a sequence in Qk(p,q). Notice that g ′
n(ϕ(zn)) = ,

∣∣g ′′
n
(
ϕ(zn)

)∣∣ = p + q + 
p

|ϕ(zn)|
( – |ϕ(zn)|)

p+q+
p

.
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And gn converges to  uniformly on compact subsets of � as n → ∞. Since φDCϕ :
Qk(p,q) → Bμ is compact, we have limn→∞ ‖φDCϕgn‖Bμ = . On the other hand, since

‖φDCϕ fn‖Bμ ≥ p + q + 
p

μ
(|zn|) |φ(zn)(ϕ′(zn))(ϕ(zn))|

( – |ϕ(zn)|)
p+q+

p
,

we have

lim
|ϕ(zn)|→

μ
(|zn|) |φ(zn)(ϕ′(zn))|

( – |ϕ(zn)|)
p+q+

p

= lim
|ϕ(zn)|→

μ
(|zn|) |φ(zn)(ϕ′(zn))(ϕ(zn))|

( – |ϕ(zn)|)
p+q+

p
= . (.)

From (.) and (.), we get

lim
|ϕ(zn)|→

μ
(|zn|) |φ(zn)ϕ′′(zn) + φ′(zn)ϕ′(zn)|

( – |ϕ(zn)|)
q+
p

= . (.)

The proof of Theorem . is completed. �

Proof of Theorem . First, let f ∈Qk(p,q). By the proof of Theorem ., we have

μ
(|z|)∣∣(φDCϕ f )′(z)

∣∣ ≤ C
{
μ

(|z|)
∣∣∣∣ |φ(z)(ϕ′(z))|
( – |ϕ(z)|) p+q+p

+μ
(|z|)

∣∣∣∣ |φ(z)ϕ
′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
}
‖f ‖Qk (p,q). (.)

Taking the supremum in (.) over all f ∈ Qk(p,q) such that ‖f ‖Qk (p,q) ≤ , we can
get

lim|z|→
sup

‖f ‖Qk (p,q)≤
μ

(|z|)∣∣(φDCϕ f )′(z)
∣∣ = .

By Lemma ., we see that the operator φDCϕ :Qk(p,q) → Bμ, is compact.
Conversely, suppose that φDCϕ : Qk(p,q) → Bμ, is compact. By taking f (z) ≡ z and

using the boundedness of φDCϕ :Qk(p,q) → Bμ,, we get

lim|z|→
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣ = . (.)

From this, by taking the test function f (z) ≡ z
 and using the boundedness of φDCϕ :

Qk(p,q) → Bμ,, it follows that

lim|z|→
μ

(|z|)∣∣φ(z)(ϕ′(z)
)∣∣ = . (.)

In the following, we distinguish two cases:

http://www.journalofinequalitiesandapplications.com/content/2012/1/160
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First, we assume that ‖ϕ‖∞ < . From (.) and (.), we obtain

lim|z|→
μ

(|z|) |φ(z)(ϕ′(z))|
( – |ϕ(z)|) p+q+p

≤ 

( – ‖ϕ‖∞)
p+q+

p
lim|z|→

μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ = 

and

lim|z|→
μ

(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|
( – |ϕ(z)|) q+p

≤ 

( – ‖ϕ‖∞)
q+
p

lim|z|→
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣ = .

So the result follows in this case.
Secondly, we assume that ‖ϕ‖∞ = . Let {ϕ(zn)}n∈N be a sequence such that

limn→∞ |ϕ(zn)| = . From the compactness of φDCϕ : Qk(p,q) → Bμ,, we see that φDCϕ :
Qk(p,q) → Bμ is compact. According to Theorem ., we get

lim
|ϕ(z)|→

μ
(|z|) |φ(z)(ϕ′(z))|

( – |ϕ(z)|) p+q+p
=  (.)

and

lim
|ϕ(z)|→

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
= . (.)

For any ε > , from (.) and (.), there exists r ∈ (, ) such that

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
< ε,

for r < |ϕ(z)| < , and there exists σ ∈ (, ) such that

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ ≤ ε
(
 – r

) q+
p ,

for σ < |z| < . Therefore, when σ < |z| < , and r < |ϕ(z)| < , we obtain

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p
< ε. (.)

On the other hand, if σ < |z| < , and |ϕ(z)| ≤ r, we have

μ
(|z|) |φ(z)ϕ′′(z) + φ′(z)ϕ′(z)|

( – |ϕ(z)|) q+p

<


( – r)
q+
p

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ < ε. (.)
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From (.) and (.), we get the second equality of (.). Similarly to the above argu-
ments, by (.) and (.), we can get the first equality of (.). The proof of Theorem .
is completed. �

Similarly to the proofs of Theorems .-., we can get the proofs of Corollary ., The-
orem . and Corollary .. We omit the proofs.
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