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1 Introduction and preliminaries
The study of stability problems originated from a famous talk Under what condition does
there exist a homomorphism near an approximate homomorphism? given by S. M. Ulam
[] in . Next year, in , D. H. Hyers [] answered affirmatively the question of
Ulam for additive mappings between Banach spaces.
Aoki [] and Rassias [] provided a generalization of the Hyers theorem for additive

and linear functions respectively, by allowing the Cauchy difference to be unbounded.

Theorem . (Th. M. Rassias) Let X be a normed space, Y be a Banach space and f : X →
Y be a function such that

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε

(‖x‖p + ‖y‖p) (.)

for all x, y ∈ X, where ε and p are constants with ε >  and p < . Then there exists a unique
additive function A : X → Y satisfying

∥∥f (x) –A(x)
∥∥ ≤ ε‖x‖p/( – p–

)
(.)

for all x ∈ X. If p < , then the inequality (.) holds for x, y �=  and (.) for x �= . Also, if
for each fixed x ∈ X the function t �→ f (tx) is continuous in t ∈R, then A is linear.

The above theoremhad a lot of influence on the development of the generalization of the
Hyers-Ulam stability concept during the last three decades. This new concept is known
as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equa-
tions (see [, ]). Furthermore, Gǎvruta [] provided a generalization of Rassias’ theorem
which allows the Cauchy difference to be controlled by a general unbounded function.
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During the last three decades, a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers-Ulam sta-
bility to a number of functional equations and mappings (see [, , , , , –, ] and
[–]). We also refer the readers to the books [, , , , , , ].
Recently, Khodaei and Rassias [] introduced the generalized additive functional equa-

tion

n∑
k=

( k∑
i=

k+∑
i=i+

· · ·
n∑

in–k+=in–k+

)
f

( n∑
i=,i�=i,...,in–k+

aixi –
n–k+∑
r=

air xir

)

+ f

( n∑
i=

aixi

)
= n–af (x),

(.)

where a, . . . ,an ∈ Z\{} with a �= ±, and they established a general solution and the
generalized Hyers-Ulam stability for the functional equation (.) in various spaces. They
proved that a function f between real vector spaces X and Y is a solution of (.) if and
only if f is additive.
In the sequel we adopt the usual terminology, notations and conventions of the theory

of random normed spaces, as in [, ]. Throughout this paper, let �+ be the space of
distribution functions, that is,

�+ :=
{
F :R∪ {–∞,∞} → [, ] : F is left-continuous,

non-decreasing on R,F() =  and F(+∞) = 
}

and the subset D+ ⊆ �+ is the set

D+ =
{
F ∈ �+ : l–F(+∞) = 

}
,

where, l–f (x) denotes the left limit of the function f at the point x. The space�+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F(t)≤ G(t)
for all t ∈ R. The maximal element for �+ in this order is the distribution function given
by

ε(t) =

⎧⎨
⎩, if t ≤ ,

, if t > .

Definition . ([]) A function T : [, ]× [, ]→ [, ] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, ) = a for all a ∈ [, ];
(d) T(a,b)≤ T(c,d) whenever a ≤ c and b≤ d for all a,b, c,d ∈ [, ].

Typical examples of continuous t-norms are TP(a,b) = ab, TM(a,b) = min(a,b) and
TL(a,b) =max(a + b – , ) (the Łukasiewicz t-norm).
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Recall (see []) that if T is a t-norm and {xn} is a given sequence of numbers in [, ],
Tn
i=xi is defined recurrently by

Tn
i=xi =

⎧⎨
⎩x, if n = ,

T
(
Tn–
i= xi,xn

)
, if n≥ .

T∞
i=nxi is defined as T∞

i=xn+i.
It is known [] that for the Łukasiewicz t-norm the following implication holds:

lim
n→∞ (TL)∞i=xn+i =  ⇐⇒

∞∑
n=

( – xn) < ∞.

Definition . ([]) A random normed space (briefly, RN-space) is a triple (X,μ,T),
where X is a vector space, T is a continuous t-norm, and μ is a function from X into
D+ such that, the following conditions hold:
(RN) μx(t) = ε(t) for all t >  if and only if x = ;
(RN) μαx(t) = μx( t

|α| ) for all x ∈ X , α �= ;
(RN) μx+y(t + s) ≥ T(μx(t),μy(s)) for all x, y ∈ X and t, s ≥ .

Definition . Let (X,μ,T) be a RN-space.
() A sequence {xn} in X is said to be convergent to x in X if, for every ε >  and λ > ,

there exists a positive integer N such that μxn–x(ε) >  – λ whenever n≥ N .
() A sequence {xn} in X is called Cauchy if, for every ε >  and λ > , there exists a

positive integer N such that μxn–xm (ε) >  – λ whenever n ≥ m≥ N .
() A RN-space (X,μ,T) is said to be complete if and only if every Cauchy sequence in

X is convergent to a point in X . A complete RN-space is said to be a random Banach
space.

Theorem . ([]) If (X,μ,T) is a RN-space and {xn} is a sequence such that xn → x,
then limn→∞ μxn (t) = μx(t) almost everywhere.

Definition . A randomnormed algebra is a randomnormed spacewith algebraic struc-
ture such that (RN) μxy(ts) = μx(t)μy(s) for all x, y ∈ X and all t, s > .

Definition . Let (X,μ,T) and (Y ,μ,T) be random normed algebras:
(i) An additive mapping H : X → Y is called a random homomorphism if

H(xy) =H(x)H(y) for all x, y ∈ X .
(ii) An additive mapping D : X → Y is called a random derivation if

D(xy) =D(x)y – xD(y) for all x, y ∈ X .

The theory of randomnormed spaces is important as a generalization of the determinis-
tic result of linear normed spaces and also in the study of random operator equations. The
randomnormed spacesmay also provide uswith the appropriate tools to study the geome-
try of nuclear physics and have an important application in quantum particle physics. The
generalized Hyers-Ulam stability of different functional equations in random and fuzzy
normed spaces and randomand fuzzy normed algebras has been recently studied inAlsina
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[], Miheţ et al. [], Baktash et al. [], Saadati et al. [], Gordji et al. [], and Park et al.
[].
In this paper, we prove the generalized Hyers-Ulam stability of random homomor-

phisms and random derivations associated with the generalized additive functional equa-
tion (.) in random Banach algebras.

2 Main results
We use the following abbreviation for a given function f :

Df (x, . . . ,xn,a,b) =
n∑

k=

( k∑
i=

k+∑
i=i+

· · ·
n∑

in–k+=in–k+

)
f

( n∑
i=,i�=i,...,in–k+

aixi –
n–k+∑
r=

air xir

)

+ f

( n∑
i=

aixi

)
– n–af (x) + f (ab) – f (a)f (b).

Theorem . Let X be a real algebra, (Y ,�,T) be a random Banach algebra and ξ :
Xn+ → D+ (n ∈ N, n ≥  and ξ (x, . . . ,xn,a,b) denoted by ξx,...,xn ,a,b) be a function such
that

lim
m→∞ ξam x,...,am xn ,am a,am b

(|a|mt) =  (.)

for all x, . . . ,xn,a,b ∈ X, t >  and

lim
m→∞T∞

	=
(
ξam+	–

 x,,...,
(
n–	–|a|m+	–t

))
=  (.)

for all x ∈ X and all t > . Suppose that f : X → Y is a function satisfying

�Df (x,...,xn ,a,b)(t) ≥ ξx,...,xn ,a,b(t) (.)

for all x, . . . ,xn,a,b ∈ X and t > . Then there exists a unique homomorphism H : X → Y
such that

�f (x)–H(x)(t) ≥ T∞
	=

(
ξa	–

 x,,...,
(
n–	–|a|	t

))
(.)

for all x ∈ X and t > .

Proof Putting x = x and a = b = xi =  (i = , . . . ,n) in (.), we obtain that

�(
∑n

k=(
∑k

i=
∑k+

i=i+
···∑n

in–k+=in–k+
)f (ax)+f (ax)–n–af (x))

(t) ≥ ξx,,...,(t)

for all x ∈ X and t > , that is,

�(( n–
n–

)
+
( n–
n–

)
+···+

(n–


)
+

)
f (ax)–n–af (x)

(t) ≥ ξx,,...,(t)

for all x ∈ X and t > . It follows from the last inequality that

�(
+

∑n–
	=

(n–
	

))
f (ax)–n–af (x)

(t) ≥ ξx,,...,(t)
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for all x ∈ X and t > ; hence by using the relation  +
∑n–

	=
( n–

	

)
= n–, we have

�n–f (ax)–n–af (x)(t)≥ ξx,,...,(t)

for all x ∈ X and t > . So we have

� f (am x)
am

–f (x)
(t) ≥ Tm

	=
(
ξa	–

 x,,...,
(
n–	–|a|	t

))

for all x ∈ X and t > . We can show that the sequence { f (am x)
am

} is convergent. Therefore,
one can define the function H : X → Y by

H(x) := lim
m→∞


am

f
(
am x

)

for all x ∈ X. Now, if we put a = b = , and replace x, . . . ,xn with am x, . . . ,am xn in (.)
respectively, it follows that

�Df (am x,...,am xn ,,)
am

(t)≥ ξam x,...,am xn ,,
(|a|mt) (.)

for all x, . . . ,xn ∈ X and all t > . By lettingm → ∞ in (.), we haveDH(x, . . . ,xn, , ) = ;
thus H satisfies (.). Hence the function H : X → Y is additive (see also []). For the
uniqueness property of H , see paper [].
Finally, we show thatH is multiplicative. SinceH(am x) = am H(x) for all x ∈ X andm ∈N,

from (.) it follows that

�H(ab)–H(a)H(b)(t) = � 
am

H(am ab)–H(a)H(b)(t)

= lim
m→∞� 

am
f (am ab)– 

am
f (am a)f (am b)(t)

= lim
m→∞�Df (,,...,,am a,am b)

am

(t)

≥ lim
m→∞ ξ,,...,,am a,am b

(|a|mt)
= 

for all a,b ∈ X and all t > . Therefore, there exists a unique random homomorphism
H : X → Y satisfying (.). �

In the following theorem, we establish the stability of derivations on random Banach
algebras. We use the following abbreviation for a given function f :

�f (x, . . . ,xn,a,b) =
n∑

k=

( k∑
i=

k+∑
i=i+

· · ·
n∑

in–k+=in–k+

)
f

( n∑
i=,i�=i,...,in–k+

aixi –
n–k+∑
r=

air xir

)

+ f

( n∑
i=

aixi

)
– n–af (x) + f (ab) – f (a)b – af (b).
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Theorem . Let (X,�,T) be a random Banach algebra and ξ : Xn+ → D+ be a function
such that (.) and (.) hold for all x,x, . . . ,xn,a,b ∈ X and all t > . Suppose that f : X →
X is a function satisfying

��f (x,...,xn ,a,b)(t) ≥ ξx,...,xn ,a,b(t) (.)

for all x, . . . ,xn,a,b ∈ X and t > . Then there exists a unique derivation D : X → X such
that

�f (x)–D(x)(t)≥ T∞
	=

(
ξa	–

 x,,...,
(
n–	–|a|	t

))
(.)

for all x ∈ X and t > .

Proof By the same reasoning as in the proof of Theorem ., the sequence { f (am x)
am

} is con-
vergent for all x ∈ X, and the function D : X → X defined by

D(x) := lim
m→∞


am

f
(
am x

)

for all x ∈ X, is a unique additive function which satisfies (.). We have to show that
D : X → X is a derivation.
Since D(am x) = am D(x) for all x ∈ X andm ∈N, from (.) it follows that

�D(ab)–D(a)b–aD(b)(t) = � 
am

D(am ab)– 
am

D(a)am b–am a 
am

D(b)(t)

= lim
m→∞� 

am
f (am ab)– 

am
f (am a)am b– 

am
am af (am b)(t)

= lim
m→∞��f (,,...,,am a,am b)

am

(t)

≥ lim
m→∞ ξ,,...,,am a,am b

(|a|mt)
= 

for all a,b ∈ X and all t > . This means that D is a derivation on X. �
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