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Abstract

In this paper, we consider a risk process in which the distribution of the inter-claim
time is the sum of two independent exponential random variables. We introduce a
dependence structure between the claim size and the inter-claim time. The structure
is based on FGM copula. An integro-differential equation for the expected discounted
penalty function is derived and an explicit expression for the Laplace transform of ruin
probability is given for exponential claim size.

1 Introduction

In classical risk models, the surplus process usually relies on the assumption of indepen-
dence between the claim size and the inter-claim time. However, in many applications
this assumption is too restrictive and unrealistic. Actually, we know that the greater the
claim size is, the longer the inter-claim time is. The requirement for generalization has
led to some papers on the modeling of dependence. Among them, Albrecher and Teugels
[1] consider general dependence structure based on a copula for the claim size and the
inter-claim time, they derive asymptotic results for both the finite and infinite time ruin
probabilities. Boudreault et al. [2] consider a particular dependence structure among the
inter-claim time and the claim size and derive the defective renewal equation satisfied by
expected discounted penalty function. Cossette et al. [3] consider the compound Poisson
risk model in which the claim size and the inter-claim time are dependent, and the depen-
dence structure is based on Farlie-Gumbel-Morgenstern (FGM) copula. They derive the
Laplace transform of the expected discounted penalty function, and give explicit expres-
sion for the Laplace transform of the time of ruin for exponential claim sizes. Barges and
Cossette [4] investigate the computation of the moments of the compound Poisson risk
model with FGM copula.

In this article, we consider a Sparre Andersen risk process where the claim size and the
inter-claim time are dependent with FGM copula, and the distribution of the inter-claim
time is the sum of two independent exponential random variables. In ruin theory, a com-
mon approach is to obtain an integro-differential equation for the expected discounted
penalty function and apply it to derive the Laplace transform of the function. Dickson and
Hipp [5] investigate ruin probability for Erlang(2) risk process, Li and Garrido [6] consider
this problem of Erlang(#) risk model, Gerber and Shui [7] also do some relative works.
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The paper is arranged as follows. In Section 2, we present the risk model and give some
notations. An integro-differential equation of the expected discounted penalty function
is formulated and the main results are presented in Section 3. In Section 4, we apply the
integro-differential equation to derive the Laplace transform of the expected discounted
penalty function. The special case where the claim size is exponentially distributed is con-
sidered in the final section.

2 Therisk model
The surplus process is defined as U(t) = u + ct — Zﬁ(f) X;, where U(0) = u is the initial
surplus, ¢ is the premium rate, {N(¢), ¢ € R*} is a renewal process, and X; (i = 1,2,...) is the
random variable (r.v.) corresponding to the amount of the ith claim. The time between the
(i —1)th and ith claim is defined by the r.v. V; with V; being the time of the first claim.

The claim amounts {X;,i € N*} form a sequence of independent identically distributed
(i.i.d.) random variables (r.v.s) as the r.v. X with probability density function (p.d.f.) fx,
cumulative distribution function (c.d.f.) Fx. The inter-claim times {V},i € N*} form a se-
quence of independent r.v’s identically distributed as the canonical r.v. V, V = Wj + W),
where { W)} are two independent exponentially distributed r.v.s with parameters 1;,j = 1,2,
V has p.d.f. f, and c.d f. Fy. Note that the Erlang(2) model is the special case where A; = A,.
{(X;, Vi), i € N*} form a sequence of i.i.d. random vectors distributed as the canonical ran-
dom vector (X, V). The joint p.d.f. of (X, V) is denoted by fyx v (x, t) with x, ¢ € R*.

The joint distribution of (X, V) is based on the classical FGM copula, which is defined
by

Clu,v) =uv+0u(l —u)v(l-v) (1)

for every (u,v) in [0, 1]? and the dependence parameter 6 takes value in [-1,1].

We choose this class of copula since it provides an easy manner to construct bivariate
models with a variety of dependence structures. Even if the FGM copula introduces only
light dependence, it admits positive as well as negative dependence between a set of ran-
dom variables and includes the independence copula when 6 = 0 (see Nelsen [8]).

The p.d.f. associated to (1) is given by

c(,v)=1+0(0 -2u)1-2v). (2)
Given (1), the joint c.d.f. Fx,y is defined by

Fx,v(x,t) = C(Fx(x), Fy(t))
= Fx(x)Fy(t) + 0Fx(x)(1 - Fx(x))Fv()(1 - Fy(2)).

With (2), the joint p.d.f. fyy is

Sxv (1) = fx@)fy (O)c(Fx(x), Fy(t))
= fx@)fv (8) + 0fx )fy (£) (1 - 2Fx(x)) (1 - 2Fy (2)).

3)

For simplicity, we define the following functions:

k() = f (%) (1 = 2Fx () (4)
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and
ky (8) = fy (£) (1 - 2Fy (t)). (5)
Let T denote the time to ruin, so that
T = inf{t|LI(t) <0, fort> 0}.
Then the probability of ultimate ruin from initial surplus u is defined as
¥(u) = P(T <oo|U(0) = u)
To ensure that ruin will not occur almost surely, we assume that
E(cV -X)>0. (6)

Besides the ruin probability, other important ruin quantities in ruin theory include the
Laplace transform of ruin time; the surplus immediately before ruin denoted by U(7T-);
the deficit at ruin denoted by |U(T')|, etc. A unified approach to study these ruin quantities
is to consider the so-called expected discounted penalty function introduced by Gerber

and Shiu [9]; the function is given by

ms(u) = E[e‘aTw(L[(T—),

U(T)|)I(T <o0)|U(0) =u], u>0, 7)

where w(x,y), for all x,y > 0, is the penalty function at the time of ruin for the surplus
prior to ruin and the deficit at ruin, /(-) is the indicator function, and § is a nonnegative
parameter. We can think of § either as being a force of interest or as a dummy variable in
the context of the Laplace transform. A special case of the expected discounted penalty
function with w(x,y) = 1 is the Laplace transform of the time of ruin. The cases § = 0 and

(x,y) =1 correspond to the infinite-time ruin probability.

3 Integro-differential equation
In this section, we derive an integro-differential equation for the expected discounted
penalty function m;(u). By conditioning on the time and the amount of the first claim,

we have

o0 u+ct
ms(u) = / / e ms(u + ct — x)fx v (x, t) dxdt
o Jo
o oo (8)
+ / / e wu + ct,x — u—ct)fy v (%, t) dxdt.
0 u+ct
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With (3), (4) and (5), (8) becomes
ms(u) = /000 /O’Hd et ms(u + ct — x)fx(x)fv (t) dxdt

u+ct
+0 / / e ms(u + ct — x)kx(x)ky () dx dt
o Jo

)
+ /0 /um e wu + ct,x — u— ct)fy (x)fy (t) dx dt
+6 /00 /00 et w(u + ct,x — u — ct)kyx(x)ky (¢) dx dt.
We define two functions:
¥
o1(y) = / ms(y — x)fx (x) dx + w1(y) (10)
0
and
y
720) = [ty =2ksl0) ds + 020, )
0
where
w1 (y) = / o(y,x - y)fx(x) dx,
y
0= [ ol — ke ds
w7 /y w XX
Given (10) and (11), (9) becomes
ms(u) = /00 e’&fv(t)al(u +ct)dt +6 /OO e ky (£)oa (u + ct) dt. 12)
0 0
Substituting s = u + ct into (12), we have
cmg(u) = /‘006_85 3 V(s — u)ol(s) ds
u c
(13)

+6 / e_8¥kv(¥)oz(s) ds.

Theorem 1 In the risk model introduced in Section 2, the excepted discounted penalty
function ms(u) satisfies the following integro-differential equation:

a(D)B(D)ms(u) = a(D)(01 (1) — 002 () + 6B(D)y (D)o (), (14)
where
(D) = <)Ll + Ao +81_ ED)<2A1 +81_ iD)(ZM +81_ iD),
2 2 M M Ay A2

M+ c Ao+ 8 c
B(D) = I-—D I-—D),
A M A2 A2



http://www.journalofinequalitiesandapplications.com/content/2012/1/156

Yong and Xiang Journal of Inequalities and Applications 2012, 2012:156
http://www.journalofinequalitiesandapplications.com/content/2012/1/156

y(D) = (2A1 +2Ay + 8)] — cD,

I and D are the identity and differential operators.

Proof Case 1. A1 # Ay, we obtain the p.d.f. and c.d.f. of r.v. V,

AA
ol = (e =),
-\
Fy(t)=1- Ao M — pe7M2),
V() o )\1( 2 1e7%)
hence
ky (£) = fy(£)(1 - 2Fy (1))
— )"1)\'2 (e—)qt _ e—)uzt) 2)\'1 e—)»zt _ 2)\'2 e—)nlt -1).
)\2—)\.1 )\1_)‘-2 )\1_)‘-2
Let

AMAs 2M1 209
= ) rn= ) ry = )
Ay —Ap A=Ay AL =2y

then (13) becomes

Y e —(8+21) 52 (8+A )t
st = = [ (0 D% (01(5) - B0a(s)) ds
u
A o s—u s—u s—u
+«9—/ (e’(‘s*“)T —e’(‘s“\”T)(rle 2 e )oz(s)ds
u

Cc

= &S(u) + G&U(u),
C C

£(u) = /OO (e S e_(‘“h)%)(al(s) —00,(s)) ds

and

o0
n(w) =/ (eI e CHTE (e 2™ 1o oy (s) dis
u

00
:/ ((;,,1 + rz)e—(}»ﬁkzﬂi)T —re —(212+8) 2 _ —(2)Ll+8 7)02(5) ds.
u

(15)

(16)

17)

(19)

In order to get (14), we firstly apply the operator S(D) to both sides of (18) with respect to

(w.r.t.) u.
Given (18), we have

[

R A. 5 S—u A. 8 S u
D& (u) :/ (%e_(a*“)T - Le_('serz T)(Ul(s) 902(5))

Page 50of 13
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and

[} 2
DZS (u) _ / ((?) —(8+A1) 4 (@) e—(6+)~2)scu> (0’1(8) _ 90_2(5)) ds

_M ;)Lz (01(1) — B0z ().

These allow us to derive the following result:

B(D)E (u) = ((,\1 +8)(hy + 8)I — c(h1 + Ay +28)D + *D?)
(20)
c
=3 (Gl(u) - 005()).
Secondly, we take the operator «(D) to both sides of (19) w.r.t. u.
From (19), we get
me:fm0n+mﬁiﬁﬁﬁwwhm%_n%212QMW%
u (4 Cc
20 + 6 s—u
—r 1—+e—(2k1+8)c)62(s) ds,
c
[e'9) 2
D*n(u) = / ((rl +79 (Al that 8) “Oarhard) S <—2)L2 i 8) e @ha+d) et
u [
. 2)\.1+8 (2)»1+(3 s
c
)\1+)u2+8 2)\2+(3 2)\1+8
-((n+n)| ———— ) -n - o9 (1)
c c c
and
o0 A+ rg+8)\°
D’n(u) = / ((m + r2)<—1 M ) e rrard)
u c
200 + 68 u 2A
(B g ( g ) S
A1+Az+ 2A2+8 2Al+8
—\ (1 +1) 02(14)
—<(I"1+r2 ()»1+)\,2+8> (2A2+8>—r2<2)"1+5)>D0‘2(u),
c
Hence
a(D)n(u) = TN ——{ (A1 + A2+ 8)(211 + 8)(212 + 8)n(u)
— (2001 + Ap + 8)” + (241 + 8)(242 + 8)) D (u)
+32 (A + Ay + 8)D?n(u) — cSDSn(u)} (21)

= ;((2}‘1 +2A3 + 8)02 (1) — cDo (1))

= ;y(D)Uz(M)
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Applying the operator a(D)B(D) to both sides of (17), we can obtain
By (1) = aDF(D) 20 +0% 1)
= a(D)(01(u) — 002 (1)) + OB(D)y (D)o (u).
Case 2. A1 = Ay = A, we know

fo(®) = A2 te™, (22)
Fy(t)=1-(1+xr)e™,

kv () = fr () (1= 2Fy(8)) = 22> (1 + At)te™ ™ — Ate™, (23)

then (13) becomes

2 2
my(u) = D (w) + 07 D), (24)

where
DE(w) = / E N (03(6) ~ 60(9) d
and

* s—u)’ s-u (8+22) 522
Dn(u):/ <A<T> +T)e K oz(s)ds

When repeating a similar procedure to Case 1, the following formulae can be obtained:

B(D)DE (u) = }LQ(Gl(M) 00 (u)), (25)
«(D)Di(u) = % ((6 + 42)0(1) — Doy ()
c (26)
= EV(D)Gz(M).

Given (25) and (26), applying the operator «(D)B(D) to both sides of (24), we can derive
22 22
a(D)B(D)ms(u) = a(D)ﬁ(D)D<7$(u) +0 Trl(u))
= (D) (al(u) - 902(14)) +6B8(D)y (D)oa(u).
Hence, the integro-differential equation is true. O

4 The Laplace transform of mg(u) for § =0
Throughout this paper we denote the Laplace transform of a function f(x) by

£(s) = /0 e *f (x) d.

Page 7 of 13
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Before deriving the Laplace transform of Gerber-Shiu function, one important step is to
develop Lundberg’s fundamental equation and examine its properties.
To derive Lundberg’s fundamental equation, we consider the process

k
:exp<—82\/}+sUk>,k:0,1,...], for s > 0.

i=1

It is a martingale if and only if
E(e?Ve V) =1, (27)

which corresponds to Lundberg’s fundamental equation, see Gerber and Shui [9]. Due to
(3), (4) and (5), (27) can be written as

oo oo
E ( o3V gslcV-X )) - / / gH(es=8) gsx ‘fxv(x, t)dxdt
0 0

0 T e e (%) ky (t) dx dt
+ ‘/0 /0 e e ¥ kx(x)ky(t) dx (28)

= fx (8)f, (8 — cs) + Ok (s)ky, (8 — cs)
=1.

From (15), (16) and (22), (23), we conclude that f,,(§ - cs) and k(8 — cs) have the same

form in Case 1 or Case 2,

. (M8 e N+ ¢\ 1
so-e= (") (5 50) <

and
. (2A1 +2X0 +8) —cs 1
ky(8—cs) = 20 - m
91
als)  Bls)’

Thereby, (28) is equivalent to

a(s)B(s) — a(s)fy (s) = 0 (B(s)y () — x(s)) Ky (s) = 0. (29)

To derive the expression of m(5 (s), we need to know the number of roots in the right-half-
plane of Lundberg’s fundamental equation (28). For § = 0 and 6 # 0, by Theorem 1 of
Klimenok [10], we can determine the number of roots to (28) with a positive real part.

However, for § > 0 and 6 # 0 we do not reach the conclusion about it.

Lemma 1 For § =0 and 6 #0, Lundberg’s fundamental equation (28) has exactly 4 roots
denoted by {p;,i =1,...,4} with Re(p;) > 0 and a 5th root p5 = 0.

Proof Let z(s) = ]%, Cr={s:|z(s)| =1}.

Page 8 of 13
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Firstly, ae(s) B(s) and a(s)f (s) + 0 (B(s)y (s) — a(s))ky (s) are analytic inside the unit contour
Ck and continuous on Cy. Let kK — oo and denote by C the limiting contour. We want to

show

’

|a($)B(s)| > [er(s)fy(s) = O (Bls)y (s) — a(s)) Ky (s)

which is equivalent to

1 o 1By (s) — als)]
k - ., <. 3]
Ol g PRI = onser <

\ﬁ—}s)l and % are the ratios of polynomials with a strictly higher degree at the de-

nominator. From the definitions, we have |fy(s)| <1 and |6ky(s)| < 1. Hence

|B(s)y (s) —c(s)]
— = =0
loe(s)11B8(s)]

. 1 .
0l + 1Pt

on C (excluding s = 0). Moreover, due to (4),

d 1
d_z (1 - VX(k - /(Z)| m

|B(k — kz)y (k — kz) —a(k—kz)l)

— |0ky (k - kz))| |oe(k — kz)|| Bk — kz)|

z=1

_4 (1-E(e*2X=))| = E(cV -X) > 0.

dz z=1

Because «(s)S(s) have 5 positive roots, by Theorem 1 of Klimenok [10], we can conclude
that the number of solutions to (28) inside C is equal to 4. Finally, it is clear that the 5th
root to (28) is ps = 0 with § = 0. Hence, the conclusion is true. O

In the following sections, we only consider the case that the roots {p;,i =1,...,5} are
distinct.

Theorem 2 [n the risk model introduced in Section 2, the Laplace transform of ms(u) for
8 = 0 denoted by m(s) is

. w(s) —g(s)
=— ", 30
m(s) 70 (30)
where
a(s) = a(s)w; (s) + 0 (B(s)y () — au(s)) w, s),

Page9of 13
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Proof First, from the properties of the Laplace transform, we have
k-1
(f®) () =" (5) - > sF1DIf(0), fork e N*
1=0

and

( /0 FOMslx—) dy) 5) = £ 9 ).

In order to get (30), we must take the Laplace transform of both sides of (14).
The Laplace transform of «(D)B(D)m(u) is

a(s)B(s)my(s) + q(s),

where ¢(s) is a polynomial of degree four or less, with coefficients in terms of ¢, A1, A, and

the value of 71((0) and its first 4 derivatives at u = 0.
The Laplace transform of «(D)(o01(u) — 604 (ur)) + 08(D)y (D)oo (u) is

{a(s)[(mf)(s)f;(s) + a)l (s)) - Q(WIZ)(S)/(;((S) + a)2 (s))] +q (s)}
+0{B(5)y (5)[mo()ky () + w,(s)] + g2(5)},

where g1 (s) and g, (s) are polynomials of degree three or less, with coefficients in terms of

C, )\.1 5 )\.2.
For simplicity, we define the following functions:

(s) = a(s)a; (s) + 6 (B(s)y (s) — a(s) )y s),

q(s) = q(s) — q1(s) — 0¢2(s)
and
F() = als)B(s) — a(s)fi(5) = 8 (B(s)y (s) — () ki s),
then
a()B(s)my(s) + q(s) = (a(s)fx(s) + O(B(s)y (s) — au(s)) ky () my(s)

w(s) + q1(s) + 02 (s).

Hence
w(s) —4(s) ' 31)
fs)

Because 1, (s) is finite for Re(s) > 0, the numerator on the right-hand side of (31) must be

mgy(s) =

zero whenever the denominator is zero. From Lemma 1, it follows that g(s) is the collo-

cation polynomial of function @(s) with respect to {p;,i = .,5}. Then, by the Lagrange
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interpolation formula, we obtain

5 5
- - Pk—S$
g6)=> ap) [] - (32)
j=1 KLz Pk P
Thereby, we complete the proof. d

5 Exponential claim size
In this section, we assume that the individual claim size follows an exponential distribution
with parameter w.

Let

JSx(x) = e
and

kx(x) = fx () (1 - 2Fx(x))

— 2Me—2ux _ 'ue—mc’

then
. 0
= , 33
Sx() v (33)
21 nw
kK (s) = - . 34
() 20+Ss  H+S (34)

In order to get the expression of the ruin probability, we consider a special case of the
expected penalty function with w(x,y) =1 for all x,y > 0.

Corollary 1 In the risk model introduced in Section 2, if X ~ Exp(n) and w(x,y) =1, the
Laplace transform of ruin probability denoted by " (s) is

V(s) = M. (35)
f(s)

Proof Given w(x,y) =1, (31) and (32), we know

my(s) = (s),
a(s) = (2u + s)a(s) + O (B(s)y (s) — als)),

and

F(s) = a(s)B(s) — als) ﬁ

N

—e(ﬂ(sw(s)—a(s))( 2 _» )

1% 2/,L+S_,bL+S

For simplicity, to invert the Laplace transform of y"(s), we multiply(u + s)(2u + s) on f (s),
@(s), g(s) respectively, yielding

£(s) = (u +9) 2 +)f(s),

Page 11 0f 13
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w(s) = (1 +5) (2 + 5)d(s),

q(s) = (1 + )2 + 5)gq(s).
So

. (s) - q(s)
1// (S) = a)A4
f(s) -

Example 1 For the numerical results, we choose A1 =1, A, =1, u =1 and the premium
rate ¢ = 1. We can invert the Laplace transform in (35) leading to v («). In Table 1,
the analytic expressions of ¥ (u) are provided for differential dependence parameters:
0 = -1;-0.5;-0.25;0;0.25; 0.5 and 1, respectively.

From analytic expressions of ruin probability in Table 1, the resulting ruin probabilities
are depicted in Figure 1. We can see that for fixed value of initial surplus # and the impact
of the dependence parameters range from —1 to 1, the ruin probabilities decrease.

Table 1 Analytic expressions of ruin probability

[4 Expressions for the ruin probability ¥ (u)
=1 0.5201 exp(=0.5214u) — 0.02806 exp(-2.2149u)
-05 04665 exp(-0.5661u) — 0.01537 exp(-2.0653u)
-0.25  04372exp(-0.5910u) — 0.008086 exp(-2.0335u)
0 0.3820 exp(-0.6180u)
0.25  0.3557 exp(-0.6474u) + 0.008384 exp(—1.9646u)
05 0.3270exp(-0.6794u) + 0.01841 exp(-1.9271u)
1 0.2600 exp(-0.7534u) + 0.04565 exp(-1.8434u)

Ruin Probabilities

0.5 . . : : : : : :
. - -1
0485 o0& |-
- - = 025
04 e — 0 |]
0be T 0.25

ruin probability

initial surplus

Figure 1 The result of ruin probability.
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