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Abstract

In this paper, we discuss a class of retarded nonlinear integral inequalities and give an
upper bound estimation of an unknown function by the integral inequality
technique. This estimation can be used as a tool in the study of differential-integral
equations with the initial conditions.
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1 Introduction

Gronwall-Bellman inequalities [1, 2] can be used as important tools in the study of exis-
tence, uniqueness, boundedness, stability, and other qualitative properties of solutions of
differential equations, integral equations, and integral-differential equations. There can
be found a lot of generalizations of Gronwall-Bellman inequalities in various cases from
literature (e.g., [3-13]).

Lemma 1 (Abdeldaim and Yakout [4]) We assume that u(t) and f (t) are nonnegative real-

valued continuous functions defined on I = [0, 00) and they satisfy the inequality

t 2 t s
W) < ug + (/ fs)u?(s) ds) + 2/ f(s)up(s)[up(s) + / f(A.)Mp(A.)d)L] ds, (1.1)
0 0 0

forallt eI, where uy >0 and p € (0,1) are constants. Then

u(t) < uf# + I% /Otf(s)Dz(s) ds, Vtel, (1.2)
where
Dy(f) = ﬁ(t)[ué:_; + 21%1’3 /0 t f(s)exp <-21_7” /0 ' f(k)dk) ds] = (1.3)

and B(t) = exp(2 fotf(s) ds), forallt € I.
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In this paper, we discuss a class of retarded nonlinear integral inequalities and give an
upper bound estimation of an unknown function by the integral inequality technique.

2 Main result
In this section, we discuss some retarded integral inequalities of Gronwall-Bellman type.
Throughout this paper, let I = [0, 00).

Theorem 1 Suppose a € C'(I,1) is increasing function with a(t) < t, «(0) = 0, Vt € I. We
assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I,
and they satisfy the inequality

alt) 2
W (E) < ug + (f fs)u(s) ds)
0

(2.1)
a(t) s
+2/ tf(s)up(s) |:up(s) + / fA)uP () dk:| ds, Vtel,
0 0
where ugy > 0 and p € (0,1) are constants. Then
b2 [
u(t) <ug + lm/o f(s)6 (oz (s)) ds, Vtel, (2.2)
where
[ i 1-p [0 l1-p [* v
01(2) = Br(8) | ug™ +2—— / f(s)exp (—2— / f(k)dk) ds] , (2.3)
1+pJo p Jo

and By(t) = exp(2 [*V f(s)ds), forall t € 1.
Remark 1 Ifa(t) = ¢, then Theorem 1 reduces Lemma 1.

Proof Let 2} +1()f) denote the function on the right-hand side of (2.1), which is a positive
1

and nondecreasing function on I with z;(0) = uém . Then (2.1) is equivalent to

u(t) <z (2), u(a(t)) <z (a(t), Viel (2.4)
Differentiating 2/ +1(t) with respect to £, using (2.4) we have

dz(t)

(v +1)Z(t) I

20/ (£)f (e (2)) (e (2)) /0 “ F($)u?(s) ds
+2a/ (£)f (e (0)) u? (e (2)) [up (x(®) + fo " F)u? () d,\] (2.5)
<20/ (0)f (a(2))Z; (2) [z{’(t) +2 /0 " f(k)zf(k)dk], Vel
Since 2(£) > 0, from (2.5) we have
dn(t) 2

=

dt p+1

o' @O)f () Y1(t), Vtel, (2.6)
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where
a(t)
Yi(t):=2(t) +2 / fZA W) dr, Vel (2.7)
0

Then Y;(¢) is a positive and nondecreasing function on I with Y;(0) = uﬁ“pﬂ) and
z1(t) < i(0)P. (2.8)

Differentiating Y;(¢) with respect to ¢, and using (2.6), (2.7) and (2.8), we get

an(t) _ 2p

ki 1o/(t)f(oz(»r))zf{"l(t) Yi(t) + 20/ (6)f (e (0) 2 ((2))

< %a’(t)f(a(t)))’l%(t) 22 (Of ()i (®), Viel

(2.9)

From (2.9), we have

L% gy, Lp 2
Y, (t) dlt(t) 2" (@) ()Y, (2) < l?pla/(t)f(a(t)), Vtel (2.10)

1-p 1-p

Let S;(¢) = Y17 (), then S$;(0) = u(‘)m, from (2.10) we obtain

B P (wn)si) <22 Ll @ (0le), Veel. (211

dt p p+1

Consider the ordinary differential equation

s, 1-p , 1-p |
;t -27% (t)f(a(t))Sz(t)=2pTI;a &)f (), Veel,

1-p

$5(0) = ul™.

(2.12)

The solution of Equation (2.12) is

a(t) _ 1p
S(t) = exp ( /O 217’”f(s) ds) <ug“

alt) l—p s l—p
+/0 2p+1f(s)exp(—/0 27f(T)dT> ds),

for all £ € I. By (2.11), (2.12) and (2.13), we obtain

(2.13)

- p

i) =S @) <S, 7 (t)=61(t), Vtel, (2.14)

where 6;(¢) as defined in (2.3). From (2.6) and (2.14), we have

le(t) < 2

dt p+1

o' @)f («(8)01(2), Viel
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By taking ¢ = s in the above inequality and integrating it from O to ¢, we get

1 2 alt)
u(t) <zi(t) < ué”l + — / f(s)@l(a_l(s)) ds, Vtel.
p+1lJo
The estimation (2.2) of the unknown function in the inequality (2.1) is obtained. a

Theorem 2 Suppose a € C(1,1) is increasing function with a(t) <t, «(0) =0, V¢t € I. We
assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on 1

and satisfy the inequality

alt) 2
W (t) < ug + (/ fs)u(s) ds)
0

" (2.15)
+ 2/ fs)u?(s) |:u(s) + / F)u) d)»i| ds, Vtel,
0 0
where ugy > 0 and p € (0,1) are constants. Then
1 2 a(t)
u(t) <ul" + —/ f(s)0, (ofl(s)) ds, Vtel, (2.16)
p+lJo

where

A

1-p alt) N _ I-p
)= g0+ [ a-proes(- [ CLE D) a] ", e

and By(t) = exp(foa(t) ’;%j (s)ds), forallt € 1.

Proof Let 2127+1(t) denote the function on the right-hand side of (2.15), which is a positive
1

and nondecreasing function on I with z,(0) = u(‘F . Then (2.15) is equivalent to

u(t) < zy(t), u(a(t)) <z(a(r), Vel (2.18)
Differentiating z";l(t) with respect to ¢, using (2.18) we have

a(t)
0 sy @) (o) [ fous)ds

a(t)
+ 2a’(t)f(oz(t))up (a(t)) [u(a(t)) + /0 f()»)u()»)d)\i|

lt) (2.19)
=< 20/ (8)f (e(8)) 25 (2) [zz(t) | S0z
a(t)
+ / fZ0) dx} vtel.
0
Since Z5(t) > 0, we have
dz;;t) < I%O/(t)f(a(t)) Y,(t), Vtel, (2.20)
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where
alt) at)
Yo(t) := z(¢) + / f)z (1) dA + / fLM)dr, Vel (2.21)
0 0

Then Y5(t) is a positive and nondecreasing function on I with Y5(0) = z,(0) = ué/(pﬂ) and
z5(t) < Yo (2). (2.22)

Differentiating Y>(£) with respect to ¢, and using (2.20), (2.21) and (2.22), we get

T < OO0 + o 0 (0(0)22(o(0) + o 0 (0) )
p+3

< ma’(t)f(a(t)))’z(t) +o/ (O)f (a(®) Y3 (), Vtel

(2.23)

From (2.23), we have

dY,(t) p+3

dt p+1

Y, (2) Of (@)Y, P (t) <o ()f (b)), Vtel (2.24)

1p

Let S5(t) = Yzl_p(t), then S3(0) = u}"™", from (2.24) we obtain

Consider the ordinary differential equation

dS;t(t) o —§)+(Pl +3) o (Of ((8)Sa(t) = 1= p)e/ (O)f ((1),  VEEL (2.26)

1-p

Su(0) = ul™.

The solution of Equation (2.26) is

at) (1 _ 1p
S4(t) = exp (/0 a?#f(s) ds) (ug”

“ F(L-p)(p+3)
+/0 (I—P)f(s)exp<—/o pr(T)dT> ds),

(2.27)

for all £ € I. By (2.25), (2.26) and (2.27), we obtain

Y5(2) = S?f%p (¥ < Si%p (£)=65(t), Vtel, (2.28)

where 6,(¢) as defined in (2.17). From (2.20) and (2.28), we have

dz;ft) = %“/(t)f(“(t))%(t), Vtel
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By taking ¢ = s in the above inequality and integrating it from O to ¢, we get

1 a(t)

u(t) <z(t) <ul" + l% i f(s)92(a_1(s)) ds, Vtel

The estimation (2.16) of the unknown function in the inequality (2.15) is obtained. a

Theorem 3 Suppose ¢y, ¢z, ¢2/¢1,a € CYI,I) are increasing functions with a(t) < t,
¢i(t)>0,Vt>0,i=1,2, «(0) = 0. We assume that u(t) and f (t) are nonnegative real-valued

continuous functions defined on I and satisfy the inequality

alt) 2
u(t) < uo + < fo f($)pr (u(s)) a’S>
(2.29)

«(t) s
+ 2/ fs)p (u(s)) |:u(s) + / g\ (u(k)) dk:| ds, Vtel,
0 0

where ug > 0 is a constant. Then

a(t) a(t)
u(t) < d>1_1|:d>51 (d>2 <<1>1(u0) +/ g(s) ds) +/ 2f(s) ds):|, vVt < Ty, (2.30)
0 0

where

Todt
DO4(r) := 1 m, r>0, (2.31)

T a(P7'(s)ds

(] = ,
200= | )@ ) 7 D

r>0, (2.32)

and T, is the largest number such that

0 o) [T (@) ds
‘D2<‘1’1(”°’+/0 g(s)ds>+/o s [ (@ () @71(5) + 1)

a(t) a(t) © d
<I>21<<I>2(<I>1(u0)+ fo g(s)ds>+ fo 2f(s)ds>§ 1 ¢2(':t)

forallt <T.

Proof Let z3(t) denote the function on the right-hand side of (2.29), which is a positive

and nondecreasing function on I with z3(0) = #y. Then (2.29) is equivalent to

u(t) < zs(t), u(a(t)) <z(t), Vel (2.33)
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Differentiating z3(¢) with respect to ¢, using (2.33) we have

d al(t)
z;t(t) <2/ (E)f ((t)) 1 (23(0)) f f(5)¢ (23(5)) ds
0

a(t)
+ 20/ (OF (o) 1 (2(0) [zm . fo 20)a(25(0) dx] ds

(2.34)
a(t)
<20/ (£)f (a(2)) 1 (25(1)) |:23(t)+ /0 )1 (23(5)) ds
al(t)
[ () d)\], viel
0
Let
a(t) a(t)
Y3(t) = z3(t) + /0 F(8)¢1(z3(s)) ds + /0 gW)a(z3(V))dr, Vtel (2.35)

Then Y3(t) is a positive and nondecreasing function on I with Y3(0) = z3(0) = uy and
z3(t) < Y3(2). (2.36)

Differentiating Y3(£) with respect to ¢, and using (2.34), (2.35) and (2.36), we get

dYs(t)
dt

<20/ (£)f ((£)) 1 (23(8)) Y3(8) + &' ()f (x(8)) 1 (23(2))

+a' (g (e () pa (23(2)) (2.37)
<20/ (8)f ((®)) 1 (Y(2)) (Y3(2) + 1) + &' (D)g (e (2)) 2 (Y3(2)),

for all £ € I. Since ¢,(Y3(¢)) > 0, V¢ > 0, from (2.37) we have

D1 (Y3(1)(Y3(t) + 1)
2 (Y3(2))

W50 o (0 ()

$2(Ys(2) ~ +a'()g(a(t), Vel

By taking ¢ = s in the above inequality and integrating it from O to £, we get

01 (Y3(£)) < @y (Y3(0)) + / a(5)f (a(e) BT + 1)
0 $a(Y3(s))
t (2.38)
’ d )
+ /0 o/ (s)g(als)) ds
for all ¢ € I, where & is defined by (2.31). From (2.38), we have
T
D1 (Y3(2)) < P1(Y3(0)) +/ o' (s)g(als)) ds
0
t $1(Y3(5) (Ya(s) + 1) 259
, 3
) 2ertae) P

for all £ < T, where 0 < T < T; is chosen arbitrarily. Let Y,4(¢) denote the function on the
right-hand side of (2.39), which is a positive and nondecreasing function on I with Y,(0) =
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@, (up) + [ @' (s)g((s)) ds and
Y3(t) < @' (Ya(e), Ve<T. (2.40)

Differentiating Y4(¢) with respect to ¢, using the hypothesis on ¢,/¢;, from (2.40) we have

dYy(t)
dt

d1(Y3()(Ya() +1)
d2(Y3(2))
o (P (Ya())(@TH(Ya(2) +1)
P2 (PTH(Ya(2)))

<20/ (£)f («(t))
(2.41)

< Za/(t)f(a(t)) , Vt<T.

By the definition of @, in (2.32), from (2.41) we obtain

D, (Ya(2)) < P2(Ya(0)) + / 20/ (s)f (a(s)) ds
° (2.42)
a(T) alt)
< q’z(q%(uo) +/ g(s) ds> +/ 2f(s)ds, Vt<T.
0 0

Lett =T, from (2.42) we have

a(T) a(T)
D, (Yu(T)) < <I>2<<I>1(uo)+ /O g(s)ds) + /0 2f(s) ds. (2.43)

Since 0 < T < T is chosen arbitrarily, from (2.33), (2.36), (2.40) and (2.43), we have

al(t) a(t)
u(t) < <I>1_1[d>§1(<l>2 <<I>1(u0) +/ g(s) ds) +/ 2f(s) ds)i|, vVt < T;.
0 0

This proves (2.30). g

3 Application

In this section, we apply our Theorem 3 to the following differential-integral equation

dt
x(o) = X0,

{ dx(t) - F(t,x((x(t))) +H(t,x(06(t)))’ Vt e 1, (3 1)

where F € C(I xI,R), H € C(I3,R), x| > 0 is a constant satisfying the following conditions

|F(t,2(0)] <f2(0)2 (|x(2)

), (3.2)
IH (5 2())] < 2f(t)¢1(!x(t)\)(\x(t)\ o g(s)¢2(!x(s)!)ds), (33)
0
where f, g is nonnegative real-valued continuous function defined on /.

Corollary 1 Counsider the nonlinear system (3.1) and suppose that F, H satisfy the condi-
tions (3.2) and (3.3), and ¢1, ¢, ¢/, € CH(I, 1) are increasing functions with a(t) < t,
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¢i(t)>0,Vt>0,i=1,2, «(0) = 0. Then all solutions of Equation (3.1) exist on I and satisfy

the following estimation

a(t) -1 a(t) -1
1x(2))| gcb;l[q>;1(<b2<q>1(|xo|)+/0 %ds) +/0 2% ds)], (3.4)

forall t < T,, where

"odt
D4(r) := — >0,

1 $a(t)

T a(®'(s)ds
1 o1 (@) @Ms) + 1)

Dy(r) := r>0,

and T is the largest number such that
a(t) -1 a(t) -1
gla™(s)) ) / Sfla™(s))
D, P = 20—
2( o+ [ S )t [ e

[ $2(P7H(s)) ds
L (PN Ps) +1)]

a(t) -1 a(t) -1 o0
a gla™(s) fla™(s) dt
> ((Dz(q’l("“‘")*/o a/(al(s))ds)+fo 2a/<a1(s))ds)§1 20

forallt <T,.

Proof Integrating both sides of Equation (3.1) from 0 to ¢, we get

x(t) = xo + /OtF(s,x(a(s))) ds + /OtH(s,x(a(s))) ds, Vtel (3.5)

Using the conditions (3.2) and (3.3), from (3.5) we obtain

0] Il + [ SH0002((a(5)) ds
0
+2/0f(S)¢1(|x(0t(S))|)(Ix(Ot(S))I+/0 g(T)¢2(|X(O£(‘L'))|)dr) ds

a(t) -1 2
<l + ([ LD () )

o’ (a71(s))

alt) £(g-1 S gla™!
v [ L 50 ([0 + [ D oo e ) s,

o a(a(s) a'(a (7))

(3.6)

for all ¢ € I. Applying Theorem 3 to (3.6), we get the estimation (3.4). This completes the
proof of the Corollary 1. g
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