Applications of differential subordinations for certain classes of p-valent functions associated with generalized Srivastava-Attiya operator

M K Aouf, A O Mostafa, A M Shahin and S M Madian*

Correspondence:

samar_math@yahoo.com Department of Mathematics Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract

The object of the present paper is to investigate some inclusion relations and other interesting properties for certain classes of p-valent functions involving generalized Srivastava-Attiya operator by using the principle of differential subordination. MSC: 30C45 Keywords: differential subordination; integral operator; p-valent functions

1 Introduction

Let $A(p)$ be the class of functions which are analytic and p-valent in the unit disc $U=\{z \in$ $\mathbb{C}:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) . \tag{1.1}
\end{equation*}
$$

Let also $A(1)=A_{1}$. For $g(z) \in A(p)$, given by $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p}$, the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p}=(g * f)(z) . \tag{1.2}
\end{equation*}
$$

Next, in the usual notation, let $\Phi(z, s, a)$ denote the Hurwitz-Lerch Zeta function defined as follows:

$$
\begin{align*}
& \Phi(z, s, a)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+a)^{s}} \tag{1.3}\\
& \quad\left(a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; s \in \mathbb{C} \text { when }|z|<1 ; \operatorname{Re}\{s\}>1 \text { when }|z|=1\right) .
\end{align*}
$$

For further interesting properties and characteristics of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ see [2, 5, 8, 9, 11], and [21].

[^0]Recently, Srivastava and Attiya [20] have introduced the linear operator $L_{s, b}: A_{1} \rightarrow A_{1}$, defined in terms of the Hadamard product by

$$
\begin{equation*}
L_{s, b}(f)(z)=G_{s, b}(z) * f(z) \quad\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{s, b}=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right] \quad(z \in U) \tag{1.5}
\end{equation*}
$$

The Srivastava-Attiya operator $L_{s, b}$ contains, among its special cases, the integral operators introduced and investigated by Alexander [1], Libera [7] and Jung et al. [6].

Analogous to $L_{s, b}$, Liu [10] defined the operator $J_{p, s, b}: A(p) \rightarrow A(p)$ by

$$
\begin{equation*}
J_{p, s, b}(f)(z)=G_{p, s, b}(z) * f(z) \quad\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; p \in \mathbb{N}\right) \tag{1.6}
\end{equation*}
$$

where

$$
G_{p, s, b}=(1+b)^{s}\left[\Phi_{p}(z, s, b)-b^{-s}\right]
$$

and

$$
\begin{equation*}
\Phi_{p}(z, s, b)=\frac{1}{b^{s}}+\sum_{k=0}^{\infty} \frac{z^{k+p}}{(k+1+b)^{s}} . \tag{1.7}
\end{equation*}
$$

It is easy to observe from (1.6) and (1.7) that

$$
\begin{equation*}
J_{p, s, b}(f)(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{1+b}{k+1+b}\right)^{s} a_{k+p} z^{k+p} . \tag{1.8}
\end{equation*}
$$

We note that
(i) $J_{p, 0, b}(f)(z)=f(z)$;
(ii) $J_{1,1,0}(f)(z)=L f(z)=\int_{0}^{z} \frac{f(t)}{t} d t\left(f \in A_{1}\right)$, where the operator L was introduced by Alexander [1];
(iii) $J_{1, s, b}(f)(z)=L_{s, b} f(z)\left(s \in \mathbb{C}, b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right)$, where the operator $L_{s, b}$ was introduced by Srivastava-Attiya [20];
(iv) $J_{p, 1, \mu+p-1}(f)(z)=F_{\mu, p}(f)(z)(\mu>-p, p \in \mathbb{N})$, where the operator $F_{\mu, p}$ was introduced by Choi et al. [3];
(v) $J_{p, \alpha, p}(f)(z)=I_{p}^{\alpha} f(z)(\alpha>0, p \in \mathbb{N})$, where the operator I_{p}^{α} was introduced by Shams et al. [18];
(vi) $J_{p, \gamma, p-1}(f)(z)=J_{p}^{\gamma} f(z)\left(\gamma \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, p \in \mathbb{N}\right)$, where the operator J_{p}^{γ} was introduced by El-Ashwah and Aouf [4];
(vii) $J_{p, \gamma, p+l-1}(f)(z)=J_{p}^{\gamma}(l) f(z)\left(\gamma \in \mathbb{N}_{0}, p \in \mathbb{N}, l \geq 0\right)$, where the operator $J_{p}^{\gamma}(l)$ was introduced by El-Ashwah and Aouf [4].
It follows from (1.8) that

$$
\begin{equation*}
z\left(J_{p, s, b}(f)(z)\right)^{\prime}=(b+1) J_{p, s-1, b}(f)(z)-(b+1-p) J_{p, s, b}(f)(z) . \tag{1.9}
\end{equation*}
$$

For two analytic functions $f, g \in A(p)$, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function $w(z)$, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if the function $g(z)$ is univalent in U, then we have the following equivalence (see [14]):

$$
f(z) \prec g(z) \quad \Leftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U) .
$$

Definition 1 For fixed parameters A and B, with $-1 \leq B<A \leq 1$, we say that $f \in A(p)$ is in the class $S_{p}^{s, b}(A, B)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}} \prec \frac{1+A z}{1+B z} \quad(p \in \mathbb{N}) \tag{1.10}
\end{equation*}
$$

In view of the definition of subordination (1.10) is equivalent to the following condition:

$$
\left|\frac{\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}-1}{B \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}-A}\right|<1 \quad(z \in U) .
$$

For convenience, we write $S_{p}^{s, b}\left(1-\frac{2 \eta}{p},-1\right)=S_{p}^{s, b}(\eta)$, where $S_{p}^{s, b}(\eta)$ denotes the class of functions in $A(p)$ satisfying the inequality

$$
\operatorname{Re}\left(\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}\right)>\eta \quad(0 \leq \eta<1 ; p \in \mathbb{N} ; z \in U)
$$

In the present paper, we investigate some inclusion relations and other interesting properties for certain classes of p-valent functions involving an integral operator.

2 Preliminaries

To establish our main results, we need the following lemmas.

Lemma $1([13,14])$ Let h be analytic and convex (univalent) in U with $h(0)=1$. Suppose also that the function φ given by

$$
\begin{equation*}
\varphi(z)=1+c_{m} z^{m}+c_{m+1} z^{m+1}+\cdots, \tag{2.1}
\end{equation*}
$$

is analytic in U, where m is a positive integer. If

$$
\begin{equation*}
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\varrho}<h(z) \quad(\operatorname{Re}\{\varrho\} \geq 0 ; \varrho \neq 0) \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\varphi(z) \prec \psi(z)=\frac{\varrho}{m} z^{-\frac{\varrho}{m}} \int_{0}^{z} t^{\frac{\varrho}{m}-1} h(t) d t \prec h(z) \tag{2.3}
\end{equation*}
$$

and $\psi(z)$ is the best dominant of (2.2).

We denote by $H(\varrho)$ the class of functions $\Phi(z)$ given by

$$
\begin{equation*}
\Phi(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \tag{2.4}
\end{equation*}
$$

which are analytic in U and satisfy the following inequality:

$$
\operatorname{Re}\{\Phi(z)\}>\varrho \quad(0 \leq \varrho<1 ; z \in U)
$$

Lemma 2 ([17]) Let the function $\Phi(z) \in H(\varrho)$, where $\Phi(z)$ given by (2.4). Then

$$
\operatorname{Re}\{\Phi(\varrho)\} \geq 2 \varrho-1+\frac{2(1-\varrho)}{1+|z|} \quad(0 \leq \varrho<1 ; z \in U) .
$$

Lemma 3 ([22]) For $0 \leq \varrho_{1}, \varrho_{2}<1$,

$$
H\left(\varrho_{1}\right) * H\left(\varrho_{2}\right) \subset H\left(\varrho_{3}\right), \quad \varrho_{3}=1-2\left(1-\varrho_{1}\right)\left(1-\varrho_{2}\right) .
$$

The result is best possible.
Lemma 4 ([24]) Let μ be a positive measure on the unit interval $[0,1]$. Let $g(z, t)$ be a complex valued function defined on $U \times[0,1]$ such that $g(0, t)$ is analytic in U for each $t \in[0,1]$ and such that $g(z, 0)$ is μ integrable on $[0,1]$ for all $z \in U$. In addition, suppose that $\operatorname{Re}\{g(z, t)\}>0, g(-r, t)$ is real and

$$
\operatorname{Re}\left\{\frac{1}{g(z, t)}\right\} \geq \frac{1}{g(-r, t)} \quad(|z| \leq r<1 ; t \in[0,1])
$$

If G is defined by

$$
G(z)=\int_{0}^{1} g(z, t) d \mu(t)
$$

then

$$
\operatorname{Re}\left\{\frac{1}{G(z)}\right\} \geq \frac{1}{G(-r)} \quad(|z| \leq r<1)
$$

Lemma 5 ([19]) Let the function g be analytic in U with $g(0)=1$ and $\operatorname{Re}\{g(z)\}>\frac{1}{2}(z \in U)$. Then, for any function F analytic in $U,(g * F)(U)$ is contained in the convex hull of $F(U)$.

Lemma 6 ([16]) Let φ be analytic in U with $\varphi(0)=1$ and $\varphi(z)=0$ for $0<|z|<1$ and let $A, B \in \mathbb{C}$ with $A \neq B,|B| \leq 1$.
(i) Let $B \neq 0$ and $\gamma \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ satisfy either $\left|\frac{\gamma(A-B)}{B}-1\right| \leq 1$ or $\left|\frac{\gamma(A-B)}{B}+1\right| \leq 1$. If φ satisfies

$$
\begin{equation*}
1+\frac{z \varphi^{\prime}(z)}{\gamma \varphi(z)} \prec \frac{1+A z}{1+B z}, \tag{2.5}
\end{equation*}
$$

then

$$
\varphi(z) \prec(1+B z)^{\gamma\left(\frac{A-B}{B}\right)},
$$

and this is best dominant.
(ii) Let $B=0$ and $\gamma \in \mathbb{C}^{*}$ be such that $|\gamma A|<\pi$. If φ satisfies (2.5), then

$$
\varphi(z) \prec e^{\gamma A z}
$$

and this is the best dominant.

For real or complex numbers a, n and $c\left(c \notin \mathbb{Z}_{0}^{-}\right)$and $z \in U$, the Gaussian hypergeometric function defined by

$$
\begin{align*}
{ }_{2} F_{1}(a, n ; c ; z) & =1+\frac{a n}{c} \cdot \frac{z}{1!}+\frac{a(a+1) n(n+1)}{c(c+1)} \cdot \frac{z^{2}}{2!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{(a)_{k}(n)_{k}}{(c)_{k}} \frac{z^{k}}{k!} \tag{2.6}
\end{align*}
$$

where $(d)_{k}=d(d+1) \cdots(d+k-1)$ and $(d)_{0}=1$. We note that the series defined by (2.6) converges absolutely for $z \in U$, and hence, ${ }_{2} F_{1}$ represents an analytic function in U (see, for details, [23, Ch.14]).

Lemma 7 ([23]) For real or complex numbers a, n and $c\left(c \notin \mathbb{Z}_{0}^{-}\right)$

$$
\begin{align*}
& \int_{0}^{1} t^{n-1}(1-t)^{c-n-1}(1-t z)^{-a} d t=\frac{\Gamma(n) \Gamma(c-n)}{\Gamma(c)}{ }_{2} F_{1}(a, n ; c ; z) \quad(\operatorname{Re}\{n\}, \operatorname{Re}\{c\}>0), \tag{2.7}\\
& { }_{2} F_{1}(a, n ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-n ; c ; \frac{z}{z-1}\right) \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}(a, n ; c ; z)={ }_{2} F_{1}(n, a ; c ; z) . \tag{2.9}
\end{equation*}
$$

3 Main results

Unless otherwise mentioned, we assume throughout this paper that $-1 \leq B<A \leq 1, s \in \mathbb{C}$, $b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, p \in \mathbb{N} \backslash\{1\}, 0<\alpha \leq 1, m$ is a positive integer and the powers are understood as principle values.

Theorem 1 Let f given by (1.1) satisfy the following subordination condition:

$$
\begin{equation*}
(1-\alpha) \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}} \prec \frac{1+A z}{1+B z} . \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}} \prec \Psi(z) \prec \frac{1+A z}{1+B z} \tag{3.2}
\end{equation*}
$$

where

$$
\Psi(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{m \alpha}+1 ; \frac{B z}{1+B z}\right) & \text { for } B \neq 0 \tag{3.3}\\ 1+\frac{p-1}{m \alpha+p-1} A z & \text { for } B=0\end{cases}
$$

is the best dominant of (3.2). Furthermore,

$$
\begin{equation*}
f \in S_{p}^{s, b}(\beta) \tag{3.4}
\end{equation*}
$$

where

$$
\beta= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{m \alpha}+1 ; \frac{B}{B-1}\right) & \text { for } B \neq 0 \tag{3.5}\\ 1-\frac{p-1}{m \alpha+p-1} A & \text { for } B=0\end{cases}
$$

The estimate (3.4) is best possible.

Proof Let

$$
\begin{equation*}
\theta(z)=\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}} \quad(z \in U) \tag{3.6}
\end{equation*}
$$

where θ is of the form (2.1) and is analytic in U. Differentiating (3.6) with respect to z, we get

$$
(1-\alpha) \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}}=\theta(z)+\frac{\alpha}{p-1} z \theta^{\prime}(z) \prec \frac{1+A z}{1+B z} .
$$

Applying Lemma 1 for $\varrho=\frac{p-1}{\alpha}$ and Lemma 7, we have

$$
\begin{aligned}
\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}} & \prec \Psi(z)=\frac{p-1}{m \alpha} z^{-\frac{p-1}{m \alpha}} \int_{0}^{z} t^{\frac{p-1}{m \alpha}-1}\left(\frac{1+A t}{1+B t}\right) d t \\
& = \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{m \alpha}+1 ; \frac{B z}{1+B z}\right) & \text { for } B \neq 0 \\
1+\frac{p-1}{m \alpha+p-1} A z & \text { for } B=0\end{cases}
\end{aligned}
$$

This proves the assertion (3.2) of Theorem 1. Next, in order to prove the assertion (3.4) of Theorem 1, it suffices to show that

$$
\inf _{|z|<1}\{\operatorname{Re}(\Psi(z))\}=\Psi(-1) .
$$

Indeed, we have

$$
\operatorname{Re}\left\{\frac{1+A z}{1+B z}\right\} \geq \frac{1-A r}{1-B r} \quad(|z| \leq r<1)
$$

Setting

$$
G(z, \zeta)=\frac{1+A \zeta z}{1+B \zeta z} \quad \text { and } \quad d v(\zeta)=\frac{p-1}{m \alpha} \zeta^{\frac{p-1}{m \alpha}-1} d \zeta \quad(0 \leq \zeta \leq 1)
$$

which is a positive measure on the closed interval $[0,1]$, we get

$$
\Psi(z)=\int_{0}^{1} G(z, \zeta) d \nu(\zeta)
$$

Then

$$
\operatorname{Re}\{\Psi(z)\} \geq \int_{0}^{1} \frac{1-A \zeta r}{1-B \zeta r} d \nu(\zeta)=\Psi(-r) \quad(|z| \leq r<1)
$$

Letting $r \rightarrow 1^{-}$in the above inequality, we obtain the assertion (3.4). Finally, the estimate (3.4) is best possible as Ψ is the best dominant of (3.2). This completes the proof of Theorem 1.

Theorem 2 Iff $\in S_{p}^{s, b}(\eta)(0 \leq \eta<1)$, then

$$
\operatorname{Re}\left\{(1-\alpha) \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}}\right\}>\eta \quad(|z|<R),
$$

where

$$
\begin{equation*}
R=\left\{\frac{\sqrt{(p-1)^{2}+(m \alpha)^{2}}-m \alpha}{p-1}\right\}^{\frac{1}{m}} \tag{3.7}
\end{equation*}
$$

The result is best possible.

Proof Let $f \in S_{p}^{s, b}(\eta)$, then we write

$$
\begin{equation*}
\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}=\eta+(1-\eta) u(z) \quad(z \in U), \tag{3.8}
\end{equation*}
$$

where u is of the form (2.1), is analytic in U and has a positive real part in U. Differentiating (3.8) with respect to z, we have

$$
\begin{equation*}
\frac{1}{1-\eta}\left\{(1-\alpha) \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}}-\eta\right\}=u(z)+\frac{\alpha}{p-1} z u^{\prime}(z) . \tag{3.9}
\end{equation*}
$$

Applying the following well-known estimate [12]:

$$
\frac{\left|z u^{\prime}(z)\right|}{\operatorname{Re}\{u(z)\}} \leq \frac{2 m r^{m}}{1-r^{2 m}} \quad(|z|=r<1)
$$

in (3.9), we have

$$
\begin{align*}
& \frac{1}{1-\eta} \operatorname{Re}\left\{(1-\alpha) \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}}-\eta\right\} \tag{3.10}\\
& \geq \operatorname{Re}\{u(z)\}\left(1-\frac{2 \alpha m r^{m}}{(p-1)\left[1-r^{2 m}\right]}\right),
\end{align*}
$$

such that the right-hand side of (3.10) is positive, if $r<R$, where R is given by (3.7).
In order to show that the bound R is best possible, we consider the function $f \in A(p)$ defined by

$$
\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}=\eta+(1-\eta) \frac{1+z^{m}}{1-z^{m}} \quad(0 \leq \eta<1 ; z \in U)
$$

Note that

$$
\frac{1}{1-\eta}\left\{(1-\alpha) \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}}-\eta\right\}=\frac{(p-1)\left(1-z^{2 m}\right)-2 \alpha m z^{m}}{(p-1)\left(1-z^{m}\right)^{2}}=0
$$

For a function $f \in A(p)$, the generalized Bernardi-Libera-Livingston integral operator $F_{\mu, p}$ is defined by

$$
\begin{align*}
F_{\mu, p}(f)(z) & =\frac{\mu+p}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t=\left(z^{p}+\sum_{k=1}^{\infty} \frac{\mu+p}{\mu+p+k} z^{k+p}\right) * f(z) \tag{3.11}\\
& =z^{p}{ }_{2} F_{1}(1, \mu+p ; \mu+p+1 ; z) * f(z) \quad(\mu>-p ; z \in U) .
\end{align*}
$$

From (1.8) and (3.11), we have

$$
\begin{equation*}
z\left(J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z))\right)^{\prime}=(\mu+p) J_{p, s, b}(f)(z)-\mu J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z)) \quad(\mu>-p ; z \in U) \tag{3.12}
\end{equation*}
$$

and

$$
J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z))=\mathrm{F}_{\mu, p}\left(J_{p, s, b}(f)(z)\right) .
$$

Theorem 3 Let $f \in S_{p}^{s, b}(A, B)$ and $F_{\mu, p}$ be defined by (3.11). Then

$$
\begin{equation*}
\frac{\left(J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z))\right)^{\prime}}{p z^{p-1}} \prec \Phi(z) \prec \frac{1+A z}{1+B z} \tag{3.13}
\end{equation*}
$$

where

$$
\Phi(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\mu+p}{m}+1 ; \frac{B z}{1+B z}\right) & \text { for } B \neq 0 \tag{3.14}\\ 1+\frac{\mu+p}{\mu+p+m} A z & \text { for } B=0\end{cases}
$$

is the best dominant of (3.13). Furthermore,

$$
\operatorname{Re}\left\{\frac{\left(J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z))\right)^{\prime}}{p z^{p-1}}\right\}>\psi \quad(z \in U)
$$

where

$$
\psi= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\mu+p}{m}+1 ; \frac{B}{B-1}\right) & \text { for } B \neq 0, \\ 1-\frac{\mu+p}{\mu+p+m} A & \text { for } B=0\end{cases}
$$

The result is best possible.

Proof Let

$$
\begin{equation*}
K(z)=\frac{\left(J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z))\right)^{\prime}}{p z^{p-1}} \quad(z \in U), \tag{3.15}
\end{equation*}
$$

where K is of the form (2.1) and is analytic in U. Using (3.12) in (3.15) and differentiating the resulting equation with respect to z, we have

$$
\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}=K(z)+\frac{z K^{\prime}(z)}{p+\mu} \prec \frac{1+A z}{1+B z} .
$$

The remaining part of the proof is similar to that of Theorem 1, and so we omit it.

We note that

$$
\begin{equation*}
\frac{\left(J_{p, s, b} \mathrm{~F}_{\mu, p}(f(z))\right)^{\prime}}{p z^{p-1}}=\frac{p+\mu}{p z^{p+\mu}} \int_{0}^{z} t^{\mu}\left(J_{p, s, b}(f)(t)\right)^{\prime} d t \quad(f \in A(p) ; z \in U) . \tag{3.16}
\end{equation*}
$$

Putting $A=1-\frac{2 \delta}{p}(0 \leq \delta<1)$ and $B=-1$ in Theorem 3 and using (3.16), we obtain the following corollary.

Corollary 1 Iff $\in A(p)$ satisfies the following inequality:

$$
\operatorname{Re}\left\{\frac{\left(J_{p, s, b} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\delta \quad(0 \leq \delta<1 ; z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{p+\mu}{p z^{p+\mu}} \int_{0}^{z} t^{\mu}\left(J_{p, s, b}(f)(t)\right)^{\prime} d t\right\}>\frac{\delta}{p}+\left(1-\frac{\delta}{p}\right)\left[{ }_{2} F_{1}\left(1,1 ; \frac{\mu+p}{m}+1 ; \frac{1}{2}\right)-1\right] \quad(z \in U) .
$$

The result is best possible.

Theorem 4 Let $f, g \in A(p)$ satisfy the following inequality:

$$
\operatorname{Re}\left\{\frac{J_{p, s, b}(g)(z)}{z^{p}}\right\}>0 \quad(z \in U)
$$

If

$$
\left|\frac{J_{p, s, b}(f)(z)}{J_{p, s, b}(g)(z)}-1\right|<1 \quad(z \in U),
$$

then

$$
\operatorname{Re}\left\{\frac{z\left(J_{p, s, b}(f)(z)\right)^{\prime}}{J_{p, s, b}(f)(z)}\right\}>0 \quad(|z|<\stackrel{\circ}{R})
$$

where

$$
\begin{equation*}
\stackrel{\circ}{R}=\left(\frac{-3 m+\sqrt{9 m^{2}+4 p(p+m)}}{2(p+m)}\right)^{\frac{1}{m}} . \tag{3.17}
\end{equation*}
$$

Proof Let

$$
\begin{equation*}
q(z)=\frac{J_{p, s, b}(f)(z)}{J_{p, s, b}(g)(z)}-1=c_{m} z^{m}+c_{m+1} z^{m+1}+\cdots, \tag{3.18}
\end{equation*}
$$

where $q(z)$ is analytic in U with $q(0)=0$ and $|q(z)| \leq|z|^{m}$. Then, by applying the familiar Schwartz Lemma [15], we have $q(z)=z^{m} \mathcal{X}(z)$, where \mathcal{X} is analytic in U and $|\mathcal{X}(z)| \leq 1$. Therefore (3.18) leads to

$$
\begin{equation*}
J_{p, s, b}(f)(z)=J_{p, s, b}(g)(z)\left(1+z^{m} \mathcal{X}(z)\right) \quad(z \in U) \tag{3.19}
\end{equation*}
$$

Differentiating (3.19) logarithmically with respect to z, we have

$$
\begin{equation*}
\frac{z\left(J_{p, s, b}(f)(z)\right)^{\prime}}{J_{p, s, b}(f)(z)}=\frac{z\left(J_{p, s, b}(g)(z)\right)^{\prime}}{J_{p, s, b}(g)(z)}+\frac{z^{m}\left\{m \mathcal{X}(z)+z \mathcal{X}^{\prime}(z)\right\}}{1+z^{m} \mathcal{X}(z)} \tag{3.20}
\end{equation*}
$$

Letting

$$
\omega(z)=\frac{J_{p, s, b}(g)(z)}{z^{p}} \quad(z \in U)
$$

where ω is in the form (2.1), is analytic in $U, \operatorname{Re}\{\omega(z)\}>0$ and

$$
\frac{z\left(J_{p, s, b}(g)(z)\right)^{\prime}}{J_{p, s, b}(g)(z)}=\frac{z \omega^{\prime}(z)}{\omega(z)}+p
$$

then we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(J_{p, s, b}(f)(z)\right)^{\prime}}{J_{p, s, b}(f)(z)}\right\} \geq p-\left|\frac{z \omega^{\prime}(z)}{\omega(z)}\right|-\left|\frac{z^{m}\left\{m \mathcal{X}(z)+z \mathcal{X}^{\prime}(z)\right\}}{1+z^{m} \mathcal{X}(z)}\right| \tag{3.21}
\end{equation*}
$$

Using the following known estimates [12] (see also [15]):

$$
\left|\frac{\omega^{\prime}(z)}{\omega(z)}\right| \leq \frac{2 m r^{m-1}}{1-r^{2 m}} \quad \text { and } \quad\left|\frac{m \mathcal{X}(z)+z \mathcal{X}^{\prime}(z)}{1+z^{m} \mathcal{X}(z)}\right| \leq \frac{m}{1-r^{m}} \quad(|z|=r<1)
$$

in (3.21), we have

$$
\operatorname{Re}\left\{\frac{z\left(J_{p, s, b}(f)(z)\right)^{\prime}}{J_{p, s, b}(f)(z)}\right\} \geq \frac{p-3 m r^{m}-(p+m) r^{2 m}}{1-r^{2 m}} \quad(|z|=r<1)
$$

which is certainly positive, provided that $r<\stackrel{\circ}{R}$, where $\stackrel{\circ}{R}$ is given by (3.17). This completes the proof of Theorem 4.

Theorem 5 Let $-1 \leq B_{i}<A_{i} \leq 1(i=1,2)$ and $\tau<p$. If each of the functions $f_{i} \in A(p)$ satisfies the following subordination condition:

$$
\begin{equation*}
(1-\alpha) \frac{\left(J_{p, s, b}\left(f_{i}\right)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}\left(f_{i}\right)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}} \prec \frac{1+A_{i} z}{1+B_{i} z} \quad(i=1,2), \tag{3.22}
\end{equation*}
$$

then

$$
\begin{equation*}
(1-\alpha) \frac{\left(J_{p, s, b}(F)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(F)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}} \prec \frac{1+\left(1-\frac{2 \tau}{p}\right) z}{1-z}, \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)=J_{p, s, b}\left(f_{1} * f_{2}\right)(z) \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=p-4 p \frac{\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{\alpha}+1 ; \frac{1}{2}\right)\right] . \tag{3.25}
\end{equation*}
$$

The result is best possible when $B_{1}=B_{2}=-1$.

Proof Suppose that the functions $f_{i} \in A(p)(i=1,2)$ satisfy the condition (3.22). Then by setting

$$
\begin{equation*}
h_{i}(z)=(1-\alpha) \frac{\left(J_{p, s, b}\left(f_{i}\right)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}\left(f_{i}\right)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}} \quad(i=1,2), \tag{3.26}
\end{equation*}
$$

we have

$$
h_{i} \in H\left(\varrho_{i}\right), \quad \varrho_{i}=\frac{1-A_{\mathbf{i}}}{1-B_{\mathbf{i}}}(i=1,2) .
$$

And

$$
\begin{equation*}
\left(J_{p, s, b}\left(f_{\mathbf{i}}\right)(z)\right)^{\prime}=\frac{p(p-1)}{\alpha} z^{\frac{(1-p)(1-\alpha)}{\alpha}} \int_{0}^{z} t^{\frac{p-1}{\alpha}-1} h_{i}(t) d t \quad(i=1,2), \tag{3.27}
\end{equation*}
$$

from (3.24), (3.26) and (3.27), we have

$$
\begin{equation*}
\left(J_{p, s, b}(F)(z)\right)^{\prime}=\frac{p(p-1)}{\alpha} \mathbf{z}^{\frac{(1-p)(1-\alpha)}{\alpha}} \int_{0}^{z} t^{\frac{p-1}{\alpha}-1} H(t) d t \quad(i=1,2) . \tag{3.28}
\end{equation*}
$$

For convenience,

$$
\begin{align*}
H(z) & =(1-\alpha) \frac{\left(J_{p, s, b}(F)(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(J_{p, s, b}(F)(z)\right)^{\prime \prime}}{p(p-1) z^{p-2}} \tag{3.29}\\
& =\frac{p(p-1)}{\alpha} z^{\frac{(1-p)}{\alpha}} \int_{0}^{z} t^{\frac{p-1}{\alpha}-1}\left(h_{1} * h_{2}\right)(t) d t .
\end{align*}
$$

Since $h_{i} \in H\left(\varrho_{i}\right)(i=1,2)$, it follows from Lemma 3 that

$$
\begin{equation*}
\left(h_{1} * h_{2}\right)(z) \in H\left(\varrho_{3}\right), \quad \varrho_{3}=1-2\left(1-\varrho_{1}\right)\left(1-\varrho_{2}\right) . \tag{3.30}
\end{equation*}
$$

By using (3.30) in (3.29) and applying Lemmas 2 and 3, we have

$$
\begin{aligned}
\operatorname{Re}\{H(z)\} & =\frac{p(p-1)}{\alpha} \int_{0}^{1} s^{\frac{p-1}{\alpha}-1} \operatorname{Re}\left\{\left(h_{1} * h_{2}\right)(s z)\right\} d s \\
& \geq \frac{p(p-1)}{\alpha} \int_{0}^{1} s^{\frac{p-1}{\alpha}-1}\left(2 \varrho_{3}-1+\frac{2\left(1-\varrho_{3}\right)}{1+s|z|}\right) d s \\
& >\frac{p(p-1)}{\alpha} \int_{0}^{1} s^{\frac{p-1}{\alpha}-1}\left(2 \varrho_{3}-1+\frac{2\left(1-\varrho_{3}\right)}{1+s}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& =p-4 p \frac{\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{p-1}{\alpha} \int_{0}^{1} s^{\frac{p-1}{\alpha}-1}(1+s)^{-1} d s\right] \\
& =p-4 p \frac{\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{\alpha}+1 ; \frac{1}{2}\right)\right] \quad(\mathbf{z} \rightarrow-\mathbf{1}) \\
& =\tau \quad(z \in U) .
\end{aligned}
$$

When $B_{1}=B_{2}=-1$, we consider $f_{i} \in A(p)(i=1,2)$ satisfy the condition (3.22) and are defined by

$$
\left(J_{p, s, b}\left(f_{i}\right)(z)\right)^{\prime}=\frac{p(p-1)}{\alpha} z^{\frac{(1-p)(1-\alpha)}{\alpha}} \int_{0}^{z} t^{\frac{p-1}{\alpha}-1}\left(\frac{1+A_{i} t}{1-t}\right) d t \quad(i=1,2) .
$$

By using (3.29) and applying Lemma 3, we have

$$
\begin{aligned}
H(z) & =\frac{p(p-1)}{\alpha} \int_{0}^{1} s^{\frac{p-1}{\alpha}-1}\left[1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\frac{\left(1+A_{1}\right)\left(1+A_{2}\right)}{1-s z}\right] d s \\
& =p-p\left(1+A_{1}\right)\left(1+A_{2}\right)+p\left(1+A_{1}\right)\left(1+A_{2}\right)(1-z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{\alpha}+1 ; \frac{z}{z-1}\right) \\
& \rightarrow p-p\left(1+A_{1}\right)\left(1+A_{2}\right)+\frac{p}{2}\left(1+A_{1}\right)\left(1+A_{2}\right)_{2} F_{1}\left(1,1 ; \frac{p-1}{\alpha}+1 ; \frac{1}{2}\right) \quad(z \rightarrow-1) .
\end{aligned}
$$

This completes the proof of Theorem 5.
Remark 1 Putting $A_{i}=1-2 \theta_{i}\left(0 \leq \theta_{i}<1\right)$ and $B_{i}=-1(i=1,2)$ in Theorem 5, we obtain the result obtained by Liu [10, Theorem 5].

Putting $A_{i}=1-2 \theta_{i}\left(0 \leq \theta_{i}<1\right), B_{i}=-1(i=1,2)$ and $s=0$ in Theorem 5, we obtain the following corollary.

Corollary 2 Let $\chi<p$ and $f_{i} \in A(p)$ satisfy the following inequality:

$$
\operatorname{Re}\left\{(1-\alpha) \frac{f_{i}^{\prime}(z)}{p z^{p-1}}+\alpha \frac{f_{i}^{\prime \prime}(z)}{p(p-1) z^{p-2}}\right\}>\theta_{i} \quad\left(0 \leq \theta_{i}<1 ; i=1,2\right)
$$

then

$$
\operatorname{Re}\left\{(1-\alpha) \frac{\left(f_{1} * f_{2}\right)^{\prime}(z)}{p z^{p-1}}+\alpha \frac{\left(f_{1} * f_{2}\right)^{\prime \prime}(z)}{p(p-1) z^{p-2}}\right\}>\frac{\chi}{p},
$$

where

$$
\chi=p-4 p\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{p-1}{\alpha}+1 ; \frac{1}{2}\right)\right] .
$$

The result is best possible.

Theorem 6 Let $f \in S_{p}^{s, b}(A, B)$ and $g \in A(p)$ satisfy the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{g(z)}{z^{p}}\right\}>\frac{1}{2} \quad(z \in U) \tag{3.31}
\end{equation*}
$$

then

$$
(f * g)(z) \in S_{p}^{s, b}(A, B)
$$

Proof We have

$$
\frac{\left(J_{p, s, b}(f * g)(z)\right)^{\prime}}{p z^{p-1}}=\frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}} * \frac{g(z)}{z^{p}} \quad(z \in U)
$$

where $g(z)$ satisfies (3.31) and $\frac{1+A z}{1+B z}$ is convex (univalent) in U. By using (1.10) and applying Lemma 5, we complete the proof of Theorem 6.

Theorem 7 Let $\sigma>0$ and $f \in A(p)$ satisfy the following subordination condition:

$$
\begin{equation*}
(1-\alpha) \frac{J_{p, s, b}(f)(z)}{z^{p}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}} \prec \frac{1+A z}{1+B z} . \tag{3.32}
\end{equation*}
$$

Then

$$
\operatorname{Re}\left\{\frac{J_{p, s, b}(f)(z)}{z^{p}}\right\}^{\frac{1}{\sigma}}>\gamma^{\frac{1}{\sigma}},
$$

where

$$
\gamma= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p}{m \alpha}+1 ; \frac{B}{B-1}\right) & \text { for } B \neq 0 \\ 1-\frac{p}{m \alpha+p} A & \text { for } B=0\end{cases}
$$

The result is best possible.

Proof Let

$$
\begin{equation*}
M(z)=\frac{J_{p, s, b}(f)(z)}{z^{p}} \quad(z \in U), \tag{3.33}
\end{equation*}
$$

where M is of the form (2.1) and is analytic in U. Differentiating (3.33) with respect to z, we have

$$
(1-\alpha) \frac{J_{p, s, b}(f)(z)}{z^{p}}+\alpha \frac{\left(J_{p, s, b}(f)(z)\right)^{\prime}}{p z^{p-1}}=M(z)+\frac{\alpha}{p} z M^{\prime}(z) \prec \frac{1+A z}{1+B z} .
$$

Now, by following steps similar to the proof of Theorem 1 and using the elementary inequality

$$
\operatorname{Re}\left\{\Upsilon^{1 / \varkappa}\right\} \geq\{\operatorname{Re} \Upsilon\}^{1 / \varkappa} \quad(\operatorname{Re}\{\Upsilon\}>0 ; \varkappa \in \mathbb{N})
$$

we obtain the result asserted by Theorem 7 .

Theorem 8 Let $v \in \mathbb{C}^{*}$ and $A, B \in \mathbb{C}$ with $A \neq B$ and $|B| \leq 1$. Suppose that

$$
\begin{aligned}
& \left|\frac{\nu(b+1)(A-B)}{B}-1\right| \leq 1 \quad \text { or } \quad\left|\frac{v(b+1)(A-B)}{B}+1\right| \leq 1, \quad \text { if } B \neq 0, \\
& |(b+1) \nu A| \leq \pi, \quad \text { if } B=0 .
\end{aligned}
$$

Iff $\in A(p)$ with $J_{p, s, b}(f)(z) \neq 0$ for all $z \in U^{*}=U \backslash\{0\}$, then

$$
\frac{J_{p, s-1, b}(f)(z)}{J_{p, s, b}(f)(z)} \prec \frac{1+A z}{1+B z},
$$

implies

$$
\left(\frac{J_{p, s, b}(f)(z)}{z^{p}}\right)^{v} \prec q_{1}(z)
$$

where

$$
q_{1}(z)= \begin{cases}(1+B z)^{\nu(b+1)(A-B) / B}, & \text { if } B \neq 0 \\ e^{v(b+1) A z}, & \text { if } B=0\end{cases}
$$

is the best dominant.

Proof Let us put

$$
\begin{equation*}
\varphi(z)=\left(\frac{J_{p, s, b}(f)(z)}{z^{p}}\right)^{v} \quad(z \in U) \tag{3.34}
\end{equation*}
$$

Then φ is analytic in $U, \varphi(0)=1$ and $\varphi(z) \neq 0$ for all $z \in U$. Taking the logarithmic derivatives in both sides of (3.34) and using the identity (1.9), we have

$$
1+\frac{z \varphi^{\prime}(z)}{v(b+1) \varphi(z)}=\frac{J_{p, s-1, b}(f)(z)}{J_{p, s, b}(f)(z)} \prec \frac{1+A z}{1+B z} .
$$

Now the assertions of Theorem 8 follow by using Lemma 6 for $\gamma=\nu(b+1)$.

Putting $B=-1$ and $A=1-2 \sigma, 0 \leq \sigma<1$, in Theorem 8 , we obtain the following corollary.

Corollary 3 Assume that $v \in \mathbb{C}^{*}$ satisfies either $|2 v(b+1)(1-\sigma)-1| \leq 1$ or $\mid 2 v(b+1)(1-$ $\sigma)+1 \mid \leq 1$. Iff $\in A(p)$ with $J_{p, s, b}(f)(z) \neq 0$ for $z \in U^{*}$, then

$$
\operatorname{Re}\left\{\frac{J_{p, s-1, b}(f)(z)}{J_{p, s, b}(f)(z)}\right\}>\sigma \quad(z \in U)
$$

implies

$$
\left(\frac{J_{p, s, b}(f)(z)}{z^{p}}\right)^{\nu} \prec q_{2}(z)=(1-z)^{-2 v(b+1)(1-\sigma)},
$$

and q_{2} is the best dominant.

Abstract

Remark 2 Specializing the parameters s and b in the above results of this paper, we obtain the results for the corresponding operators $F_{\mu, p}, I_{p}^{\alpha}, J_{p}^{\gamma}$ and $J_{p}^{\gamma}(l)$ which are defined in the introduction.

Competing interests

The authors declare that they have no competing interests.
Authors' contributions
All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the referees of the paper for their helpful suggestions.
Received: 19 December 2011 Accepted: 21 June 2012 Published: 5 July 2012

References

1. Alexander, JW: Functions which map the interior of the unit circle upon simple regions. Ann. Math., Ser. 2 17, 12-22 (1915)
2. Choi, J, Srivastava, HM: Certain families of series associated with the Hurwitz-Lerch Zeta function. Appl. Math. Comput. 170, 399-409 (2005)
3. Choi, JH, Saigo, M, Srivastava, HM: Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 276, 432-445 (2002)
4. El-Ashwah, RM, Aouf, MK: Some properties of new integral operator. Acta Univ. Apulensis, Mat.-Inform. 24, 51-61 (2010)
5. Ferreira, C, Lopez, JL: Asymptotic expansions of the Hurwitz-Lerch Zeta function. J. Math. Anal. Appl. 298, 210-224 (2004)
6. Jung, IB, Kim, YC, Srivastava, HM: The Hardy space of analytic functions associated with certain one parameter families of integral operators. J. Math. Anal. Appl. 176, 138-147 (1993)
7. Libera, RJ: Some classes of regular univalent functions. Proc. Am. Math. Soc. 16, 755-758 (1969)
8. Lin, S-D, Srivastava, HM: Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154, 725-733 (2004)
9. Lin, S-D, Srivastava, HM, Wang, P-Y: Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions. Integral Transforms Spec. Funct. 17, 817-827 (2006)
10. Liu, J-L: Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator. Integral Transforms Spec. Funct. 18, 207-216 (2007)
11. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308, 290-302 (2005)
12. MacGregor, TH: Radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 14, 514-520 (1963)
13. Miller, SS, Mocanu, PT: Differential subordinations and univalent functions. Mich. Math. J. 28, 157-171 (1981)
14. Miller, SS, Mocanu, PT: Differential Subordination. Theory and Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. Marcel Dekker, New York (2000)
15. Nehari, PT: Conformal Mapping. McGraw-Hill, New York (1952)
16. Obradovic, M, Owa, S: On certain properties for some classes of starlike functions. J. Math. Anal. Appl. 145, 357-364 (1990)
17. Pashkouleva, DZ: The starlikeness and spiral-convexity of certain subclasses of analytic functions. In: Srivastava, HM, Owa, S (eds.) Current Topics in Analytic Function Theory, pp. 266-273. World Scientific, Singapore (1992)
18. Shams, S, Kulkarni, SR, Jahangiri, JM: Subordination properties of p-valent functions defined by integral operators. Int. J. Math. Math. Sci. 2006, Art. ID 94572 (2006)
19. Singh, R, Singh, S: Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 106, 145-152 (1989)
20. Srivastava, HM, Attiya, AA: An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transforms Spec. Funct. 18, 207-216 (2007)
21. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)
22. Stankiewicz, J, Stankiewicz, Z: Some applications of Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie-Sk̄̄odowska, Sect. A 40, 251-265 (1986)
23. Whittaker, ET, Watson, GN: A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1927)
24. Wilken, DR, Feng, J: A remark on convex and starlike functions. J. Lond. Math. Soc., Ser. 2 21, 287-290 (1980)

doi:10.1186/1029-242X-2012-153

Cite this article as: Aouf et al.: Applications of differential subordinations for certain classes of p-valent functions associated with generalized Srivastava-Attiya operator. Journal of Inequalities and Applications 2012 2012:153.

[^0]: © 2012 Aouf et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

