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1 Introduction
Let A(p) be the class of functions which are analytic and p-valent in the unit disc U = {z ∈
C : |z| < } of the form

f (z) = zp +
∞∑
k=

ak+pzk+p
(
p ∈N = {, , . . .}). (.)

Let also A() = A. For g(z) ∈ A(p), given by g(z) = zp +
∑∞

k= bk+pzk+p, the Hadamard prod-
uct (or convolution) of f (z) and g(z) is defined by

(f ∗ g)(z) = zp +
∞∑
k=

ak+pbk+pzk+p = (g ∗ f )(z). (.)

Next, in the usual notation, let �(z, s,a) denote the Hurwitz-Lerch Zeta function defined
as follows:

�(z, s,a) =
∞∑
k=

zk

(k + a)s

(
a ∈C\Z–

 = {,–,–, . . .}; s ∈C when |z| < ;Re{s} >  when |z| = 
)
.

(.)

For further interesting properties and characteristics of the Hurwitz-Lerch Zeta func-
tion �(z, s,a) see [, , , , ], and [].
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Recently, Srivastava and Attiya [] have introduced the linear operator Ls,b : A → A,
defined in terms of the Hadamard product by

Ls,b(f )(z) =Gs,b(z) ∗ f (z)
(
z ∈ U ;b ∈C\Z–

; s ∈ C
)
, (.)

where

Gs,b = ( + b)s
[
�(z, s,b) – b–s

]
(z ∈U). (.)

The Srivastava-Attiya operator Ls,b contains, among its special cases, the integral opera-
tors introduced and investigated by Alexander [], Libera [] and Jung et al. [].
Analogous to Ls,b, Liu [] defined the operator Jp,s,b : A(p) → A(p) by

Jp,s,b(f )(z) =Gp,s,b(z) ∗ f (z)
(
z ∈U ;b ∈C\Z–

; s ∈C;p ∈N
)
, (.)

where

Gp,s,b = ( + b)s
[
�p(z, s,b) – b–s

]
and

�p(z, s,b) =

bs

+
∞∑
k=

zk+p

(k +  + b)s
. (.)

It is easy to observe from (.) and (.) that

Jp,s,b(f )(z) = zp +
∞∑
k=

(
 + b

k +  + b

)s

ak+pzk+p. (.)

We note that
(i) Jp,,b(f )(z) = f (z);
(ii) J,,(f )(z) = Lf (z) =

∫ z


f (t)
t dt (f ∈ A), where the operator L was introduced by

Alexander [];
(iii) J,s,b(f )(z) = Ls,bf (z) (s ∈ C, b ∈C\Z–

 ), where the operator Ls,b was introduced by
Srivastava-Attiya [];

(iv) Jp,,μ+p–(f )(z) = Fμ,p(f )(z) (μ > –p, p ∈N), where the operator Fμ,p was introduced
by Choi et al. [];

(v) Jp,α,p(f )(z) = Iαp f (z) (α > , p ∈N), where the operator Iαp was introduced by Shams
et al. [];

(vi) Jp,γ ,p–(f )(z) = Jγp f (z) (γ ∈N =N∪ {}, p ∈ N), where the operator Jγp was
introduced by El-Ashwah and Aouf [];

(vii) Jp,γ ,p+l–(f )(z) = Jγp (l)f (z) (γ ∈ N, p ∈N, l ≥ ), where the operator Jγp (l) was
introduced by El-Ashwah and Aouf [].

It follows from (.) that

z
(
Jp,s,b(f )(z)

)′ = (b + )Jp,s–,b(f )(z) – (b +  – p)Jp,s,b(f )(z). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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For two analytic functions f , g ∈ A(p), we say that f is subordinate to g , written f (z) ≺ g(z)
if there exists a Schwarz function w(z), which (by definition) is analytic inU with w() = 
and |w(z)| <  for all z ∈ U , such that f (z) = g(w(z)), z ∈ U . Furthermore, if the function
g(z) is univalent in U , then we have the following equivalence (see []):

f (z) ≺ g(z) ⇔ f () = g() and f (U)⊂ g(U).

Definition  For fixed parameters A and B, with – ≤ B < A≤ , we say that f ∈ A(p) is in
the class Ss,bp (A,B) if it satisfies the following subordination condition:

(Jp,s,b(f )(z))′

pzp–
≺  +Az

 + Bz
(p ∈N). (.)

In view of the definition of subordination (.) is equivalent to the following condition:

∣∣∣∣
(Jp,s,b(f )(z))′

pzp– – 

B (Jp,s,b(f )(z))′
pzp– –A

∣∣∣∣ <  (z ∈ U).

For convenience, wewrite Ss,bp (– η
p , –) = Ss,bp (η), where Ss,bp (η) denotes the class of func-

tions in A(p) satisfying the inequality

Re

(
(Jp,s,b(f )(z))′

pzp–

)
> η (≤ η < ;p ∈N; z ∈U).

In the present paper, we investigate some inclusion relations and other interesting prop-
erties for certain classes of p-valent functions involving an integral operator.

2 Preliminaries
To establish our main results, we need the following lemmas.

Lemma  ([, ]) Let h be analytic and convex (univalent) in U with h() = . Suppose
also that the function ϕ given by

ϕ(z) =  + cmzm + cm+zm+ + · · · , (.)

is analytic in U, where m is a positive integer. If

ϕ(z) +
zϕ′(z)

�
≺ h(z)

(
Re{�} ≥ ;� = 

)
, (.)

then

ϕ(z) ≺ ψ(z) =
�

m
z–

�
m

∫ z


t

�
m–h(t)dt ≺ h(z) (.)

and ψ(z) is the best dominant of (.).

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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We denote by H(�) the class of functions �(z) given by

�(z) =  + cz + cz + · · · , (.)

which are analytic in U and satisfy the following inequality:

Re
{
�(z)

}
> � ( ≤ � < ; z ∈ U).

Lemma  ([]) Let the function �(z) ∈H(�), where �(z) given by (.). Then

Re
{
�(�)

} ≥ � –  +
( – �)
 + |z| ( ≤ � < ; z ∈U).

Lemma  ([]) For  ≤ �, � < ,

H(�) ∗H(�) ⊂H(�), � =  – ( – �)( – �).

The result is best possible.

Lemma  ([]) Let μ be a positive measure on the unit interval [, ]. Let g(z, t) be a
complex valued function defined on U × [, ] such that g(, t) is analytic in U for each
t ∈ [, ] and such that g(z, ) is μ integrable on [, ] for all z ∈ U. In addition, suppose
that Re{g(z, t)} > , g(–r, t) is real and

Re

{


g(z, t)

}
≥ 

g(–r, t)
(|z| ≤ r < ; t ∈ [, ]

)
.

If G is defined by

G(z) =
∫ 


g(z, t)dμ(t),

then

Re

{


G(z)

}
≥ 

G(–r)
(|z| ≤ r < 

)
.

Lemma  ([]) Let the function g be analytic in U with g() =  and Re{g(z)} > 
 (z ∈U).

Then, for any function F analytic in U, (g ∗ F)(U) is contained in the convex hull of F(U).

Lemma  ([]) Let ϕ be analytic in U with ϕ() =  and ϕ(z) = for  < |z| <  and let
A,B ∈C with A = B, |B| ≤ .

(i) Let B =  and γ ∈C∗ =C\{} satisfy either | γ (A–B)
B – | ≤  or | γ (A–B)

B + | ≤ . If ϕ
satisfies

 +
zϕ′(z)
γ ϕ(z)

≺  +Az
 + Bz

, (.)

then

ϕ(z) ≺ ( + Bz)γ (
A–B
B ),

and this is best dominant.
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(ii) Let B =  and γ ∈C∗ be such that |γA| < π . If ϕ satisfies (.), then

ϕ(z) ≺ eγAz

and this is the best dominant.

For real or complex numbers a, n and c (c /∈ Z–
) and z ∈U , the Gaussian hypergeometric

function defined by

F(a,n; c; z) =  +
an
c

· z
!
+
a(a + )n(n + )

c(c + )
· z



!
+ · · ·

=
∞∑
k=

(a)k(n)k
(c)k

zk

k!
,

(.)

where (d)k = d(d + ) · · · (d + k – ) and (d) = . We note that the series defined by (.)
converges absolutely for z ∈ U , and hence, F represents an analytic function in U (see,
for details, [, Ch.]).

Lemma  ([]) For real or complex numbers a, n and c (c /∈ Z–
 )

∫ 


tn–( – t)c–n–( – tz)–a dt =


(n)
(c – n)

(c) F(a,n; c; z)

(
Re{n},Re{c} > 

)
, (.)

F(a,n; c; z) = ( – z)–aF
(
a, c – n; c;

z
z – 

)
(.)

and

F(a,n; c; z) = F(n,a; c; z). (.)

3 Main results
Unless otherwise mentioned, we assume throughout this paper that – ≤ B < A≤ , s ∈C,
b ∈ C\Z–

 , p ∈ N\{},  < α ≤ , m is a positive integer and the powers are understood as
principle values.

Theorem  Let f given by (.) satisfy the following subordination condition:

( – α)
(Jp,s,b(f )(z))′

pzp–
+ α

(Jp,s,b(f )(z))′′

p(p – )zp–
≺  +Az

 + Bz
. (.)

Then

(Jp,s,b(f )(z))′

pzp–
≺ �(z) ≺  +Az

 + Bz
, (.)

where

�(z) =

⎧⎪⎪⎨
⎪⎪⎩
A
B
+

(
 –

A
B

)
( + Bz)–F

(
, ;

p – 
mα

+ ;
Bz

 + Bz

)
for B = ,

 +
p – 

mα + p – 
Az for B = ,

(.)
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is the best dominant of (.). Furthermore,

f ∈ Ss,bp (β), (.)

where

β =

⎧⎪⎪⎨
⎪⎪⎩
A
B
+

(
 –

A
B

)
( – B)–F

(
, ;

p – 
mα

+ ;
B

B – 

)
for B = ,

 –
p – 

mα + p – 
A for B = .

(.)

The estimate (.) is best possible.

Proof Let

θ (z) =
(Jp,s,b(f )(z))′

pzp–
(z ∈U), (.)

where θ is of the form (.) and is analytic in U . Differentiating (.) with respect to z, we
get

( – α)
(Jp,s,b(f )(z))′

pzp–
+ α

(Jp,s,b(f )(z))′′

p(p – )zp–
= θ (z) +

α

p – 
zθ ′(z) ≺  +Az

 + Bz
.

Applying Lemma  for � = p–
α

and Lemma , we have

(Jp,s,b(f )(z))′

pzp–
≺ �(z) =

p – 
mα

z–
p–
mα

∫ z


t
p–
mα –

(
 +At
 + Bt

)
dt

=

⎧⎪⎪⎨
⎪⎪⎩
A
B
+

(
 –

A
B

)
( + Bz)–F

(
, ;

p – 
mα

+ ;
Bz

 + Bz

)
for B = ,

 +
p – 

mα + p – 
Az for B = .

This proves the assertion (.) of Theorem . Next, in order to prove the assertion (.) of
Theorem , it suffices to show that

inf|z|<
{
Re

(
�(z)

)}
= �(–).

Indeed, we have

Re

{
 +Az
 + Bz

}
≥  –Ar

 – Br
(|z| ≤ r < 

)
.

Setting

G(z, ζ ) =
 +Aζ z
 + Bζ z

and dν(ζ ) =
p – 
mα

ζ
p–
mα – dζ ( ≤ ζ ≤ ),

which is a positive measure on the closed interval [, ], we get

�(z) =
∫ 


G(z, ζ )dν(ζ ).

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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Then

Re
{
�(z)

} ≥
∫ 



 –Aζ r
 – Bζ r

dν(ζ ) = �(–r)
(|z| ≤ r < 

)
.

Letting r → – in the above inequality, we obtain the assertion (.). Finally, the estimate
(.) is best possible as � is the best dominant of (.). This completes the proof of The-
orem . �

Theorem  If f ∈ Ss,bp (η) ( ≤ η < ), then

Re

{
( – α)

(Jp,s,b(f )(z))′

pzp–
+ α

(Jp,s,b(f )(z))′′

p(p – )zp–

}
> η

(|z| < R
)
,

where

R =
{√

(p – ) + (mα) –mα

p – 

} 
m
. (.)

The result is best possible.

Proof Let f ∈ Ss,bp (η), then we write

(Jp,s,b(f )(z))′

pzp–
= η + ( – η)u(z) (z ∈ U), (.)

where u is of the form (.), is analytic inU and has a positive real part inU . Differentiating
(.) with respect to z, we have


 – η

{
( – α)

(Jp,s,b(f )(z))′

pzp–
+ α

(Jp,s,b(f )(z))′′

p(p – )zp–
– η

}
= u(z) +

α

p – 
zu′(z). (.)

Applying the following well-known estimate []:

|zu′(z)|
Re{u(z)} ≤ mrm

 – rm
(|z| = r < 

)
,

in (.), we have


 – η

Re

{
( – α)

(Jp,s,b(f )(z))′

pzp–
+ α

(Jp,s,b(f )(z))′′

p(p – )zp–
– η

}

≥ Re
{
u(z)

}(
 –

αmrm

(p – )[ – rm]

)
,

(.)

such that the right-hand side of (.) is positive, if r < R, where R is given by (.).
In order to show that the bound R is best possible, we consider the function f ∈ A(p)

defined by

(Jp,s,b(f )(z))′

pzp–
= η + ( – η)

 + zm

 – zm
( ≤ η < ; z ∈U).

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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Note that


 – η

{
( – α)

(Jp,s,b(f )(z))′

pzp–
+ α

(Jp,s,b(f )(z))′′

p(p – )zp–
– η

}
=
(p – )( – zm) – αmzm

(p – )( – zm)
= ,

for z = R· exp{ iπm }. This completes the proof of Theorem . �

For a function f ∈ A(p), the generalized Bernardi-Libera-Livingston integral operator
Fμ,p is defined by

Fμ,p(f )(z) =
μ + p
zμ

∫ z


tμ–f (t)dt =

(
zp +

∞∑
k=

μ + p
μ + p + k

zk+p
)

∗ f (z)

= zpF(,μ + p;μ + p + ; z) ∗ f (z) (μ > –p; z ∈ U).

(.)

From (.) and (.), we have

z
(
Jp,s,bFμ,p

(
f (z)

))′ = (μ + p)Jp,s,b(f )(z) –μJp,s,bFμ,p
(
f (z)

)
(μ > –p; z ∈U) (.)

and

Jp,s,bFμ,p
(
f (z)

)
= Fμ,p

(
Jp,s,b(f )(z)

)
.

Theorem  Let f ∈ Ss,bp (A,B) and Fμ,p be defined by (.). Then

(Jp,s,bFμ,p(f (z)))′

pzp–
≺ �(z) ≺  +Az

 + Bz
, (.)

where

�(z) =

⎧⎪⎪⎨
⎪⎪⎩
A
B
+

(
 –

A
B

)
( + Bz)–F

(
, ;

μ + p
m

+ ;
Bz

 + Bz

)
for B = ,

 +
μ + p

μ + p +m
Az for B = ,

(.)

is the best dominant of (.). Furthermore,

Re

{
(Jp,s,bFμ,p(f (z)))′

pzp–

}
> ψ (z ∈U),

where

ψ =

⎧⎪⎪⎨
⎪⎪⎩
A
B
+

(
 –

A
B

)
( – B)–F

(
, ;

μ + p
m

+ ;
B

B – 

)
for B = ,

 –
μ + p

μ + p +m
A for B = .

The result is best possible.

Proof Let

K(z) =
(Jp,s,bFμ,p(f (z)))′

pzp–
(z ∈U), (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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where K is of the form (.) and is analytic in U . Using (.) in (.) and differentiating
the resulting equation with respect to z, we have

(Jp,s,b(f )(z))′

pzp–
= K(z) +

zK ′(z)
p +μ

≺  +Az
 + Bz

.

The remaining part of the proof is similar to that of Theorem , and so we omit it. �

We note that

(Jp,s,bFμ,p(f (z)))′

pzp–
=
p +μ

pzp+μ

∫ z


tμ

(
Jp,s,b(f )(t)

)′ dt
(
f ∈ A(p); z ∈ U

)
. (.)

Putting A =  – δ
p ( ≤ δ < ) and B = – in Theorem  and using (.), we obtain the

following corollary.

Corollary  If f ∈ A(p) satisfies the following inequality:

Re

{
(Jp,s,bf (z))′

pzp–

}
> δ ( ≤ δ < ; z ∈ U),

then

Re

{
p +μ

pzp+μ

∫ z


tμ

(
Jp,s,b(f )(t)

)′ dt
}
>

δ

p
+

(
–

δ

p

)[
F

(
, ;

μ + p
m

+;



)
–

]
(z ∈U).

The result is best possible.

Theorem  Let f , g ∈ A(p) satisfy the following inequality:

Re

{
Jp,s,b(g)(z)

zp

}
>  (z ∈U).

If

∣∣∣∣ Jp,s,b(f )(z)Jp,s,b(g)(z)
– 

∣∣∣∣ <  (z ∈ U),

then

Re

{
z(Jp,s,b(f )(z))′

Jp,s,b(f )(z)

}
> 

(|z| < R̊
)
,

where

R̊ =
(
–m +

√
m + p(p +m)
(p +m)

) 
m
. (.)

Proof Let

q(z) =
Jp,s,b(f )(z)
Jp,s,b(g)(z)

–  = cmzm + cm+zm+ + · · · , (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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where q(z) is analytic in U with q() =  and |q(z)| ≤ |z|m. Then, by applying the familiar
Schwartz Lemma [], we have q(z) = zmX (z), where X is analytic in U and |X (z)| ≤ .
Therefore (.) leads to

Jp,s,b(f )(z) = Jp,s,b(g)(z)
(
 + zmX (z)

)
(z ∈U). (.)

Differentiating (.) logarithmically with respect to z, we have

z(Jp,s,b(f )(z))′

Jp,s,b(f )(z)
=
z(Jp,s,b(g)(z))′

Jp,s,b(g)(z)
+
zm{mX (z) + zX ′(z)}

 + zmX (z)
. (.)

Letting

ω(z) =
Jp,s,b(g)(z)

zp
(z ∈ U),

where ω is in the form (.), is analytic in U , Re{ω(z)} >  and

z(Jp,s,b(g)(z))′

Jp,s,b(g)(z)
=
zω′(z)
ω(z)

+ p,

then we have

Re

{
z(Jp,s,b(f )(z))′

Jp,s,b(f )(z)

}
≥ p –

∣∣∣∣zω′(z)
ω(z)

∣∣∣∣ –
∣∣∣∣zm{mX (z) + zX ′(z)}

 + zmX (z)

∣∣∣∣. (.)

Using the following known estimates [] (see also []):

∣∣∣∣ω′(z)
ω(z)

∣∣∣∣ ≤ mrm–

 – rm
and

∣∣∣∣mX (z) + zX ′(z)
 + zmX (z)

∣∣∣∣ ≤ m
 – rm

(|z| = r < 
)
,

in (.), we have

Re

{
z(Jp,s,b(f )(z))′

Jp,s,b(f )(z)

}
≥ p – mrm – (p +m)rm

 – rm
(|z| = r < 

)
,

which is certainly positive, provided that r < R̊, where R̊ is given by (.). This completes
the proof of Theorem . �

Theorem  Let – ≤ Bi < Ai ≤  (i = , ) and τ < p. If each of the functions fi ∈ A(p) satis-
fies the following subordination condition:

( – α)
(Jp,s,b(fi)(z))′

pzp–
+ α

(Jp,s,b(fi)(z))′′

p(p – )zp–
≺  +Aiz

 + Biz
(i = , ), (.)

then

( – α)
(Jp,s,b(F)(z))′

pzp–
+ α

(Jp,s,b(F)(z))′′

p(p – )zp–
≺  + ( – τ

p )z
 – z

, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/153
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where

F(z) = Jp,s,b(f ∗ f)(z) (.)

and

τ = p – p
(A – B)(A – B)
( – B)( – B)

[
 –


F

(
, ;

p – 
α

+ ;



)]
. (.)

The result is best possible when B = B = –.

Proof Suppose that the functions fi ∈ A(p) (i = , ) satisfy the condition (.). Then by
setting

hi(z) = ( – α)
(Jp,s,b(fi)(z))′

pzp–
+ α

(Jp,s,b(fi)(z))′′

p(p – )zp–
(i = , ), (.)

we have

hi ∈H(�i), �i =
 –Ai

 – Bi
(i = , ).

And

(
Jp,s,b(fi)(z)

)′ =
p(p – )

α
z
(–p)(–α)

α

∫ z


t
p–
α –hi(t)dt (i = , ), (.)

from (.), (.) and (.), we have

(
Jp,s,b(F)(z)

)′ =
p(p – )

α
z
(–p)(–α)

α

∫ z


t
p–
α –H(t)dt (i = , ). (.)

For convenience,

H(z) = ( – α)
(Jp,s,b(F)(z))′

pzp–
+ α

(Jp,s,b(F)(z))′′

p(p – )zp–

=
p(p – )

α
z
(–p)

α

∫ z


t
p–
α –(h ∗ h)(t)dt.

(.)

Since hi ∈H(�i) (i = , ), it follows from Lemma  that

(h ∗ h)(z) ∈H(�), � =  – ( – �)( – �). (.)

By using (.) in (.) and applying Lemmas  and , we have

Re
{
H(z)

}
=

p(p – )
α

∫ 


s
p–
α –Re

{
(h ∗ h)(sz)

}
ds

≥ p(p – )
α

∫ 


s
p–
α –

(
� –  +

( – �)
 + s|z|

)
ds

>
p(p – )

α

∫ 


s
p–
α –

(
� –  +

( – �)
 + s

)
ds
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= p – p
(A – B)(A – B)
( – B)( – B)

[
 –

p – 
α

∫ 


s
p–
α –( + s)– ds

]

= p – p
(A – B)(A – B)
( – B)( – B)

[
 –


F

(
, ;

p – 
α

+ ;



)]
(z → –)

= τ (z ∈ U).

When B = B = –, we consider fi ∈ A(p) (i = , ) satisfy the condition (.) and are
defined by

(
Jp,s,b(fi)(z)

)′ =
p(p – )

α
z
(–p)(–α)

α

∫ z


t
p–
α –

(
 +Ait
 – t

)
dt (i = , ).

By using (.) and applying Lemma , we have

H(z) =
p(p – )

α

∫ 


s
p–
α –

[
 – ( +A)( +A) +

( +A)( +A)
 – sz

]
ds

= p – p( +A)( +A) + p( +A)( +A)( – z)–F
(
, ;

p – 
α

+ ;
z

z – 

)

→ p – p( +A)( +A) +
p

( +A)( +A)F

(
, ;

p – 
α

+ ;



)
(z → –).

This completes the proof of Theorem . �

Remark  Putting Ai =  – θi ( ≤ θi < ) and Bi = – (i = , ) in Theorem , we obtain
the result obtained by Liu [, Theorem ].

Putting Ai =  – θi ( ≤ θi < ), Bi = – (i = , ) and s =  in Theorem , we obtain the
following corollary.

Corollary  Let χ < p and fi ∈ A(p) satisfy the following inequality:

Re

{
( – α)

f ′
i (z)
pzp–

+ α
f ′′
i (z)

p(p – )zp–

}
> θi (≤ θi < ; i = , ),

then

Re

{
( – α)

(f ∗ f)′(z)
pzp–

+ α
(f ∗ f)′′(z)
p(p – )zp–

}
>

χ

p
,

where

χ = p – p( – θ)( – θ)
[
 –


F

(
, ;

p – 
α

+ ;



)]
.

The result is best possible.

Theorem  Let f ∈ Ss,bp (A,B) and g ∈ A(p) satisfy the following inequality:

Re

{
g(z)
zp

}
>



(z ∈U), (.)
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then

(f ∗ g)(z) ∈ Ss,bp (A,B).

Proof We have

(Jp,s,b(f ∗ g)(z))′

pzp–
=
(Jp,s,b(f )(z))′

pzp–
∗ g(z)

zp
(z ∈U),

where g(z) satisfies (.) and +Az
+Bz is convex (univalent) in U . By using (.) and applying

Lemma , we complete the proof of Theorem . �

Theorem  Let σ >  and f ∈ A(p) satisfy the following subordination condition:

( – α)
Jp,s,b(f )(z)

zp
+ α

(Jp,s,b(f )(z))′

pzp–
≺  +Az

 + Bz
. (.)

Then

Re

{
Jp,s,b(f )(z)

zp

} 
σ

> γ

σ ,

where

γ =

⎧⎪⎪⎨
⎪⎪⎩
A
B
+

(
 –

A
B

)
( – B)–F

(
, ;

p
mα

+ ;
B

B – 

)
for B = ,

 –
p

mα + p
A for B = .

The result is best possible.

Proof Let

M(z) =
Jp,s,b(f )(z)

zp
(z ∈ U), (.)

where M is of the form (.) and is analytic in U . Differentiating (.) with respect to z,
we have

( – α)
Jp,s,b(f )(z)

zp
+ α

(Jp,s,b(f )(z))′

pzp–
=M(z) +

α

p
zM′(z) ≺  +Az

 + Bz
.

Now, by following steps similar to the proof of Theorem  and using the elementary
inequality

Re
{
ϒ /κ} ≥ {Reϒ}/κ (

Re{ϒ} > ;κ ∈ N
)
,

we obtain the result asserted by Theorem . �
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Theorem  Let ν ∈C∗ and A,B ∈ C with A = B and |B| ≤ . Suppose that

∣∣∣∣ν(b + )(A – B)
B

– 
∣∣∣∣ ≤  or

∣∣∣∣ν(b + )(A – B)
B

+ 
∣∣∣∣ ≤ , if B = ,

∣∣(b + )νA
∣∣ ≤ π , if B = .

If f ∈ A(p) with Jp,s,b(f )(z) =  for all z ∈U∗ =U�{}, then

Jp,s–,b(f )(z)
Jp,s,b(f )(z)

≺  +Az
 + Bz

,

implies

(
Jp,s,b(f )(z)

zp

)ν

≺ q(z),

where

q(z) =

⎧⎨
⎩( + Bz)ν(b+)(A–B)/B, if B = ,

eν(b+)Az, if B = ,

is the best dominant.

Proof Let us put

ϕ(z) =
(
Jp,s,b(f )(z)

zp

)ν

(z ∈U). (.)

Then ϕ is analytic in U , ϕ() =  and ϕ(z) =  for all z ∈U . Taking the logarithmic deriva-
tives in both sides of (.) and using the identity (.), we have

 +
zϕ′(z)

ν(b + )ϕ(z)
=
Jp,s–,b(f )(z)
Jp,s,b(f )(z)

≺  +Az
 + Bz

.

Now the assertions of Theorem  follow by using Lemma  for γ = ν(b + ). �

PuttingB = – andA = –σ ,  ≤ σ < , inTheorem,we obtain the following corollary.

Corollary  Assume that ν ∈ C∗ satisfies either |ν(b + )( – σ ) – | ≤  or |ν(b + )( –
σ ) + | ≤ . If f ∈ A(p) with Jp,s,b(f )(z) =  for z ∈U∗, then

Re

{
Jp,s–,b(f )(z)
Jp,s,b(f )(z)

}
> σ (z ∈U),

implies

(
Jp,s,b(f )(z)

zp

)ν

≺ q(z) = ( – z)–ν(b+)(–σ ),

and q is the best dominant.
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Remark  Specializing the parameters s and b in the above results of this paper, we obtain
the results for the corresponding operators Fμ,p, Iαp , J

γ
p and Jγp (l) which are defined in the

introduction.
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