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Abstract
The aim of this paper is to introduce a new H(·, ·)-η-cocoercive operator and its
resolvent operator. We study some of the properties of H(·, ·)-η-cocoercive operator
and prove the Lipschitz continuity of resolvent operator associated with
H(·, ·)-η-cocoercive operator. Finally, we apply the techniques of resolvent operator to
solve a generalized set-valued variational-like inclusion problem in Banach spaces.
Our results are new and generalize many known results existing in the literature.
Some examples are given in support of definition of H(·, ·)-η-cocoercive operator.
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1 Introduction
Variational inclusion problems are interesting and intensively studied classes of mathe-
matical problems and have wide applications in the field of optimization and control, eco-
nomics and transportation equilibrium, and engineering sciences, etc., see for example
[–]. Several authors used the resolvent operator technique to propose and analyze the
iterative algorithms for computing the approximate solutions of different kinds of varia-
tional inclusions. Fang and Huang [] studied variational inclusions by introducing a class
of generalizedmonotone operators, calledH-monotone operators and defined the associ-
ated resolvent operator. Fang and Huang [] further extended the notion of H-monotone
operators to Banach spaces, called H-accretive operators. Recently, Zou and Huang []
introduced and studied H(·, ·)-accretive operators and apply them to solve a variational
inclusion problem in Banach spaces. After that Xu and Wang [] introduced and stud-
ied (H(·, ·)-η)-monotone operators. Very recently, Ahmad et al. [] introduced H(·, ·)-
cocoercive operators and apply them to solve a set-valued variational inclusion problem
in Hilbert spaces.
By taking into account the fact that η-cocoercivity is an intermediate concept that lies

between η-strongmonotonicity and η-monotonicity, in this paper, we introduceH(·, ·)-η-
cocoercive operator and its resolvent operator.We then apply these new concepts to solve
a generalized set-valued variational-like inclusion problem in Banach spaces.
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2 Preliminaries
Throughout the paper, we assume that X is a real Banach space, X* is the topological dual
space of X, CB(X) is the family of all nonempty closed and bounded subsets of X,D(·, ·) is
the Hausdörff metric on CB(X) defined by

D(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(A, y)
}
,

〈·, ·〉 is the dual pair between X and X*.

Definition . Acontinuous and strictly increasing function ϕ : R+ → R+ such that ϕ() =
 and limt→∞ ϕ(t) = ∞ is called a gauge function.

Definition . Given a gauge function ϕ, the mapping Jϕ : X → X* defined by

Jϕ(x) =
{
u* ∈ X* :

〈
x,u*

〉
= ‖x‖∥∥u*∥∥;∥∥u*∥∥ = ϕ

(‖x‖)}

is called the duality mapping with gauge function ϕ, where X is any normed space.
In particular if ϕ(t) = t, the duality mapping J = Jϕ is called the normalized duality map-

ping.

Lemma . [] Let X be a real Banach space and J : X → X* be the normalized duality
mapping. Then, for any x, y ∈ X,

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
,

for all j(x + y) ∈ J(x + y).

Definition . Let A : X → X and η : X ×X → X be two mappings and let J : X → X* be
the normalized duality mapping. Then A is called

(i) η-cocoercive, if there exists a constant μ >  such that

〈
Ax –Ay, j

(
η(x, y)

)〉 ≥ μ‖Ax –Ay‖, ∀x, y ∈ X, j
(
η(x, y)

) ∈ J
(
η(x, y)

)
;

(ii) η-accretive, if

〈
Ax –Ay, j

(
η(x, y)

)〉 ≥ , ∀x, y ∈ X, j
(
η(x, y)

) ∈ J
(
η(x, y)

)
;

(iii) η-strongly accretive, if there exists a constant β >  such that

〈
Ax –Ay, j

(
η(x, y)

)〉 ≥ β‖x – y‖, ∀x, y ∈ X, j
(
η(x, y)

) ∈ J
(
η(x, y)

)
;

(iv) η-relaxed cocoercive, if there exists a constant γ >  such that

〈
Ax –Ay, j

(
η(x, y)

)〉 ≥ (–γ)‖Ax –Ay‖, ∀x, y ∈ X, j
(
η(x, y)

) ∈ J
(
η(x, y)

)
;

(v) Lipschitz continuous, if there exists a constant λA >  such that

‖Ax –Ay‖ ≤ λA‖x – y‖, ∀x, y ∈ X;
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(vi) α-expansive, if there exists a constant α >  such that

‖Ax –Ay‖ ≥ α‖x – y‖, ∀x, y ∈ X;

(vii) η is said to be Lipschitz continuous, if there exists a constant τ >  such that

∥∥η(x, y)
∥∥ ≤ τ‖x – y‖, ∀x, y ∈ X.

If X = H , a Hilbert space, then definitions (i) to (iv) reduce to the definitions of
η-cocoercive, η-monotone, η-strongly monotone and η-relaxed cocoercive, respectively,
introduced by Ansari and Yao [].
If in addition, η(x, y) = x–y, for all x, y ∈ X, then definitions (i) to (iv) reduce to the defini-

tions of cocoercivity [], monotonicity, strong monotonicity [] and relaxed cocoercive,
respectively.

Definition . Let A,B : X → X, H : X × X → X, η : X × X → X be three single-valued
mappings and J : X → X* be a normalized duality mapping. Then

(i) H(A, ·) is said to be η-cocoercive with respect to A, if there exists a constant μ > 
such that

〈
H(Ax,u) –H(Ay,u), j

(
η(x, y)

)〉 ≥ μ‖Ax –Ay‖,

∀x, y ∈ X , j(η(x, y)) ∈ J(η(x, y));
(ii) H(·,B) is said to be η-relaxed cocoercive with respect to B, if there exists a constant

γ >  such that

〈
H(u,Bx) –H(u,By), j

(
η(x, y)

)〉 ≥ (–γ )‖Bx – By‖,

∀x, y ∈ X , j(η(x, y)) ∈ J(η(x, y));
(iii) H(A, ·) is said to be r-Lipschitz continuous with respect to A, if there exists a

constant r >  such that

∥∥H(Ax,u) –H(Ay,u)
∥∥ ≤ r‖x – y‖, ∀x, y ∈ X;

(iv) H(·,B) is said to be r-Lipschitz continuous with respect to B, if there exists a
constant r >  such that

∥∥H(u,Bx) –H(u,By)
∥∥ ≤ r‖x – y‖, ∀x, y ∈ X.

Definition . A set-valuedmappingM : X → X is said to be η-cocoercive, if there exists
a constant μ >  such that

〈
u – v, j

(
η(x, y)

)〉 ≥ μ‖u – v‖, ∀x, y ∈ X,u ∈Mx, v ∈My, j
(
η(x, y)

) ∈ J
(
η(x, y)

)
.

Definition . A mapping T : X → CB(X) is said to be D-Lipschitz continuous, if there
exists a constant λT >  such that

D(Tx,Ty) ≤ λT‖x – y‖, ∀x, y ∈ X.
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Definition . Let T ,Q : X → CB(X) be the mappings. A mapping N : X ×X → X is said
to be

(i) Lipschitz continuous in the first argument with respect to T , if there exists a
constant t >  such that

∥∥N(w, ·) –N(w, ·)
∥∥ ≤ t‖w –w‖, ∀u,u ∈ X,w ∈ T(u),w ∈ T(u);

(ii) Lipschitz continuous in the second argument with respect to Q, if there exists a
constant t >  such that

∥∥N(·, v) –N(·, v)
∥∥ ≤ t‖v – v‖, ∀u,u ∈ X, v ∈Q(u), v ∈Q(u);

(iii) η-relaxed Lipschitz in the first argument with respect to T , if there exists a constant
τ >  such that

〈
N(w, ·) –N(w, ·), j

(
η(u,u)

)〉 ≤ –τ‖u – u‖,

∀u,u ∈ X , w ∈ T(u), w ∈ T(u), j(η(u,u)) ∈ J(η(u,u));
(iv) η-relaxed Lipschitz in the second argument with respect to Q, if there exists a

constant τ >  such that

〈
N(·, v) –N(·, v), j

(
η(u,u)

)〉 ≤ –τ‖u – u‖,

∀u,u ∈ X , v ∈Q(u), v ∈ Q(u), j(η(u,u)) ∈ J(η(u,u)).

3 H(·, ·)-η-cocoercive operator
In this section, we define a new H(·, ·)-η-cocoercive operator and show some of its prop-
erties.

Definition . Let A,B : X → X, H : X × X → X, η : X × X → X be four single-valued
mappings. Let M : X → X be a set-valued mapping. M is said to be H(·, ·)-η-cocoercive
operator with respect to A and B, if M is η-cocoercive and (H(A,B) + λM)(X) = X, for
every λ > .

Example . Let X =R and A,B :R→ R be defined by

A(x) = x and B(x) = sinx, ∀x ∈R.

Let H(A,B),η :R×R →R be defined by H(Ax,Bx) = A(x) – B(x), ∀x ∈R and

η(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
(x – y), if |xy| < 

 ,

e|xy|(x – y), if 
 ≤ |xy| < 

 ,

(x – y), if 
 ≤ |xy|.

LetM :R → R be a set-valued mapping defined by

M(x) =
{
x,
x

,
x

, . . . ,

x
n

}
, for any fixed natural number n.
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Then
(i) 〈u – v,η(x, y)〉 ≥ n‖u – v‖, ∀x, y ∈R, u ∈M(x), v ∈M(y).
(ii) (H(A,B) + λM)(R) =R.

ThusM is H(·, ·)-η-cocoercive with respect to A and B.

Now, we show that the mapping M need not be H(·, ·)-η-cocoercive with respect to A
and B.
Let X = C[, ] be space of all real valued continuous functions defined over closed in-

terval [, ] with the norm

‖f ‖ = max
t∈[,]

∣∣f (t)∣∣.

Let A,B : X → X be defined by

A(f ) = ef and B(g) = e–g , ∀f , g ∈ X.

Let H(A,B) : X ×X → X be defined as

H
(
A(f ),B(g)

)
= A(f ) + B(g), ∀f , g ∈ X.

Suppose thatM = I , where I is the identity mapping. Then for λ = , we have

∥∥(
H(A,B) +M

)
(f )

∥∥ =
∥∥A(f ) + B(f ) + f

∥∥ = max
t∈[,]

∣∣ef (t) + e–f (t) + f (t)
∣∣ > ,

whichmeans that  /∈ (H(A,B)+M)(X) and thusM is notH(·, ·)-η-cocoercive with respect
to A and B.

Proposition . Let H(A,B) be η-cocoercive with respect to A with constant μ >  and
η-relaxed cocoercive with respect to B with constant γ > , A is α-expansive and B is
β-Lipschitz continuous and μ > γ , α > β . Let M : X → X be H(·, ·)-η-cocoercive opera-
tor. If the following inequality

〈
x – y, j

(
η(u, v)

)〉 ≥ 

holds for all (v, y) ∈Graph(M), j
(
η(u, v)

) ∈ J
(
η(u, v)

)
,

then x ∈Mu, where Graph(M) = {(u,x) ∈ X ×X : x ∈Mu}.

Proof Suppose that there exists some (u,x) such that

〈
x – y, j

(
η(u, v)

)〉 ≥  holds for all (v, y) ∈Graph(M). (.)

SinceM isH(·, ·)-η-cocoercive with respect to A and B, we know that (H(A,B) +λM)(X) =
X holds for every λ >  and so there exists (u,x) ∈Graph(M) such that

H(Au,Bu) + λx =H(Au,Bu) + λx ∈ X. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/149
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It follows from (.) and (.) that

 ≤ 〈
λx +H(Au,Bu) – λx –H(Au,Bu), j

(
η(u,u)

)〉
,

 ≤ λ
〈
x – x, j

(
η(u,u)

)〉
= –

〈
H(Au,Bu) –H(Au,Bu), j

(
η(u,u)

)〉
= –

〈
H(Au,Bu) –H(Au,Bu), j

(
η(u,u)

)〉
–

〈
H(Au,Bu) –H(Au,Bu), j

(
η(u,u)

)〉
≤ –μ‖Au –Au‖ + γ ‖Bu – Bu‖

≤ –μα‖u – u‖ + γβ‖u – u‖

= –
(
μα – γβ)‖u – u‖ ≤ ,

which gives u = u, since μ > γ and α > β . By (.), we have x = x. Hence (u,x) =
(u,x) ∈Graph(M) and so x ∈ Mu. �

Theorem . Let H(A,B) be η-cocoercive with respect to A with constant μ >  and
η-relaxed cocoercive with respect to B with constant γ > , A is α-expansive and B is
β-Lipschitz continuous, μ > γ and α > β . Let M be an H(·, ·)-η-cocoercive operator with
respect to A and B. Then the operator (H(A,B) + λM)– is single-valued.

Proof For any given u ∈ X, let x, y ∈ (H(A,B) + λM)–(u). It follows that

–H(Ax,Bx) + u ∈ λMx and

–H(Ay,By) + u ∈ λMy.

AsM is η-cocoercive (thus η-accretive), we have

 ≤ 〈
–H(Ax,Bx) + u –

(
–H(Ay,By) + u

)
, j
(
η(x, y)

)〉
= –

〈
H(Ax,Bx) –H(Ay,By), j

(
η(x, y)

)〉
= –

〈
H(Ax,Bx) –H(Ay,Bx) +H(Ay,Bx) –H(Ay,By), j

(
η(x, y)

)〉
= –

〈
H(Ax,Bx) –H(Ay,Bx), j

(
η(x, y)

)〉
–

〈
H(Ay,Bx) –H(Ay,By), j

(
η(x, y)

)〉
. (.)

Since H is η-cocoercive with respect to A with constant μ and η-relaxed cocoercive with
respect to B with constant γ , A is α-expansive and B is β-Lipschitz continuous, thus (.)
becomes

 ≤ –μα‖x – y‖ + γβ‖x – y‖ = –
(
μα – γβ)‖x – y‖ ≤ , (.)

since μ > γ and α > β . Thus, we have x = y and so (H(A,B) + λM)– is single-valued. �

Definition . Let H(A,B) be η-cocoercive with respect to A with constant μ >  and
η-relaxed cocoercive with respect to B with constant γ > , A is α-expansive and B is

http://www.journalofinequalitiesandapplications.com/content/2012/1/149
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β-Lipschitz continuous, μ > γ and α > β . Let M be H(·, ·)-η-cocoercive operator with
respect to A and B. Then the resolvent operator RH(·,·)–η

λ,M : X → X is defined by

RH(·,·)–η

λ,M (u) =
(
H(A,B) + λM

)–(u), ∀u ∈ X. (.)

Now, we show the Lipschitz continuity of the resolvent operator defined by (.) and
calculate its Lipschitz constant.

Theorem . Let H(A,B) be η-cocoercive with respect to A with constant μ >  and
η-relaxed cocoercive with respect to B with constant γ > , A is α-expansive, B is β-
Lipschitz continuous and η is τ -Lipschitz continuous and μ > γ , α > β . Let M be an H(·, ·)-
η-cocoercive operator with respect to A and B. Then the resolvent operator RH(·,·)–η

λ,M : X → X
is τ

μα–γβ -Lipschitz continuous, that is

∥∥RH(·,·)–η

λ,M (u) – RH(·,·)–η

λ,M (v)
∥∥ ≤ τ

μα – γβ ‖u – v‖, ∀u, v ∈ X.

Proof Let u and v be any given points in X. It follows from (.) that

RH(·,·)–η

λ,M (u) =
(
H(A,B) + λM

)–(u), and

RH(·,·)–η

λ,M (v) =
(
H(A,B) + λM

)–(v).
This implies that


λ

(
u –H

(
A

(
RH(·,·)–η

λ,M (u)
)
,B

(
RH(·,·)–η

λ,M (u)
))) ∈M

(
RH(·,·)–η

λ,M (u)
)
, and


λ

(
v –H

(
A

(
RH(·,·)–η

λ,M (v)
)
,B

(
RH(·,·)–η

λ,M (v)
))) ∈M

(
RH(·,·)–η

λ,M (v)
)
.

For the sake of convenience, we take

Pu = RH(·,·)–η

λ,M (u) and Pv = RH(·,·)–η

λ,M (v).

SinceM is η-cocoercive (thus η-accretive), we have


λ

〈
u –H

(
A(Pu),B(Pu)

)
–

(
v –H

(
A(Pv),B(Pv)

))
, j
(
η(Pu,Pv)

)〉 ≥ ,

=

λ

〈
u – v –

(
H

(
A(Pu),B(Pu)

)
–H

(
A(Pv),B(Pv)

))
, j
(
η(Pu,Pv)

)〉 ≥ ,

which implies that

〈
u – v, j

(
η(Pu,Pv)

)〉 ≥ 〈
H

(
A(Pu),B(Pu)

)
–H

(
A(Pv),B(Pv)

)
, j
(
η(Pu,Pv)

)〉
.

It follows that

‖u – v‖∥∥η(Pu,Pv)
∥∥ ≥ 〈

u – v, j
(
η(Pu,Pv)

)〉
≥ 〈

H
(
A(Pu),B(Pu)

)
–H

(
A(Pv),B(Pv)

)
, j
(
η(Pu,Pv)

)〉

http://www.journalofinequalitiesandapplications.com/content/2012/1/149
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=
〈
H

(
A(Pu),B(Pu)

)
–H

(
A(Pv),B(Pu)

)
+H

(
A(Pv),B(Pu)

)
–H

(
A(Pv),B(Pv)

)
, j
(
η(Pu,Pv)

)〉
=

〈
H

(
A(Pu),B(Pu)

)
–H

(
A(Pv),B(Pu)

)
, j
(
η(Pu,Pv)

)〉
+

〈
H

(
A(Pv),B(Pu)

)
–H

(
A(Pv),B(Pv)

)
, j
(
η(Pu,Pv)

)〉
≥ μ

∥∥A(Pu) –A(Pv)
∥∥ – γ

∥∥B(Pu) – B(Pv)
∥∥

≥ μα‖Pu – Pv‖ – γβ‖Pu – Pv‖

and so

‖u – v‖∥∥η(Pu,Pv)
∥∥ ≥ (

μα – γβ)‖Pu – Pv‖

i.e.

(
μα – γβ)‖Pu – Pv‖ ≤ ‖u – v‖∥∥η(Pu,Pv)

∥∥ ≤ τ‖u – v‖‖Pu – Pv‖
‖Pu – Pv‖ ≤ τ

μα – γβ ‖u – v‖, ∀u, v ∈ X,

i.e.

∥∥RH(·,·)–η

λ,M (u) – RH(·,·)–η

λ,M (v)
∥∥ ≤ τ

μα – γβ ‖u – v‖, ∀u, v ∈ X.

This completes the proof. �

4 Existence result for generalized set-valued variational-like inclusion problem
In this section, we apply H(·, ·)-η-cocoercive operators to find a solution of generalized
set-valued variational-like inclusion problem.
Let N : X × X → X, η : X × X → X, H : X × X → X, A,B : X → X be the single-valued

mappings and T ,Q : X → CB(X), M : X → X be the set-valued mappings such that M
is H(·, ·)-η-cocoercive with respect to A and B. Then we consider the following problem.
Find u ∈ X, w ∈ T(u), v ∈Q(u) such that

 ∈N(w, v) +M(u). (.)

We call problem (.), a generalized set-valued variational-like inclusion problem.
Let X be a Hilbert space. If Q ≡  and η(u, v) = u – v, ∀u, v ∈ X and N(·, ·) = T(·), where

T : X → CB(X) be a set-valued mapping. Then problem (.) reduces to the problem of
finding u ∈ X, w ∈ T(u) such that

 ∈ w +M(u). (.)

A problem similar to (.) is studied by Ahmad et al. [] by applying H(·, ·)-cocoercive
operators.
If H(·, ·) = H(·) and M is H-accretive mapping, then problem (.) is introduced and

studied by Chang et al. []. It is clear that for suitable choices of operators involved in the
formulation of (.), one can obtain many variational inclusions studied in literature.

http://www.journalofinequalitiesandapplications.com/content/2012/1/149
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Lemma . The (u,w, v), where u ∈ X, w ∈ T(u), v ∈ Q(u) is a solution of problem (.) if
and only if (u,w, v) is a solution of the following equation

u = RH(·,·)–η

λ,M
[
H

(
A(u),B(u)

)
– λN(w, v)

]
, (.)

where λ >  is a constant.

Proof Proof is straightforward by the use of definition of resolvent operator. �

Based on Lemma ., we define the following algorithm for approximating a solution of
generalized set-valued variational-like inclusion problem (.).

Algorithm. For any u ∈ X,w ∈ T(u), v ∈Q(u), compute the sequences {un}, {wn},
and {vn} by the following iterative scheme:

un+ = RH(·,·)–η

λ,M
[
H

(
A(un),B(un)

)
– λN(wn, vn)

]
, (.)

wn ∈ T(un),‖wn –wn+‖ ≤D
(
T(un),T(un+)

)
, (.)

vn ∈Q(un),‖vn – vn+‖ ≤D
(
Q(un),Q(un+)

)
, (.)

for all n = , , , . . . and λ >  is a constant.

Theorem . Let X be a real Banach space. Let A,B : X → X, H : X × X → X, N : X ×
X → X, η : X × X → X be the single-valued mappings. Suppose that T ,Q : X → CB(X)
and M : X → X are set-valued mappings such that M is H(·, ·)-η-cocoercive operator with
respect to A and B. Let

(i) T is D-Lipschitz continuous with constant λT and Q is D-Lipschitz continuous with
constant λQ;

(ii) H(A,B) is η-cocoercive with respect to A with constant μ >  and η-relaxed
cocoercive with respect to B with constant γ > ;

(iii) A is α-expansive and B is β-Lipschitz continuous;
(iv) H(A,B) is r-Lipschitz continuous with respect to A and r-Lipschitz continuous

with respect to B;
(v) N is t-Lipschitz continuous with respect to T in the first argument and t-Lipschitz

continuous with respect to Q in the second argument;
(vi) η is τ -Lipschitz continuous;
(vii) N is η-relaxed Lipschitz continuous with respect to T in the first argument and

η-relaxed Lipschitz continuous with respect to Q in the second argument with
constants τ and τ, respectively.

Suppose that the following condition is satisfied:

√
r – λ(tλT + tλQ)

[
r + λ(tλT + tλQ) + τ

]
– λ(τ + τ) <

μα – γβ

τ
– r, (.)

μα – γβ > τ r,μ > γ ,α > β .

Then there exist u ∈ X, w ∈ T(u) and v ∈ Q(u) satisfying the generalized set-valued
variational-like inclusion problem (.) and the iterative sequences {un}, {wn} and {vn} gen-
erated by Algorithm . converge strongly to u, w and v, respectively.
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Proof Since T isD-Lipschitz continuous with constant λT and Q isD-Lipschitz continu-
ous with constant λQ, it follows from Algorithm . that

‖wn –wn+‖ ≤D
(
T(un),T(un+)

) ≤ λT‖un – un+‖, and (.)

‖vn – vn+‖ ≤D
(
Q(un),Q(un+)

) ≤ λQ‖un – un+‖. (.)

By using Algorithm . and Lipschitz continuity of resolvent operator RH(·,·)–η

λ,M , we have

‖un+ – un‖ =
∥∥RH(·,·)–η

λ,M
[
H(Aun,Bun) – λN(wn, vn)

]
– RH(·,·)–η

λ,M
[
H(Aun–,Bun–) – λN(wn–, vn–)

]∥∥
≤ τ

μα – γβ

∥∥H(Aun,Bun) –H(Aun–,Bun–)

– λ
[
N(wn, vn) –N(wn–, vn–)

]∥∥
≤ τ

μα – γβ

∥∥H(Aun,Bun) –H(Aun–,Bun)

– λ
[
N(wn, vn) –N(wn–, vn–)

]∥∥
+

τ

μα – γβ

∥∥H(Aun–,Bun) –H(Aun–,Bun–)
∥∥. (.)

Using Lemma ., we have

∥∥H(Aun,Bun) –H(Aun–,Bun) – λ
[
N(wn, vn) –N(wn–, vn–)

]∥∥

≤ ∥∥H(Aun,Bun) –H(Aun–,Bun)
∥∥ – λ

〈
N(wn, vn) –N(wn–, vn–),

j
[
H(Aun,Bun) –H(Aun–,Bun) – λ

(
N(wn, vn) –N(wn–, vn–)

)]〉
=

∥∥H(Aun,Bun) –H(Aun–,Bun)
∥∥ – λ

〈
N(wn, vn) –N(wn–, vn–),

j
[
H(Aun,Bun) –H(Aun–,Bun) – λ

(
N(wn, vn) –N(wn–, vn–)

)]
+ j

(
η(un,un–)

)〉
+ λ

〈
N(wn, vn) –N(wn–, vn–), j

(
η(un,un–)

)〉
≤ ∥∥H(Aun,Bun) –H(Aun–,Bun)

∥∥ – λ
∥∥N(wn, vn) –N(wn–, vn–)

∥∥
× ∥∥H(Aun,Bun) –H(Aun–,Bun)

∥∥ + λ
∥∥N(wn, vn) –N(wn–, vn–)

∥∥
+

∥∥η(un,un–)
∥∥] + λ

〈
N(wn, vn) –N(wn–, vn–), j

(
η(un,un–)

)〉
. (.)

As H(·, ·) is r-Lipschitz continuous with respect to A, we have

∥∥H(Aun,Bun) –H(Aun–,Bun)
∥∥ ≤ r‖un – un–‖. (.)

SinceN is t-Lipschitz continuous with respect to T in the first argument and t-Lipschitz
continuous with respect to Q in the second argument and T is λT -Lipschitz continuous
and Q is λQ-Lipschitz continuous, we have

∥∥N(wn, vn) –N(wn–, vn–)
∥∥ =

∥∥N(wn, vn) –N(wn–, vn)

+N(wn–, vn) –N(wn–, vn–)
∥∥
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Ahmad et al. Journal of Inequalities and Applications 2012, 2012:149 Page 11 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/149

≤ ∥∥N(wn, vn) –N(wn–, vn)
∥∥

+
∥∥N(wn–, vn) –N(wn–, vn–)

∥∥
≤ t‖wn –wn–‖ + t‖vn – vn–‖
≤ tD

(
T(un),T(un–)

)
+ tD

(
Q(un),Q(un–)

)
≤ tλT‖un – un–‖ + tλQ‖un – un–‖
= (tλT + tλQ)‖un – un–‖. (.)

As η is τ -Lipschitz continuous, we have

∥∥η(un,un–)
∥∥ ≤ τ‖un – un–‖. (.)

Since N is η-relaxed Lipschitz continuous with respect to T and η-relaxed Lipschitz con-
tinuous with respect to Q in first and second arguments with constants τ and τ, respec-
tively, we have

〈
N(wn, vn) –N(wn–, vn–), j

(
η(un,un–)

)〉
=

〈
N(wn, vn) –N(wn–, vn), j

(
η(un,un–)

)〉
+

〈
N(wn–, vn) –N(wn–, vn–), j

(
η(un,un–)

)〉
≤ –τ‖un – un–‖ – τ‖un – un–‖

≤ –(τ + τ)‖un – un–‖. (.)

Using (.)-(.), (.) becomes

∥∥H(Aun,Bun) –H(Aun–,Bun–) – λ
[
N(wn, vn) –N(wn–, vn–)

]∥∥

≤ r‖un – un–‖ – λ(tλT + tλQ)‖un – un–‖
× [

r‖un – un–‖ + λ(tλT + tλQ)‖un – un–‖ + τ‖un – un–‖
]

+ λ
(
–(τ + τ)

)‖un – un–‖

= r‖un – un–‖ – λ(tλT + tλQ)‖un – un–‖
× [{

r + λ(tλT + tλQ) + τ
}‖un – un–‖

]
– λ(τ + τ)‖un – un–‖

= r‖un – un–‖ – λ(tλT + tλQ)
[
r + λ(tλT + tλQ) + τ

]
× ‖un – un–‖ – λ(τ + τ)‖un – un–‖

=
[
r – λ(tλT + tλQ)

[
r + λ(tλT + tλQ) + τ

]
– λ(τ + τ)

]‖un – un–‖. (.)

Using r-Lipschitz continuity of H(·, ·) with respect to B and (.), (.) becomes

‖un+ – un‖ ≤ θ‖un – un–‖, (.)

where

θ =
τ

μα – γβ

√
θ +

τ r
μα – γβ
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and

θ =
[
r – λ(tλT + tλQ)

[
r + λ(tλT + tλQ) + τ

]
– λ(τ + τ)

]
. (.)

From (.), it follows that θ < , so {un} is a Cauchy sequence in X, thus there exists a u ∈ X
such that un → u as n→ ∞. Also from (.) and (.), it follows that {wn} and {vn} are also
Cauchy sequences in X, thus there exist w and v in X such that wn → w, vn → v as n → ∞.
By the continuity of RH(·,·)–η

λ,M , H , A, B, η, N , T and Q and from (.) of Algorithm ., it
follows that

un+ = RH(·,·)–η

λ,M
[
H

(
A(un),B(un)

)
– λN(wn, vn)

]
(.)

→ u = RH(·,·)–η

λ,M
[
H

(
A(u),B(u)

)
– λN(w, v)

]
(n→ ∞). (.)

Now, we prove that w ∈ T(u). In fact, since wn ∈ T(un), we have

d
(
w,T(u)

) ≤ ‖w –wn‖ + d
(
wn,T(u)

)
≤ ‖w –wn‖ +D

(
T(un),T(u)

)
≤ ‖w –wn‖ + λT‖un – u‖ → , as n→ ∞,

which means that d(w,T(u)) = . Since T(u) ∈ CB(X), it follows that w ∈ T(u). Similarly,
we can show that v ∈ Q(u). By Lemma ., we conclude that (u,w, v) is a solution of gen-
eralized set-valued variational-like inclusion problem (.). This completes the proof. �

From Theorem ., we can obtain the following theorem which is similar to the Theo-
rem . of Ahmad et al. [].

Theorem . Let X be a Hilbert space. Let A, B, H and T be the same as in Theorem .
and M : X → X be the set-valued, H(·, ·)-cocoercive mapping with respect to A and B.
Assume that

(i) T is D-Lipschitz continuous with constant λT ;
(ii) H(A,B) is cocoercive with respect to A with constant μ >  and relaxed cocoercive

with respect to B with constant γ > ;
(iii) A is α-expansive;
(iv) B is β-Lipschitz continuous;
(v) H(A,B) is r-Lipschitz continuous with respect to A and r-Lipschitz continuous

with respect to B;
(vi) (r + r) < [(μα – γβ) – λ]; μ > γ , α > β .

Then the problem (.) admits a solution (u,w) with u ∈ X and w ∈ T(u) and the iterative
sequences {un} and {wn} converge strongly to u and w, respectively.
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