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Abstract
We investigated the s-number of the modified convolution operator and obtained
the following results
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where 1 < p < 2 < q <∞, p′ = p

p–1 , G is a set of all segments Q from [0, 1], F is a set of all
compacts from [0, 1], |Q| is the measure of a set Q.
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1 Introduction
Let ≤ p < ∞,  < q ≤ ∞. We denote bySp,q the space of all compact operators A, acting
in the space L[, ] of all -periodic functions square integrable on [, ] for s-numbers
such that the following quasinorm is finite

‖A‖Sp,q =

( ∞∑
m=

sqm(A)m
q/p–

)/q

,

if q <∞, and

‖A‖Sp,∞ = sup
m

m

p sm if q = ∞.

Recall that the sequence sm(A) (s-numbers of operator A) are numerated eigenvalues of
the operator

√
A*A.

We consider the convolution operator

(Af )(y) =
∫ 


K(x – y)f (x)dx

acting in L[, ]. Given a function ϕ ∈ L[, ], we consider also the modified convolution
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operator

(Aϕ f )(y) =
∫ 


(Kϕ)(x – y)f (x)dx.

We say that ϕ belongs to the spaceMp,q
p,q , if for A ∈ Sp,q , Aϕ ∈ Sp,q and

‖Aϕ‖Sp,q
≤ c‖A‖Sp,q

,

where c >  depends only on p, q, p, q.
This means that the linear operator Rϕ defined by the equality Rϕ(A) = Aϕ is bounded

fromSp,q toSp,q . Let

‖ϕ‖Mp,q
p,q

= ‖Rϕ‖Sp,q–→Sp,q
.

Given that the eigenvalues of the operator K ∗ f coincide with the Fourier coefficients
of the kernel K with respect to the trigonometric system, in the case p = p = q = q = p
this problem reduces to the well-known problem of Fourier series multipliers. Let K ∈
L([, ]) and {am(K)}m∈Z be the sequence of its Fourier coefficients with respect to the
trigonometric system {eπ ikx}k∈Z . It is assumed thatK is such that {am(K)}m∈Z ∈ lp,  ≤ p ≤
∞. Let Tϕ = {am(Kϕ)}m∈Z ∈ lp. The problem is to determine conditions on the function ϕ

ensuring the boundedness of the operator Tϕ : lp –→ lp.
This problem was considered in the works of Stechkin [], Hirschman [], Edelstein [],

Birman and Solomyak [], Karadzhov [], and others.
We obtain sufficient conditions on a multiplier ϕ ensuring that it belongs to the space

Mp,q
p,q . These conditions are expressed in terms of Lorentz and Besov spaces. We also

construct examples showing the sharpness of the obtained constants for corresponding
embedding theorems.

2 Main results
Let f be a μ measurable function which takes finite values almost everywhere and let

m(σ , f ) = μ
({
x : x ∈ [, ], |f | > σ

})
be its distribution function. The function

f *(t) = inf
{
σ :m(σ , f )≤ t

}
is a nonincreasing rearrangement of f .
We say that a function f belongs to the Lorentz space Lp,q if f is measurable and

‖f ‖Lp,q =
(∫ ∞



(
t

p f *(t)

)q dt
t

) 
q
< ∞,

for  ≤ q < ∞ and

‖f ‖Lp,∞ = sup
t>

t

p f *(t) < ∞,

for q = ∞.
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Theorem  Let  < p <  ≤ p,  ≤ q ≤ q ≤ ∞, 
r =


p

– 
p
, 
s =


q
– 

q
and ϕ ∈ Lr,s[, ].

If A ∈Sp,q , then Aϕ ∈ Sp,q and

‖Aϕ‖Sp,q
≤ c‖ϕ‖Lr,s‖A‖Sp,q

,

i.e. Lr,s[, ] ↪→Mp,q
p,q .

In the following theorem the cases p = po = q, q = p = q are considered. The upper
and the lower estimates of the norm ‖ϕ‖Mq

p
(Mq

p :=Mq,q
p,p) are obtained.

Theorem  Let  < p <  < q < ∞, p′ = p
p– . Let G be a set of all segments Q from [, ], F

be a set of all compacts from [, ], then

c sup
Q∈G



|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣ ≤ ‖ϕ‖Mq

p
≤ c sup

Q∈F


|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(s)ds
∣∣∣∣,

where |Q| is the measure of a set Q.

We shall define the class of generalized monotone functions for which the upper and
the lower estimates coincide.
We say that function f is a generalizedmonotone function, if there exists a constant c > 

such that for every x ∈ (, ] the inequality

|f (x)| ≤ c
x

∣∣∣∣∫ x


f (y)dy

∣∣∣∣
holds. The class of such functions is denoted byN.

Corollary  Let  < p <  < q <∞. If ϕ ∈N, then ϕ ∈Mq
p if and only if

sup
t>

t

p–


q ϕ*(t) < ∞.

Moreover, ‖ϕ‖Mq
p
∼ supt> t


p–


q ϕ*(t).

In case parameters p, p are both either less or greater than , we use the space of
smooth functions.
Let  ≤ p < ∞, α > . We denote by Bα

p,q[, ] the space of all measurable functions f on
[, ] such that

‖f ‖Bα
p,q =

( ∞∑
k=

(
αk‖�kf ‖p

)q) 
q

< ∞

for  ≤ q < ∞, and

‖f ‖Bα
p,∞ = sup

k
αk‖�kf ‖p <∞
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for q = ∞. Here {am(f )}m∈N are the Fourier coefficients of the function f by trigonometric
system {eπ ikx}k∈Z, �kf = �kf (x) =

∑
[k–]≤|m|<k am(f )eπ imx, and [k–] is the integer part

of k–.
This class is called the Nikol’skii-Besov space.

Theorem  Let  < p ≤ p < ∞,  /∈ [p,p],  < q ≤ q ≤ ∞,

α = min
x∈[ 

p
, 
p

]

∣∣∣∣  – x
∣∣∣∣, 

r
= max

x∈[ 
p

, 
p

]

∣∣∣∣  – x
∣∣∣∣,  –


s
=


q

–

q

and ϕ ∈ Bα
r,s[, ].

If A ∈ Sp,q , then Aϕ ∈Sp,q and

‖Aϕ‖Sp,q
≤ c‖ϕ‖Bα

r,s‖A‖Sp,q
,

i.e., Bα
r,s ↪→Mp,q

p,q .

In the case p = p = q = q, Karadzhov’s result (see []) follows from Theorem :

B

r
r, ↪→Mp =Mp,p

p,p ,

r
=

∣∣∣∣ p –



∣∣∣∣.
Now consider the case  ≤ q < q ≤ ∞.

Theorem  Let  < p < p < ∞,  ≤ q < q ≤ ∞,  /∈ (p,p), 
r – α = 

p
– 

p
, 
s =


q
– 

q
,

α >minx∈[ 
p

, 
p

] |  – x|.
Then Bα

r,s[, ] ↪→Mp,q
p,q .

3 Properties ofMp1,q1
p0,q0 class

To prove the properties of Mp,q
p,q class we need the following lemma. We first define a

discrete Lorentz space. lpq is called a discrete Lorentz space whose elements are sequences
of numbers ξ = {ξk}∞k=∞ with the only limit point  such that

‖ξ‖lpq =
( ∞∑

m=

∣∣ξ *
m
∣∣qmq

p–

) 
q

,  ≤ q <∞

where {ξ *
m}∞m= nonincreasing rearrangement of the sequence {|ξk|}∞k=∞.

For q = ∞,

‖ξ‖lp∞ = sup
m

m

p ξ *

m.

Lemma  (See []) Let  < r,p,p <∞,  ≤ q,q, s ≤ ∞. Then

‖a ∗ b‖lp,q ≤ c‖b‖lr,s‖a‖lp,q ,

where 
p
+  = 

r +

p
, 
q
= 

s +

q
.
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Let X̄ = (X,X), where X, X are Banach spaces, be a compatible pair. We define the
functional K(t,a) for t >  and a ∈ X +X by the following formula:

K(t,a) = inf
a=a+a

(‖a‖X + t‖a‖X
)
.

We denote by X̄θ ,q,k the space {a ∈ X + X : ‖a‖θ ,q,k = 
θ ,q(K(t,a))}, where 
θ ,q is a func-
tional defined on nonnegative functions ϕ by formula


θ ,q
(
ϕ(t)

)
=

(∫ ∞



(
t–θϕ(t)

)q dt
t

) 
q
,  ≤ q < ∞

and


θ ,∞
(
ϕ(t)

)
= sup

t>
t–θϕ(t), q = ∞.

Let Xα ,p


and Xα,p



be the spaces obtained by the method of real interpolation of Ba-

nach pairs of spaces (X
,X

 ), (X
,X

 ) respectively.

Lemma  (See []) Let  < αi,βi < ,  ≤ pi,qi ≤ ∞, i = , , α �= α, β �= β. If T is a
bilinear operator:

T : Xα,p × Y –→ Zβ,q

and

T : Xα,p × Y –→ Zβ,q

then

T : Xα,p × Yθ ,r –→ Zβ ,q.

Here α = ( – θ )α + θα, β = ( – θ )β + θβ, 
p + 

r > ,  + 
q = 

p + 
r + ( – θ )( 

q
– 

p
) +

θ ( 
q
– 

p
)+, x+ =max(x, ).

Remark Since the s-numbers of convolution operator A coincide with themodules of the
Fourier coefficients of the kernel K , the problem of estimating the s-numbers of “trans-
formed” operator Aϕ can be reduced to the study of the following inequality

‖a ∗ b‖lp,q ≤ c‖a‖lp,q , ()

and we have to describe the class of those functions ϕ with Fourier coefficients b =
{bm}m∈Z , for which Inequality () holds.

Theorem 
() Let  ≤ p,p < ∞,  ≤ q,q ≤ ∞, 

pi
+ 

p′
i
= 

qi
+ 

q′
i
= , i = , . Then

Mp,q
p,q =Mp′

,q
′


p′
,q

′

.
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() Let  < p < r < p′
 < ∞, 

p
+ 

p′

= , 

p
– 

p
= 

r
– 

r
, then

Mp,q
p,q ↪→Mr,t

r,s,

where 
t –


s = ( 

q
– 

q
)+.

Proof The proof of the first statement follows from Remark and from the fact that
‖(Tϕ)*‖ = ‖Tϕ̄‖, where ϕ̄ is a complex conjugate of the function ϕ. Now we prove ().
Let ϕ ∈Mp,q

p,q , then by () it follows that ϕ ∈Mp′
,q

′


p′
,q

′

, and

‖Aϕ‖Sp,q
≤ ‖ϕ‖Mp,q

p,q
‖A‖Sp,q

, ∀A ∈Sp,q ,

‖Aϕ‖Sp′,q′
≤ ‖ϕ‖Mp,q

p,q
‖A‖Sp′,q′

, ∀A ∈Sp′
,q

′

,

where 
pi
+ 

p′
i
= 

qi
+ 

q′
i
= . According to Lemma , the operator T(a,ϕ) = a ∗ b

T : lp,q ×Mp,q
p,q –→ lp,q

is bounded. Using () we have

T : lp′
,q

′

×Mp,q

p,q –→ lp′
,q

′

.

Further, applying the theorem on bilinear interpolation (Lemma ) we find that the oper-
ator

T : lr,s ×Mp,q
p,q –→ lr,t

is also bounded, i.e.,Mp,q
p,q ↪→Mr,t

r,s, where


r

=
 – θ

p
+

θ

p′

,


r

=
 – θ

p
+

θ

p′

,


t
–

s
=

(

q

–

q

)
+

for every  < θ < . Eliminating θ from this equation, we obtain that


p

–

p

=

r

–

r
,

and the condition  < θ <  implies the condition  < p < r < p′
 <∞, where 

p
+ 

p′

= .

The proof is complete. �

By (), in particular, the following proposition follows.
Let  < p < r < p′ < ∞, 

p +

p′ = , then

Mp,q ↪→Mr,t ,

whereMp,q =Mp,q
p,q and q, t ∈ [,∞[ are any.
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4 Proof of main results
For a given pair X̄ = (X,X) we consider the space Γ (X̄) consisting of all functions f
bounded and continuous in the strip

S = {z :  ≤ Re z ≤ }

with values in X +X. Moreover, f are analytic in the open strip

S = {z :  < Re z < }

and such that the mapping t –→ f (j + it) (j = , ) is a continuous function on the real axis
with values in Xj (j = , ) which tends to  for |t| –→ ∞. It is clear that Γ (X̄) is a vector
space. We endow Γ with the norm

‖f ‖Γ =max
(
sup
t

∥∥f (it)∥∥X
, sup

t

∥∥f ( + it)
∥∥
X

)
.

The space X̄[θ ],  ≤ θ ≤  consists of all elements a ∈ X + X such that a = f (θ ) for some
function f ∈ Γ (X̄). The norm on X̄[θ ] is equal to

‖a‖[θ ] = inf
{‖f ‖Γ : f (θ ) = a, f ∈ Γ

}
.

In order to prove our main result, we need two lemmas in [].

Lemma  (Bilinear interpolation, the complex method, see []) Let T be a bilinear oper-
ator such that

T : X × Y –→ Z

and

T : X × Y –→ Z.

Then

T : X[θ ] × Y[θ ] –→ Z[θ ],

where X[θ ], Y[θ ], Z[θ ] are the spaces obtained by the method of complex interpolation of
Banach pairs of spaces (X,X), (Y,Y), (Z,Z) respectively.

Lemma  (Bilinear interpolation, the real method, see []) Let T be a bilinear operator
such that

T : X × Y –→ Z

and

T : X × Y –→ Z

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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with the norms B, B respectively. Then

T : Xθ ,t × Yθ ,t –→ Zθ ,s,

where 
s +  = 

t
+ 

t
. Moreover,

‖T‖ ≤ cB–θ
 Bθ

 .

Proof of Theorem  First we prove the inequality:

‖a ∗ b‖lp,q ≤ c‖ϕ‖Lr‖a‖lp,q , ()

where b = {bk}k∈Z are Fourier coefficients of the function ϕ.
If r ≤ , Inequality () follows by Lemma  and Hardy-Littlewood-Paley inequality [].

Indeed, since ϕ ∈ Lrs, by the Hardy-Littlewood-Paley theorem, we have b ∈ lr′s and the
following inequality holds

‖b‖lr′s ≤ c‖ϕ‖Lrs .

Taking s = r, we get

‖b‖lr′ ,r ≤ c‖ϕ‖Lr .

Now let  < r < ∞. Let a ∈ l, f ∼ ∑
k∈Z akeπ ikx, then by Parseval’s equality we get

‖a ∗ b‖l = ‖f ϕ‖L ≤ ‖f ‖L‖ϕ‖L∞ = ‖ϕ‖L∞‖a‖l ,

i.e.,M = L∞. From Lemma , using Parseval’s equality we have

‖a ∗ b‖lp,q ≤ c‖ϕ‖L‖a‖lp,q ,

where 
p
+  = 

 +

p
, 
p
+ 

 =

p
, 
q
= 

q
+ 

 .
Thus, for the bilinear operator T(a,ϕ) = a ∗ b we obtain

T : l × L∞ –→ l,

T : lp,q × L –→ lp,q .

Applying the method of complex interpolation (Lemma ), we obtain Inequality (). Now
we shall prove the inequality

‖a ∗ b‖lp,q ≤ c‖ϕ‖Lr,s‖a‖lp,q , ()

where 
s =


q
– 

q
.

Let q = ∞ and p be fixed in Inequality (). Taking 
qi

= 
ri
, i = , , choose parameters

r, r, p , p such that


p

=

pi

+

ri
, i = , . ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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Then from Inequality () we have

‖a ∗ b‖lp ,r ≤ c‖a‖lp,∞‖ϕ‖Lr ,
‖a ∗ b‖lp,r ≤ c‖a‖lp,∞‖ϕ‖Lr .

Using Marcinkiewicz-Calderón interpolation theorem (see []), we get

‖a ∗ b‖lp,s ≤ (
c‖a‖lp,∞

)θ(c‖a‖lp,∞)–θ‖ϕ‖Lr,s = c‖a‖lp,∞‖ϕ‖Lr,s , ()

where 
p

= –θ

p
+ θ

p
, 
r =

–θ
r

+ θ
r
, i.e., 

p
– 

p
= 

r .

Now we apply Lemma  with fixed parameters r, s and parameters pi, pi, i = ,  satis-
fying () and the inequality of type (). We have:

(Lr,s,Lr,s)θ , × (lp,∞, lp,∞)θ ,q –→ (lp ,s, lp,s)θ ,q

or

T : Lr,s × lp,q –→ lp,q ,

where 
q
– 

q
= 

s –

∞ , 

p
= –θ

p
+ θ

p
, 
p

= –θ

p
+ θ

p
, i.e., 

q
= 

s +

q
, 
p

– 
p

= 
r .

Since the parameters pi, pi, i = ,  are arbitrary in Inequality (), it guarantees the ar-
bitrary of the corresponding parameters in Inequality ().
Thus, the following inequality holds:

‖a ∗ b‖lp,q ≤ c‖a‖lp,q ‖ϕ‖Lr,s ,

where b = {bm}m∈Z are Fourier coefficients of the function ϕ and 
r =


p

– 
p
, 
s =


q
– 

q
.

According to Remark, this inequality is equivalent to the statement of Theorem . �

Proof of Theorem  Let ϕ ∈Mq
p and Q be an arbitrary segment in [, ],

f(x) =

⎧⎨⎩, x ∈Q,

, x /∈Q.

Note that by Boas theorem [] (see also []) we get

‖f̂‖lp ∼ ‖f‖Lp′ ,p =
(∫ 



(
t


p′ f * (t)

)p dt
t

) 
p
= |Q| 

p′ . ()

Applying Theorem  from [] and using (), we obtain:

‖ϕ‖Mq
p
= sup

f �=

‖f̂ ϕ‖lq
‖̂f ‖lp

≥ ‖f̂ϕ‖lq
‖f̂‖lp

≥ c

|Q| 
p′

∫ 



(
t


q′

(
sup

|W |≥t,W∈G


|W |
∣∣∣∣∫

W
f(x)ϕ(x)dx

∣∣∣∣)q dt
t

) 
q

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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≥ c

|Q| 
p′
sup
t>

t

q′

(
sup

|W |≥t,W∈G


|W |
∣∣∣∣∫

W∩Q
ϕ(x)dx

∣∣∣∣)

≥ c

|Q| 
p′

|Q| 
q′ –

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣ = c

|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣.

Since the interval Q is arbitrary, we get

‖ϕ‖Mq
p
≥ c sup

Q∈G


|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣,

where constants c and c depend only on parameters p and q.
The proof of obtaining an upper estimate follows from Theorem  and the embedding

lp,p ↪→ lp,q, for p < q.
Indeed, from Theorem  it follows

Lr,∞ ↪→Mq
p,

i.e.,

‖ϕ‖Mq
p

≤ c sup
t>

t

r ϕ*(t)≤ c sup

t>



t

p′ +


q

∫ t


ϕ*(s)ds

= c sup
Q∈F



|Q| 
p′ +


q

∫
Q

∣∣ϕ(x)∣∣dx∼ sup
Q∈F



|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣. �

Proof of Corollary  Let Q be an arbitrary compact from F .
From the condition of generalized monotonicity of the function ϕ we have



|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(y)dy
∣∣∣∣ ≤ 

|Q| 
p′ +


q

∫
Q

c
y

∣∣∣∣∫ y


ϕ(x)dx

∣∣∣∣dy
≤ c

|Q| 
p′ +


q
sup
A∈G



|A| 
p′ +


q

∣∣∣∣∫
A
ϕ(x)dx

∣∣∣∣ ∫
Q

dy

y–

q–


p′

≤ c sup
A∈G



|A| 
p′ +


q

∣∣∣∣∫
A
ϕ(x)dx

∣∣∣∣.
Taking into account that Q ∈ F is arbitrary, we have

sup
Q∈F



|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣ ≤ c sup

Q∈G


|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣.

Thus, from Theorem  we get

‖ϕ‖Mq
p
∼ sup

Q∈F


|Q| 
p′ +


q

∣∣∣∣∫
Q

ϕ(x)dx
∣∣∣∣ ∼ sup

t>
t

p–


q ϕ*(t). �

Proof of Theorem  Let  < p ≤ p < ∞. For a sequence of numbers a = {am}m∈Z and a
function ϕ ∈ L[, ] we consider the mapping T of the form T(a,ϕ) = a ∗ b, where b =

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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{bm}m∈Z is the sequence of Fourier coefficients on the trigonometric system of functions
ϕ. This map is bilinear and from Karadzhov’s theorem [] and Remark it follows that it is
bounded from l × B



, to l.

SinceM = L∞, the mapping

Tϕ : l × L∞ –→ l

is also bounded. Thus, for the operator T , the following is true

T : l × B


, –→ l,

T : l × L∞ –→ l.

Then, by Lemma  on bilinear interpolation, we get

(l, l)θ ,q × (
B



,,L∞

)
θ , –→ (l, l)θ ,q,

i.e., the operator T is bounded from lp,q × (B


,,L∞)θ , to lp,q. In the paper [] it is shown

that B

r
r, ↪→ (B



,,L∞)θ ,, where 

r =
–θ
 . Thus, taking into account Theorem , we will get

T : lp,q × B

r
r, –→ lp,q, ()

for  < p < ∞,  ≤ q ≤ ∞, 
r =


 –


p .

FromMinkowski’s inequality and Parseval’s equality we get

T : l × L –→ l.

Thus, for the operator T , the following is true

T : lp,q × B

r
r, –→ lp,q,

T : l × L –→ l.

Then, by Lemma  we get

(lp,q, l)[θ ] ×
(
B


r
r,,L

)
[θ ] –→ (lp,q, l)[θ ]

i.e., T is a bounded mapping from lp,q × Bα
r,s to lp,q , where  < p ≤ p < ∞, 

r =

 –


p
,

α = 
 –


p
. The arbitrary choice of parameters guarantees the arbitrary of the parameters

available in the theorem. �

The case  < p < p <  follows from the statements proved above and the property
Mp,q

p,q =Mp′
,q

′


p′
,q

′

.

Proof of Theorem Let  < p < p ≤ . Let us consider the bilinearmappingT(a,ϕ) = a∗b,
where b = {bm}m∈Z is the sequence of Fourier coefficients of the function ϕ. The mapping

T : lp,q × L –→ lp,q ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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is bounded according to Theorem . Here 
p

– 
p

= 
 ,


q
– 

q
= 

 ,  < q <  < q,  < p <
 < p. The result of Theorem , in the case q = q = , p = p = p can be written as

T : lp, × B/t
t, –→ lp,,


t
=

p
–


. ()

Applying Lemma  on the bilinear interpolation to () and (), and taking into account the
properties of the embedding of the spaces lp,q and Bα

p,q, we have:

T : lp, × Bα
r, –→ lp,∞, ()

where parameters r, α, p, p satisfy the following conditions:

 < p < p ≤ ,

r
– α =


p

–

p
, α >


p

–


. ()

Let in () parameter r be fixed. Using Lemma  on bilinear interpolation and taking into
account that

(
Bα
r, ,B

α
r,

)
θ ,h = Bα

r,h, with α = ( – θ )α + α,

we get

T : lp,h × Bα
r,h –→ lp,h ,

where 
h
+  = 

h
+ 

h
, α > 

p
– 

 =minx∈[ 
p

, 
p

] |  – x|, 
r – α = 

p
– 

p
.

Therefore, with fixed a ∈ lp,∞ and r we obtain that

Pa : Bαi
r, –→ lpi,∞,

and

‖Pa‖Bαi
r,–→lpi,∞

≤ ci‖a‖lp,∞ ,

where 
r – αi = 

p
– 

pi
, αi > 

pi
– 

 , i = , .
Using Marcinkiewicz-Calderón interpolation theorem we have

Pa : Bα
r,s –→ lp,s,

and

‖Pa‖Bα
r,s–→lp,s ≤ c‖a‖lp,∞ .

Thus

T : lp,∞ × Bα
r,s –→ lp,s.

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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To complete the proof we fix the function ϕ and the parameters r, s, α and we choose the
parameters pi, pi, i = ,  satisfying (). We use Lemma  to get Bα

r,s[, ] ↪→Mp,q
p,q . �

The case  ≤ p < p < ∞, as in the proof of Theorem , will follow fromMp,q
p,q =Mp′

,q
′


p′
,q

′

.

5 Examples demonstrating the sharpness of the results
Proposition  Let  < p <  ≤ p, 

r =

p

– 
p
, 
s = ( 

q
– 

q
)+. If q < q, then for any ε > 

there exists ϕ ∈ Lr,s+ε such that ϕ /∈ Mp,q
p,q , if q ≥ q there exists ϕ ∈ Lr–ε,∞ such that

ϕ /∈Mp,q
p,q .

Proof Let ε be an arbitrary positive number, and numbers β, β be such that

β >


s + ε
, β >


q

, β + β <

s
+


q

=

q
.

Let

bk =


(|k| + )/r′ lnβ (|k| + )
,

ak =


(|k| + )/p lnβ (|k| + )
,

and

ϕ ∼
+∞∑

k=–∞
bkeπ ikx.

Then form �= 

(a ∗ b)m =
+∞∑

k=–∞


(|k| + )/r′ lnβ (|k| + )(|k –m| + )/p lnβ (|k –m| + )

∼
∫ +∞

–∞
dx

|x|/r′ | ln |x||β |x –m|/p | ln |x –m||β ,∫ +∞

–∞
dx

|x|/r′ | ln |x||β |x –m|/p | ln |x –m||β

= |m|–( r′ + 
p

)+ ·
∫ +∞

–∞
dy

|y|/r′ | ln |y| + ln |m||β |y – |/p | ln |y – | + ln |m||β

= |m|–( r′ + 
p

)+∣∣ln |m|∣∣–β–β ·
∫ +∞

–∞
dy

|y|/r′ | ln |y|
ln |m| + |β |y – |/p | ln |y–|

ln |m| + |β

≥ |m|–( r′ + 
p

)+∣∣ln |m|∣∣–β–β ·
∫ +∞

–∞
dy

|y|/r′ | ln |y| + |β |y – |/p | ln |y – | + |β .

Thus, (a ∗ b)m ≥ c(|m| + )–(

r′ +


p

)+| ln(|m| + )|–β–β . Since

+∞∑
m=

((
(m + )–(


r′ +


p

)+∣∣ln(|m| + 
)∣∣–β–β)q(|m| + 

)( qp –)) = ∞,

http://www.journalofinequalitiesandapplications.com/content/2012/1/146
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a ∗ b /∈ lp,q , and therefore ϕ /∈ Mp,q
p,q . Since Fourier coefficients of ϕ are the sequence

{bk}k∈Z it follows that ϕ ∈ Lr,s.
To prove the second part of the proposition, we take s = ∞. Let numbers α and α be

such that

α >


(r – ε)′
=  –


r – ε

, α >

p

, α + α <  –

r
+


p

(note that the last inequality does not contradict the previous two). Choosing

bk =


(|k| + )α
, ak =


(|k| + )α

, ϕ ∼
+∞∑

k=–∞
bkeπ ikx,

we can show that

a ∗ b ∼ {(|k| + 
)–α–α+}

k∈Z .

Hence a ∗ b /∈ lp,q , and therefore ϕ /∈ Mpq
pq . At the same time taking into account the

monotonicity of the sequence {bk}k∈Z and Hardy-Littlewood theorem, we have that ϕ ∈
Lr–ε,∞. The statement is proved. �

Theorem  Let  < p < p < ,  < q ≤ q, 
r – α = 

p
– 

p
, s =


q
– 

q
. Then for any ε > 

there exist ϕ ∈ Bα–ε
r,∞ ∩ Bα

r–ε,∞ and ϕ ∈ Bα
r,s+ε such that ϕ /∈Mp,q

p,q , ϕ /∈Mp,q
p,q .

Proof Let s < ∞ and numbers β, β be such that

β >


s + ε
, β >


q

, β + β <

s
+


q

=

q
.

Let b = {bk}k∈Z and a = {ak}k∈Z , where

bk =


(|k| + )α– 
r + lnβ (|k| + )β

,

ak =


(|k| + )k/p lnβ (|k| + )β
.

It is obvious that a ∈ lp,q , and ϕ ∼ ∑+∞
k=–∞ bkeπ ikx belongs to Bα

r,s+ε .
It is easy to show that

(a ∗ b)m ≥ c
(|m| + 

)α– 
r +


p

(
ln

(|m| + 
))β+β

and consequently, a ∗ b /∈ lp,q . Therefore ϕ /∈Mp,q
p,q .

To construct the function ϕ, it is sufficient to consider the sequences

b =
{


(|m| + )γ

}
m∈Z

, a =
{


(|m| + )γ

}
m∈Z

,

where

γ >max

(
α – ε –


r
+ ,α –


r + ε

+ 
)
, γ >


p

http://www.journalofinequalitiesandapplications.com/content/2012/1/146


Jumabayeva et al. Journal of Inequalities and Applications 2012, 2012:146 Page 15 of 15
http://www.journalofinequalitiesandapplications.com/content/2012/1/146

and

γ + γ < α –

r
+


p

.

ϕ ∼ ∑+∞
k=–∞ bkeπ ikx. The proof that ϕ ∈ Bα–ε

r,∞ ∩ Bα
r–ε,∞, ϕ /∈Mp,q

p,q is similar to the proof
of the first part. �
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