# On spectral properties of the modified convolution operator 

Ainur Jumabayeva ${ }^{1,2^{*}}$, Esmukhanbet Smailov ${ }^{3}$ and Nazerke Tleukhanova²

"Correspondence:
ainurjumabay@gmail.com
${ }^{1}$ Centre de Recerca Matemàtica,
Campus de Bellaterra, Edifici C,
Barcelona, Bellaterra 08193, Spain
${ }^{2}$ Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Munaitpasova 5, Astana 010008, Kazakhstan
Full list of author information is available at the end of the article

## Abstract <br> We investigated the s-number of the modified convolution operator and obtained the following results <br> $$
c_{1} \sup _{Q \in G} \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right| \leq\|\varphi\|_{M_{p}^{q}} \leq c_{3} \sup _{Q \in F} \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{Q} \varphi(s) d s\right|
$$ <br> where $1<p<2<q<\infty, p^{\prime}=\frac{p}{p-1}, G$ is a set of all segments $Q$ from $[0,1], F$ is a set of all compacts from $[0,1],|Q|$ is the measure of a set $Q$. <br> MSC: 42A45; 44A35 <br> Keywords: Fourier series multipliers; convolution operator; s-number; Lorentz space; Besov space

## 1 Introduction

Let $1 \leq p<\infty, 0<q \leq \infty$. We denote by $\mathfrak{S}_{p, q}$ the space of all compact operators $A$, acting in the space $L_{2}[0,1]$ of all 1-periodic functions square integrable on $[0,1]$ for $s$-numbers such that the following quasinorm is finite

$$
\|A\|_{\mathfrak{S}_{p, q}}=\left(\sum_{m=1}^{\infty} s_{m}^{q}(A) m^{q / p-1}\right)^{1 / q}
$$

if $q<\infty$, and

$$
\|A\|_{\mathfrak{S}_{p, \infty}}=\sup _{m} m^{\frac{1}{p}} s_{m} \quad \text { if } q=\infty
$$

Recall that the sequence $s_{m}(A)$ ( $s$-numbers of operator $A$ ) are numerated eigenvalues of the operator $\sqrt{A^{*} A}$.

We consider the convolution operator

$$
(A f)(y)=\int_{0}^{1} K(x-y) f(x) d x
$$

acting in $L_{2}[0,1]$. Given a function $\varphi \in L_{1}[0,1]$, we consider also the modified convolution

[^0]operator
$$
\left(A_{\varphi} f\right)(y)=\int_{0}^{1}(K \varphi)(x-y) f(x) d x .
$$

We say that $\varphi$ belongs to the space $M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$, if for $A \in \mathfrak{S}_{p_{0}, q_{0}}, A_{\varphi} \in \mathfrak{S}_{p_{1}, q_{1}}$ and

$$
\left\|A_{\varphi}\right\|_{\mathfrak{S}_{p_{1}, q_{1}}} \leq c\|A\|_{\mathfrak{S}_{p_{0}, q_{0}}},
$$

where $c>0$ depends only on $p_{0}, q_{0}, p_{1}, q_{1}$.
This means that the linear operator $R_{\varphi}$ defined by the equality $R_{\varphi}(A)=A_{\varphi}$ is bounded from $\mathfrak{S}_{p_{0}, q_{0}}$ to $\mathfrak{S}_{p_{1}, q_{1}}$. Let

$$
\|\varphi\|_{M_{p_{0}, q_{0}}^{p_{1}, q_{1}}}=\left\|R_{\varphi}\right\|_{\mathfrak{S}_{p_{0}, q_{0}}} \rightarrow \mathfrak{S}_{p_{1}, q_{1}} .
$$

Given that the eigenvalues of the operator $K * f$ coincide with the Fourier coefficients of the kernel $K$ with respect to the trigonometric system, in the case $p_{0}=p_{1}=q_{0}=q_{1}=p$ this problem reduces to the well-known problem of Fourier series multipliers. Let $K \in$ $L_{1}([0,1])$ and $\left\{a_{m}(K)\right\}_{m \in Z}$ be the sequence of its Fourier coefficients with respect to the trigonometric system $\left\{e^{2 \pi i k x}\right\}_{k \in Z}$. It is assumed that $K$ is such that $\left\{a_{m}(K)\right\}_{m \in Z} \in l_{p}, 1 \leq p \leq$ $\infty$. Let $T_{\varphi}=\left\{a_{m}(K \varphi)\right\}_{m \in Z} \in l_{p}$. The problem is to determine conditions on the function $\varphi$ ensuring the boundedness of the operator $T_{\varphi}: l_{p} \longrightarrow l_{p}$.
This problem was considered in the works of Stechkin [1], Hirschman [2], Edelstein [3], Birman and Solomyak [4], Karadzhov [5], and others.

We obtain sufficient conditions on a multiplier $\varphi$ ensuring that it belongs to the space $M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$. These conditions are expressed in terms of Lorentz and Besov spaces. We also construct examples showing the sharpness of the obtained constants for corresponding embedding theorems.

## 2 Main results

Let $f$ be a $\mu$ measurable function which takes finite values almost everywhere and let

$$
m(\sigma, f)=\mu(\{x: x \in[0,1],|f|>\sigma\})
$$

be its distribution function. The function

$$
f^{*}(t)=\inf \{\sigma: m(\sigma, f) \leq t\}
$$

is a nonincreasing rearrangement of $f$.
We say that a function $f$ belongs to the Lorentz space $L_{p, q}$ if $f$ is measurable and

$$
\|f\|_{L_{p, q}}=\left(\int_{0}^{\infty}\left(t^{\frac{1}{p}} f^{*}(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}<\infty
$$

for $1 \leq q<\infty$ and

$$
\|f\|_{L_{p, \infty}}=\sup _{t>0} t^{\frac{1}{p}} f^{*}(t)<\infty,
$$

for $q=\infty$.

Theorem 1 Let $1<p_{0}<2 \leq p_{1}, 1 \leq q_{1} \leq q_{0} \leq \infty, \frac{1}{r}=\frac{1}{p_{0}}-\frac{1}{p_{1}}, \frac{1}{s}=\frac{1}{q_{1}}-\frac{1}{q_{0}}$ and $\varphi \in L_{r, s}[0,1]$. If $A \in \mathfrak{S}_{p_{0}, q_{0}}$, then $A_{\varphi} \in \mathfrak{S}_{p_{1}, q_{1}}$ and

$$
\begin{aligned}
& \quad\left\|A_{\varphi}\right\|_{\mathfrak{S}_{p_{1}, q_{1}}} \leq c\|\varphi\|_{L_{r, s}}\|A\|_{\mathfrak{S}_{p_{0}, q_{0}}}, \\
& \text { i.e. } L_{r, s}[0,1] \hookrightarrow M_{p_{0}, q_{0}}^{p_{1}, q_{1}} .
\end{aligned}
$$

In the following theorem the cases $p=p_{o}=q_{0}, q=p_{1}=q_{1}$ are considered. The upper and the lower estimates of the norm $\|\varphi\|_{M_{p}^{q}}\left(M_{p}^{q}:=M_{p, p}^{q, q}\right)$ are obtained.

Theorem 2 Let $1<p<2<q<\infty, p^{\prime}=\frac{p}{p-1}$. Let $G$ be a set of all segments $Q$ from $[0,1], F$ be a set of all compacts from $[0,1]$, then

$$
c_{1} \sup _{Q \in G} \frac{1}{|Q|^{\frac{1}{p^{+}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right| \leq\|\varphi\|_{M_{p}^{q}} \leq c_{3} \sup _{Q \in F} \frac{1}{|Q|^{\frac{1}{p^{p}}+\frac{1}{q}}}\left|\int_{Q} \varphi(s) d s\right|,
$$

where $|Q|$ is the measure of a set $Q$.

We shall define the class of generalized monotone functions for which the upper and the lower estimates coincide.

We say that function $f$ is a generalized monotone function, if there exists a constant $c>0$ such that for every $x \in(0,1]$ the inequality

$$
|f(x)| \leq \frac{c}{x}\left|\int_{0}^{x} f(y) d y\right|
$$

holds. The class of such functions is denoted by $\mathfrak{N}$.

Corollary 1 Let $1<p<2<q<\infty$. If $\varphi \in \mathfrak{N}$, then $\varphi \in M_{p}^{q}$ if and only if

$$
\sup _{t>0} t^{\frac{1}{p}-\frac{1}{q}} \varphi^{*}(t)<\infty
$$

Moreover, $\|\varphi\|_{M_{p}^{q}} \sim \sup _{t>0} t^{\frac{1}{p}-\frac{1}{q}} \varphi^{* *}(t)$.

In case parameters $p_{0}, p_{1}$ are both either less or greater than 2 , we use the space of smooth functions.
Let $1 \leq p<\infty, \alpha>0$. We denote by $B_{p, q}^{\alpha}[0,1]$ the space of all measurable functions $f$ on $[0,1]$ such that

$$
\|f\|_{B_{p, q}^{\alpha}}=\left(\sum_{k=0}^{\infty}\left(2^{\alpha k}\left\|\Delta_{k} f\right\|_{p}\right)^{q}\right)^{\frac{1}{q}}<\infty
$$

for $1 \leq q<\infty$, and

$$
\|f\|_{B_{p, \infty}^{\alpha}}=\sup _{k} 2^{\alpha k}\left\|\Delta_{k} f\right\|_{p}<\infty
$$

for $q=\infty$. Here $\left\{a_{m}(f)\right\}_{m \in N}$ are the Fourier coefficients of the function $f$ by trigonometric system $\left\{e^{2 \pi i k x}\right\}_{k \in \mathbb{Z}}, \Delta_{k} f=\Delta_{k} f(x)=\sum_{\left[2^{k-1}\right] \leq|m|<2^{k}} a_{m}(f) e^{2 \pi i m x}$, and [2 $\left.2^{k-1}\right]$ is the integer part of $2^{k-1}$.

This class is called the Nikol'skii-Besov space.

Theorem 3 Let $1<p_{0} \leq p_{1}<\infty, 2 \notin\left[p_{0}, p_{1}\right], 1<q_{0} \leq q_{1} \leq \infty$,

$$
\begin{aligned}
& \qquad \alpha=\min _{x \in\left[\frac{1}{p_{1}}, \frac{1}{p_{0}}\right]}\left|\frac{1}{2}-x\right|, \quad \frac{1}{r}=\max _{x \in\left[\frac{1}{p_{1}}, \frac{1}{p_{0}}\right]}\left|\frac{1}{2}-x\right|, \quad 1-\frac{1}{s}=\frac{1}{q_{0}}-\frac{1}{q_{1}} \\
& \text { and } \varphi \in B_{r, s}^{\alpha}[0,1] \text {. } \\
& \text { If } A \in \mathfrak{S}_{p_{0}, q_{0}} \text {, then } A_{\varphi} \in \mathfrak{S}_{p_{1}, q_{1}} \text { and } \\
& \qquad\left\|A_{\varphi}\right\| \mathfrak{S}_{p_{1}, q_{1}} \leq c\|\varphi\|_{B_{r, s}^{\alpha}}\|A\|_{\mathfrak{S}_{p_{0}, q_{0}}} \text {, } \\
& \text { i.e., } B_{r, s}^{\alpha} \hookrightarrow M_{p_{0}, q_{0}}^{p_{1}} .
\end{aligned}
$$

In the case $p_{0}=p_{1}=q_{0}=q_{1}$, Karadzhov's result (see [5]) follows from Theorem 3:

$$
B_{r, 1}^{\frac{1}{r}} \hookrightarrow M_{p}=M_{p, p}^{p, p}, \quad \frac{1}{r}=\left|\frac{1}{p}-\frac{1}{2}\right| .
$$

Now consider the case $1 \leq q_{1}<q_{0} \leq \infty$.

Theorem 4 Let $1<p_{0}<p_{1}<\infty, 1 \leq q_{1}<q_{0} \leq \infty, 2 \notin\left(p_{0}, p_{1}\right), \frac{1}{r}-\alpha=\frac{1}{p_{0}}-\frac{1}{p_{1}}, \frac{1}{s}=\frac{1}{q_{1}}-\frac{1}{q_{0}}$, $\alpha>\min _{x \in\left[\frac{1}{p_{1}}, \frac{1}{p_{0}}\right]}\left|\frac{1}{2}-x\right|$.

Then $B_{r, s}^{\alpha}[0,1] \hookrightarrow M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$.

## 3 Properties of $M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$ class

To prove the properties of $M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$ class we need the following lemma. We first define a discrete Lorentz space. $l_{p q}$ is called a discrete Lorentz space whose elements are sequences of numbers $\xi=\left\{\xi_{k}\right\}_{k=\infty}^{\infty}$ with the only limit point 0 such that

$$
\|\xi\|_{l_{p q}}=\left(\sum_{m=1}^{\infty}\left|\xi_{m}^{*}\right|^{q} m^{\frac{q}{p}-1}\right)^{\frac{1}{q}}, \quad 1 \leq q<\infty
$$

where $\left\{\xi_{m}^{*}\right\}_{m=1}^{\infty}$ nonincreasing rearrangement of the sequence $\left\{\left|\xi_{k}\right|\right\}_{k=\infty}^{\infty}$.
For $q=\infty$,

$$
\|\xi\|_{l_{p \infty}}=\sup _{m} m^{\frac{1}{p}} \xi_{m}^{*} .
$$

Lemma 1 (See [6]) Let $1<r, p_{0}, p_{1}<\infty, 1 \leq q_{0}, q_{1}, s \leq \infty$. Then

$$
\|a * b\|_{l_{p_{1}, q_{1}}} \leq c\|b\|_{l_{r, s}}\|a\|_{l_{p_{0}, q_{0}}}
$$

where $\frac{1}{p_{1}}+1=\frac{1}{r}+\frac{1}{p_{0}}, \frac{1}{q_{1}}=\frac{1}{s}+\frac{1}{q_{0}}$.

Let $\bar{X}=\left(X_{0}, X_{1}\right)$, where $X_{0}, X_{1}$ are Banach spaces, be a compatible pair. We define the functional $K(t, a)$ for $t>0$ and $a \in X_{0}+X_{1}$ by the following formula:

$$
K(t, a)=\inf _{a=a_{0}+a_{1}}\left(\left\|a_{0}\right\|_{X_{0}}+t\left\|a_{1}\right\|_{X_{1}}\right)
$$

We denote by $\bar{X}_{\theta, q, k}$ the space $\left\{a \in X_{0}+X_{1}:\|a\|_{\theta, q, k}=\Phi_{\theta, q}(K(t, a))\right\}$, where $\Phi_{\theta, q}$ is a functional defined on nonnegative functions $\varphi$ by formula

$$
\Phi_{\theta, q}(\varphi(t))=\left(\int_{0}^{\infty}\left(t^{-\theta} \varphi(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}, \quad 1 \leq q<\infty
$$

and

$$
\Phi_{\theta, \infty}(\varphi(t))=\sup _{t>0} t^{-\theta} \varphi(t), \quad q=\infty
$$

Let $X_{\alpha_{1}^{0}, p_{1}^{0}}$ and $X_{\alpha_{2}^{1}, p_{2}^{1}}$ be the spaces obtained by the method of real interpolation of Ba nach pairs of spaces $\left(X_{0}^{1}, X_{1}^{1}\right),\left(X_{0}^{2}, X_{1}^{2}\right)$ respectively.

Lemma 2 (See [7]) Let $0<\alpha_{i}, \beta_{i}<1,1 \leq p_{i}, q_{i} \leq \infty, i=0,1, \alpha_{0} \neq \alpha_{1}, \beta_{0} \neq \beta_{1}$. If $T$ is a bilinear operator:

$$
T: X_{\alpha_{0}, p_{0}} \times Y_{0} \longrightarrow Z_{\beta_{0}, q_{0}}
$$

and

$$
T: X_{\alpha_{1}, p_{1}} \times Y_{1} \longrightarrow Z_{\beta_{1}, q_{1}}
$$

then

$$
T: X_{\alpha, p} \times Y_{\theta, r} \longrightarrow Z_{\beta, q} .
$$

Here $\alpha=(1-\theta) \alpha_{0}+\theta \alpha_{1}, \beta=(1-\theta) \beta_{0}+\theta \beta_{1}, \frac{1}{p}+\frac{1}{r}>1,1+\frac{1}{q}=\frac{1}{p}+\frac{1}{r}+(1-\theta)\left(\frac{1}{q_{0}}-\frac{1}{p_{0}}\right)+$ $\theta\left(\frac{1}{q_{1}}-\frac{1}{p_{1}}\right)_{+}, x_{+}=\max (x, 0)$.

Remark Since the $s$-numbers of convolution operator $A$ coincide with the modules of the Fourier coefficients of the kernel $K$, the problem of estimating the $s$-numbers of "transformed" operator $A_{\varphi}$ can be reduced to the study of the following inequality

$$
\begin{equation*}
\|a * b\|_{p_{p_{1}, q_{1}}} \leq c\|a\|_{l_{p_{0}, q_{0}}} \tag{1}
\end{equation*}
$$

and we have to describe the class of those functions $\varphi$ with Fourier coefficients $b=$ $\left\{b_{m}\right\}_{m \in Z}$, for which Inequality (1) holds.

## Theorem 5

(1) Let $1 \leq p_{0}, p_{1}<\infty, 1 \leq q_{0}, q_{1} \leq \infty, \frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=\frac{1}{q_{i}}+\frac{1}{q_{i}^{\prime}}=1, i=0,1$. Then

$$
M_{p_{0}, q_{0}}^{p_{1}, q_{1}}=M_{p_{1}^{\prime}, q_{1}^{\prime}}^{p_{0}^{\prime}, q_{0}^{\prime}} .
$$

(2) Let $1<p_{0}<r_{0}<p_{1}^{\prime}<\infty, \frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1, \frac{1}{p_{1}}-\frac{1}{p_{0}}=\frac{1}{r_{1}}-\frac{1}{r_{0}}$, then

$$
M_{p_{0}, q_{0}}^{p_{1}, q_{1}} \hookrightarrow M_{r_{0}, s}^{r_{1}, t}
$$

where $\frac{1}{t}-\frac{1}{s}=\left(\frac{1}{q_{1}}-\frac{1}{q_{0}}\right)_{+}$.
Proof The proof of the first statement follows from Remark and from the fact that $\left\|\left(T_{\varphi}\right)^{*}\right\|=\left\|T_{\bar{\varphi}}\right\|$, where $\bar{\varphi}$ is a complex conjugate of the function $\varphi$. Now we prove (2).
Let $\varphi \in M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$, then by (1) it follows that $\varphi \in M_{p_{1}^{\prime}, q_{1}^{\prime}}^{p_{0}^{\prime}, q_{0}^{\prime}}$, and

$$
\begin{array}{ll}
\left\|A_{\varphi}\right\|_{\mathfrak{S}_{p_{1}, q_{1}}} \leq\|\varphi\|_{M_{p_{0}, q_{0}}^{p_{1}, q_{1}}}\|A\|_{\mathfrak{S}_{p_{0}, q_{0}}}, & \forall A \in \mathfrak{S}_{p_{0}, q_{0}}, \\
\left\|A_{\varphi}\right\|_{\mathfrak{S}_{p_{0}^{\prime}, q_{0}^{\prime}}} \leq\|\varphi\|_{M_{p_{0}, q_{0}}^{p_{1}, q_{1}}}\|A\|_{\mathfrak{S}_{p_{1}^{\prime}, q_{1}^{\prime}},}, \quad \forall A \in \mathfrak{S}_{p_{1}^{\prime}, q_{1}^{\prime}},
\end{array}
$$

where $\frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=\frac{1}{q_{i}}+\frac{1}{q_{i}^{\prime}}=1$. According to Lemma 1, the operator $T(a, \varphi)=a * b$

$$
T: l_{p_{0}, q_{0}} \times M_{p_{0}, q_{0}}^{p_{1}, q_{1}} \longrightarrow l_{p_{1}, q_{1}}
$$

is bounded. Using (1) we have

$$
T: l_{p_{1}^{\prime}, q_{1}^{\prime}} \times M_{p_{0}, q_{0}}^{p_{1}, q_{1}} \longrightarrow l_{p_{0}^{\prime}, q_{0}^{\prime}} .
$$

Further, applying the theorem on bilinear interpolation (Lemma 2) we find that the operator

$$
T: l_{r_{0}, s} \times M_{p_{0}, q_{0}}^{p_{1}, q_{1}} \longrightarrow l_{r_{1}, t}
$$

is also bounded, i.e., $M_{p_{0}, q_{0}}^{p_{1}, q_{1}} \hookrightarrow M_{r_{0}, s}^{r_{1}, t}$, where

$$
\frac{1}{r_{1}}=\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{0}^{\prime}}, \quad \frac{1}{r_{0}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}^{\prime}}, \quad \frac{1}{t}-\frac{1}{s}=\left(\frac{1}{q_{1}}-\frac{1}{q_{0}}\right)_{+}
$$

for every $0<\theta<1$. Eliminating $\theta$ from this equation, we obtain that

$$
\frac{1}{p_{1}}-\frac{1}{p_{0}}=\frac{1}{r_{1}}-\frac{1}{r_{0}},
$$

and the condition $0<\theta<1$ implies the condition $1<p_{0}<r_{0}<p_{1}^{\prime}<\infty$, where $\frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1$.
The proof is complete.

By (2), in particular, the following proposition follows.
Let $1<p<r<p^{\prime}<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1$, then

$$
M_{p, q} \hookrightarrow M_{r, t},
$$

where $M_{p, q}=M_{p, q}^{p, q}$ and $q, t \in[1, \infty[$ are any.

## 4 Proof of main results

For a given pair $\bar{X}=\left(X_{0}, X_{1}\right)$ we consider the space $\Gamma(\bar{X})$ consisting of all functions $f$ bounded and continuous in the strip

$$
S=\{z: 0 \leq \operatorname{Re} z \leq 1\}
$$

with values in $X_{0}+X_{1}$. Moreover, $f$ are analytic in the open strip

$$
S_{0}=\{z: 0<\operatorname{Re} z<1\}
$$

and such that the mapping $t \rightarrow f(j+i t)(j=0,1)$ is a continuous function on the real axis with values in $X_{j}(j=0,1)$ which tends to 0 for $|t| \longrightarrow \infty$. It is clear that $\Gamma(\bar{X})$ is a vector space. We endow $\Gamma$ with the norm

$$
\|f\|_{\Gamma}=\max \left(\sup _{t}\|f(i t)\|_{X_{0}}, \sup _{t}\|f(1+i t)\|_{X_{1}}\right) .
$$

The space $\bar{X}_{[\theta]}, 0 \leq \theta \leq 1$ consists of all elements $a \in X_{0}+X_{1}$ such that $a=f(\theta)$ for some function $f \in \Gamma(\bar{X})$. The norm on $\bar{X}_{[\theta]}$ is equal to

$$
\|a\|_{[\theta]}=\inf \left\{\|f\|_{\Gamma}: f(\theta)=a, f \in \Gamma\right\} .
$$

In order to prove our main result, we need two lemmas in [8].
Lemma 3 (Bilinear interpolation, the complex method, see [8]) Let $T$ be a bilinear operator such that

$$
T: X_{0} \times Y_{0} \longrightarrow Z_{0}
$$

and

$$
T: X_{1} \times Y_{1} \longrightarrow Z_{1} .
$$

Then

$$
T: X_{[\theta]} \times Y_{[\theta]} \longrightarrow Z_{[\theta]},
$$

where $X_{[\theta]}, Y_{[\theta]}, Z_{[\theta]}$ are the spaces obtained by the method of complex interpolation of Banach pairs of spaces $\left(X_{0}, X_{1}\right),\left(Y_{0}, Y_{1}\right),\left(Z_{0}, Z_{1}\right)$ respectively.

Lemma 4 (Bilinear interpolation, the real method, see [8]) Let $T$ be a bilinear operator such that

$$
T: X_{0} \times Y_{0} \longrightarrow Z_{0}
$$

and

$$
T: X_{1} \times Y_{1} \longrightarrow Z_{1}
$$

with the norms $B_{0}, B_{1}$ respectively. Then

$$
T: X_{\theta, t_{1}} \times Y_{\theta, t_{2}} \longrightarrow Z_{\theta, s}
$$

where $\frac{1}{s}+1=\frac{1}{t_{1}}+\frac{1}{t_{2}}$. Moreover,

$$
\|T\| \leq c B_{0}^{1-\theta} B_{1}^{\theta} .
$$

Proof of Theorem 1 First we prove the inequality:

$$
\begin{equation*}
\|a * b\|_{p_{1}, q_{1}} \leq c\|\varphi\|_{L_{r}}\|a\|_{p_{0}, q_{0}}, \tag{2}
\end{equation*}
$$

where $b=\left\{b_{k}\right\}_{k \in \mathbb{Z}}$ are Fourier coefficients of the function $\varphi$.
If $r \leq 2$, Inequality (2) follows by Lemma 1 and Hardy-Littlewood-Paley inequality [9]. Indeed, since $\varphi \in L_{r s}$, by the Hardy-Littlewood-Paley theorem, we have $b \in l_{r^{\prime} s}$ and the following inequality holds

$$
\|b\|_{r_{r^{\prime}}} \leq c\|\varphi\|_{L_{r s}} .
$$

Taking $s=r$, we get

$$
\|b\|_{r_{r^{\prime}}, r} \leq c\|\varphi\|_{L_{r}} .
$$

Now let $2<r<\infty$. Let $a \in l_{2}, f \sim \sum_{k \in Z} a_{k} e^{2 \pi i k x}$, then by Parseval's equality we get

$$
\|a * b\|_{L_{2}}=\|f \varphi\|_{L_{2}} \leq\|f\|_{L_{2}}\|\varphi\|_{L_{\infty}}=\|\varphi\|_{L_{\infty}}\|a\|_{L_{2}},
$$

i.e., $M_{2}=L_{\infty}$. From Lemma 1, using Parseval's equality we have

$$
\|a * b\|_{p_{p_{1}, q_{1}}} \leq c\|\varphi\|_{L_{2}}\|a\|_{p_{0}, q_{0}},
$$

where $\frac{1}{p_{1}}+1=\frac{1}{2}+\frac{1}{p_{0}}, \frac{1}{p_{1}}+\frac{1}{2}=\frac{1}{p_{0}}, \frac{1}{q_{1}}=\frac{1}{q_{0}}+\frac{1}{2}$.
Thus, for the bilinear operator $T(a, \varphi)=a * b$ we obtain

$$
\begin{aligned}
& T: l_{2} \times L_{\infty} \longrightarrow l_{2}, \\
& T: l_{p_{0}, q_{0}} \times L_{2} \longrightarrow l_{p_{1}, q_{1}} .
\end{aligned}
$$

Applying the method of complex interpolation (Lemma 3), we obtain Inequality (2). Now we shall prove the inequality

$$
\begin{equation*}
\|a * b\|_{p_{1, ~}^{1},} \leq c\|\varphi\|_{L_{r, s}}\|a\|_{l_{0, q}, q_{0}}, \tag{3}
\end{equation*}
$$

where $\frac{1}{s}=\frac{1}{q_{1}}-\frac{1}{q_{0}}$.
Let $q_{0}=\infty$ and $p_{0}$ be fixed in Inequality (2). Taking $\frac{1}{q_{1}^{i}}=\frac{1}{r_{i}}, i=0,1$, choose parameters $r_{0}, r_{1}, p_{1}^{0}, p_{1}^{1}$ such that

$$
\begin{equation*}
\frac{1}{p_{0}}=\frac{1}{p_{1}^{i}}+\frac{1}{r_{i}}, \quad i=0,1 . \tag{4}
\end{equation*}
$$

Then from Inequality (2) we have

$$
\begin{aligned}
& \|a * b\|_{l_{p_{1}^{0}, r_{0}}} \leq c_{1}\|a\|_{l_{p_{0}, \infty}}\|\varphi\|_{L_{r_{0}}}, \\
& \|a * b\|_{l_{p_{1}^{1}, r_{1}}} \leq c_{2}\|a\|_{l_{p_{0}, \infty}}\|\varphi\|_{L_{r_{1}}} .
\end{aligned}
$$

Using Marcinkiewicz-Calderón interpolation theorem (see [8]), we get

$$
\begin{equation*}
\|a * b\|_{l_{p_{1}, s}} \leq\left(c_{1}\|a\|_{l_{0}, \infty}\right)^{\theta}\left(c_{2}\|a\|_{l_{p_{0}, \infty}}\right)^{1-\theta}\|\varphi\|_{L_{r, s}}=c\|a\|_{l_{p_{0}, \infty}}\|\varphi\|_{L_{r, s}}, \tag{5}
\end{equation*}
$$

where $\frac{1}{p_{1}}=\frac{1-\theta}{p_{1}^{0}}+\frac{\theta}{p_{1}^{1}}, \frac{1}{r}=\frac{1-\theta}{r_{0}}+\frac{\theta}{r_{1}}$, i.e., $\frac{1}{p_{0}}-\frac{1}{p_{1}}=\frac{1}{r}$.
Now we apply Lemma 2 with fixed parameters $r, s$ and parameters $p_{1}^{i}, p_{0}^{i}, i=0,1$ satisfying (4) and the inequality of type (5). We have:

$$
\left(L_{r, s}, L_{r, s}\right)_{\theta, 1} \times\left(l_{p_{0}^{0}, \infty}, l_{p_{0}^{1}, \infty}\right)_{\theta, q_{0}} \longrightarrow\left(l_{p_{1}^{0}, s}, l_{p_{1}^{1}, s}\right)_{\theta, q_{1}}
$$

or

$$
T: L_{r, s} \times l_{p_{0}, q_{0}} \longrightarrow l_{p_{1}, q_{1}},
$$

where $\frac{1}{q_{1}}-\frac{1}{q_{0}}=\frac{1}{s}-\frac{1}{\infty}, \frac{1}{p_{1}}=\frac{1-\theta}{p_{1}^{0}}+\frac{\theta}{p_{1}^{1}}, \frac{1}{p_{0}}=\frac{1-\theta}{p_{0}^{0}}+\frac{\theta}{p_{0}^{1}}$, i.e., $\frac{1}{q_{1}}=\frac{1}{s}+\frac{1}{q_{0}}, \frac{1}{p_{0}}-\frac{1}{p_{1}}=\frac{1}{r}$.
Since the parameters $p_{1}^{i}, p_{0}^{i}, i=0,1$ are arbitrary in Inequality (5), it guarantees the arbitrary of the corresponding parameters in Inequality (4).

Thus, the following inequality holds:

$$
\|a * b\|_{l_{p_{1}, q_{1}}} \leq c\|a\|_{l_{p_{0}, q_{0}}}\|\varphi\|_{L_{r, s}}
$$

where $b=\left\{b_{m}\right\}_{m \in Z}$ are Fourier coefficients of the function $\varphi$ and $\frac{1}{r}=\frac{1}{p_{0}}-\frac{1}{p_{1}}, \frac{1}{s}=\frac{1}{q_{1}}-\frac{1}{q_{0}}$. According to Remark, this inequality is equivalent to the statement of Theorem 1.

Proof of Theorem 2 Let $\varphi \in M_{p}^{q}$ and $Q$ be an arbitrary segment in $[0,1]$,

$$
f_{0}(x)= \begin{cases}1, & x \in Q \\ 0, & x \notin Q\end{cases}
$$

Note that by Boas theorem [10] (see also [11]) we get

$$
\begin{equation*}
\left\|\widehat{f}_{0}\right\|_{l_{p}} \sim\left\|f_{0}\right\|_{L_{p^{\prime}, p}}=\left(\int_{0}^{1}\left(t^{\frac{1}{p^{\prime}}} f_{0}^{*}(t)\right)^{p} \frac{d t}{t}\right)^{\frac{1}{p}}=|Q|^{\frac{1}{p^{\prime}}} . \tag{6}
\end{equation*}
$$

Applying Theorem 5 from [12] and using (6), we obtain:

$$
\begin{aligned}
\|\varphi\|_{M_{p}^{q}} & =\sup _{f \neq 0} \frac{\|\widehat{f \varphi}\|_{l_{q}}}{\| \widehat{f \|_{l_{p}}}} \geq \frac{\left\|\widehat{f_{0} \varphi}\right\|_{l_{q}}}{\left\|\widehat{f_{0}}\right\|_{l_{p}}} \\
& \geq \frac{c}{|Q|^{\frac{1}{p^{\prime}}}} \int_{0}^{1}\left(t^{\frac{1}{q^{\prime}}}\left(\sup _{|W| \geq t, W \in G} \frac{1}{|W|}\left|\int_{W} f_{0}(x) \varphi(x) d x\right|\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{c}{|Q|^{\frac{1}{p^{\prime}}}} \sup _{t>0} t^{\frac{1}{q^{\prime}}}\left(\sup _{|W| \geq t, W \in G} \frac{1}{|W|}\left|\int_{W \cap Q} \varphi(x) d x\right|\right) \\
& \geq \frac{c_{1}}{|Q|^{\frac{1}{p^{\prime}}}}|Q|^{\frac{1}{q^{\prime}}-1}\left|\int_{Q} \varphi(x) d x\right|=\frac{c_{1}}{|Q|^{\frac{1}{p^{\prime}}+\frac{1}{q}}}\left|\int_{Q} \varphi(x) d x\right|
\end{aligned}
$$

Since the interval $Q$ is arbitrary, we get

$$
\|\varphi\|_{M_{p}^{q}} \geq c_{1} \sup _{Q \in G} \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right|
$$

where constants $c$ and $c_{1}$ depend only on parameters $p$ and $q$.
The proof of obtaining an upper estimate follows from Theorem 1 and the embedding $l_{p, p} \hookrightarrow l_{p, q}$, for $p<q$.

Indeed, from Theorem 1 it follows

$$
L_{r, \infty} \hookrightarrow M_{p}^{q}
$$

i.e.,

$$
\begin{aligned}
\|\varphi\|_{M_{p}^{q}} & \leq c_{2} \sup _{t>0} t^{\frac{1}{r}} \varphi^{*}(t) \leq c_{3} \sup _{t>0} \frac{1}{t^{\frac{1}{p^{+}+\frac{1}{q}}}} \int_{0}^{t} \varphi^{*}(s) d s \\
& =c_{3} \sup _{Q \in F} \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}} \int_{Q}|\varphi(x)| d x \sim \sup _{Q \in F} \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right| .
\end{aligned}
$$

Proof of Corollary 1 Let $Q$ be an arbitrary compact from $F$.
From the condition of generalized monotonicity of the function $\varphi$ we have

$$
\begin{aligned}
\frac{1}{|Q|^{\frac{1}{p^{\prime}}+\frac{1}{q}}}\left|\int_{Q} \varphi(y) d y\right| & \leq \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}} \int_{Q} \frac{c}{y}\left|\int_{0}^{y} \varphi(x) d x\right| d y \\
& \leq \frac{c}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}} \sup _{A \in G} \frac{1}{|A|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{A} \varphi(x) d x\right| \int_{Q} \frac{d y}{y^{1-\frac{1}{q}-\frac{1}{p^{\prime}}}} \\
& \leq c_{1} \sup _{A \in G} \frac{1}{|A|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{A} \varphi(x) d x\right|
\end{aligned}
$$

Taking into account that $Q \in F$ is arbitrary, we have

$$
\sup _{Q \in F} \frac{1}{|Q|^{\frac{1}{p^{+}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right| \leq c \sup _{Q \in G} \frac{1}{|Q|^{\frac{1}{p^{\prime}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right| .
$$

Thus, from Theorem 2 we get

$$
\|\varphi\|_{M_{p}^{q}} \sim \sup _{Q \in F} \frac{1}{|Q|^{\frac{1}{p^{p}+\frac{1}{q}}}}\left|\int_{Q} \varphi(x) d x\right| \sim \sup _{t>0} t^{\frac{1}{p}-\frac{1}{q}} \varphi^{*}(t) .
$$

Proof of Theorem 3 Let $2<p_{0} \leq p_{1}<\infty$. For a sequence of numbers $a=\left\{a_{m}\right\}_{m \in Z}$ and a function $\varphi \in L_{1}[0,1]$ we consider the mapping $T$ of the form $T(a, \varphi)=a * b$, where $b=$
$\left\{b_{m}\right\}_{m \in Z}$ is the sequence of Fourier coefficients on the trigonometric system of functions $\varphi$. This map is bilinear and from Karadzhov's theorem [5] and Remark it follows that it is bounded from $l_{1} \times B_{2,1}^{\frac{1}{2}}$ to $l_{1}$.

Since $M_{2}=L_{\infty}$, the mapping

$$
T_{\varphi}: l_{2} \times L_{\infty} \longrightarrow l_{2}
$$

is also bounded. Thus, for the operator $T$, the following is true

$$
\begin{aligned}
& T: l_{1} \times B_{2,1}^{\frac{1}{2}} \longrightarrow l_{1}, \\
& T: l_{2} \times L_{\infty} \longrightarrow l_{2} .
\end{aligned}
$$

Then, by Lemma 4 on bilinear interpolation, we get

$$
\left(l_{1}, l_{2}\right)_{\theta, q} \times\left(B_{2,1}^{\frac{1}{2}}, L_{\infty}\right)_{\theta, 1} \longrightarrow\left(l_{1}, l_{2}\right)_{\theta, q}
$$

i.e., the operator $T$ is bounded from $l_{p, q} \times\left(B_{2,1}^{\frac{1}{2}}, L_{\infty}\right)_{\theta, 1}$ to $l_{p, q}$. In the paper [5] it is shown that $B_{r, 1}^{\frac{1}{r}} \hookrightarrow\left(B_{2,1}^{\frac{1}{2}}, L_{\infty}\right)_{\theta, 1}$, where $\frac{1}{r}=\frac{1-\theta}{2}$. Thus, taking into account Theorem 5 , we will get

$$
\begin{equation*}
T: l_{p, q} \times B_{r, 1}^{\frac{1}{r}} \longrightarrow l_{p, q} \tag{7}
\end{equation*}
$$

for $2<p<\infty, 1 \leq q \leq \infty, \frac{1}{r}=\frac{1}{2}-\frac{1}{p}$.
From Minkowski's inequality and Parseval's equality we get

$$
T: l_{1} \times L_{2} \longrightarrow l_{2} .
$$

Thus, for the operator $T$, the following is true

$$
\begin{aligned}
& T: l_{p, q} \times B_{r, 1}^{\frac{1}{r}} \longrightarrow l_{p, q} \\
& T: l_{1} \times L_{2} \longrightarrow l_{2}
\end{aligned}
$$

Then, by Lemma 3 we get

$$
\left(l_{p, q}, l_{1}\right)_{[\theta]} \times\left(B_{r, 1}^{\frac{1}{r}}, L_{2}\right)_{[\theta]} \longrightarrow\left(l_{p, q}, l_{2}\right)_{[\theta]}
$$

i.e., $T$ is a bounded mapping from $l_{p_{0}, q_{0}} \times B_{r, s}^{\alpha}$ to $l_{p_{1}, q_{1}}$, where $2<p_{0} \leq p_{1}<\infty, \frac{1}{r}=\frac{1}{2}-\frac{1}{p_{1}}$, $\alpha=\frac{1}{2}-\frac{1}{p_{0}}$. The arbitrary choice of parameters guarantees the arbitrary of the parameters available in the theorem.

The case $1<p_{0}<p_{1}<2$ follows from the statements proved above and the property $M_{p_{0}, q_{0}}^{p_{1}, q_{1}}=M_{p_{1}^{\prime}, q_{1}^{\prime}}^{p_{0}^{\prime}, q_{0}^{\prime}}$.

Proofof Theorem 4 Let $1<p_{0}<p_{1} \leq 2$. Let us consider the bilinear mapping $T(a, \varphi)=a * b$, where $b=\left\{b_{m}\right\}_{m \in Z}$ is the sequence of Fourier coefficients of the function $\varphi$. The mapping

$$
\begin{equation*}
T: l_{p_{0}, q_{0}} \times L_{2} \longrightarrow l_{p_{1}, q_{1}} \tag{8}
\end{equation*}
$$

is bounded according to Theorem 1. Here $\frac{1}{p_{0}}-\frac{1}{p_{1}}=\frac{1}{2}, \frac{1}{q_{1}}-\frac{1}{q_{0}}=\frac{1}{2}, 1<q_{1}<2<q_{0}, 1<p_{0}<$ $2<p_{1}$. The result of Theorem 3, in the case $q_{0}=q_{1}=1, p_{0}=p_{1}=p$ can be written as

$$
\begin{equation*}
T: l_{p, 1} \times B_{t, 1}^{1 / t} \longrightarrow l_{p, 1}, \quad \frac{1}{t}=\frac{1}{p}-\frac{1}{2} . \tag{9}
\end{equation*}
$$

Applying Lemma 3 on the bilinear interpolation to (8) and (9), and taking into account the properties of the embedding of the spaces $l_{p, q}$ and $B_{p, q}^{\alpha}$, we have:

$$
\begin{equation*}
T: l_{p_{0}, 1} \times B_{r, 1}^{\alpha} \longrightarrow l_{p_{1}, \infty} \tag{10}
\end{equation*}
$$

where parameters $r, \alpha, p_{0}, p_{1}$ satisfy the following conditions:

$$
\begin{equation*}
1<p_{0}<p_{1} \leq 2, \quad \frac{1}{r}-\alpha=\frac{1}{p_{0}}-\frac{1}{p_{1}}, \quad \alpha>\frac{1}{p_{1}}-\frac{1}{2} . \tag{11}
\end{equation*}
$$

Let in (11) parameter $r$ be fixed. Using Lemma 4 on bilinear interpolation and taking into account that

$$
\left(B_{r, 1}^{\alpha_{0}}, B_{r, 1}^{\alpha_{1}}\right)_{\theta, h}=B_{r, h}^{\alpha}, \quad \text { with } \alpha=(1-\theta) \alpha^{0}+\alpha^{1}
$$

we get

$$
T: l_{p_{0}, h_{1}} \times B_{r, h_{2}}^{\alpha} \longrightarrow l_{p, h_{3}}
$$

where $\frac{1}{h_{1}}+1=\frac{1}{h_{2}}+\frac{1}{h_{3}}, \alpha>\frac{1}{p_{1}}-\frac{1}{2}=\min _{x \in\left[\frac{1}{p_{1}}, \frac{1}{p_{0}}\right]}\left|\frac{1}{2}-x\right|, \frac{1}{r}-\alpha=\frac{1}{p_{0}}-\frac{1}{p_{1}}$.
Therefore, with fixed $a \in l_{p_{0}, \infty}$ and $r$ we obtain that

$$
P_{a}: B_{r, 1}^{\alpha_{i}} \longrightarrow l_{p_{1}^{i}, \infty}
$$

and

$$
\left\|P_{a}\right\|_{B_{r, 1}^{\alpha_{i}} \rightarrow l_{p_{1}^{i}, \infty}} \leq c_{i}\|a\|_{l_{p_{0}, \infty}}
$$

where $\frac{1}{r}-\alpha_{i}=\frac{1}{p_{0}}-\frac{1}{p_{1}^{i}}, \alpha^{i}>\frac{1}{p_{1}^{i}}-\frac{1}{2}, i=0,1$.
Using Marcinkiewicz-Calderón interpolation theorem we have

$$
P_{a}: B_{r, s}^{\alpha} \longrightarrow l_{p_{1}, s},
$$

and

$$
\left\|P_{a}\right\|_{B_{r, s}^{\alpha} \rightarrow l_{p_{1}, s}} \leq c\|a\|_{l_{p_{0}, \infty}}
$$

Thus

$$
T: l_{p_{0}, \infty} \times B_{r, s}^{\alpha} \longrightarrow l_{p_{1}, s}
$$

To complete the proof we fix the function $\varphi$ and the parameters $r, s, \alpha$ and we choose the parameters $p_{0}^{i}, p_{1}^{i}, i=0,1$ satisfying (11). We use Lemma 2 to get $B_{r, s}^{\alpha}[0,1] \hookrightarrow M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$.

The case $2 \leq p_{0}<p_{1}<\infty$, as in the proof of Theorem 3, will follow from $M_{p_{0}, q_{0}}^{p_{1}, q_{1}}=M_{p_{1}^{\prime}, q_{1}}^{p_{0}^{\prime}, q_{0}^{\prime}}$.

## 5 Examples demonstrating the sharpness of the results

Proposition 1 Let $1<p_{0}<2 \leq p_{1}, \frac{1}{r}=\frac{1}{p_{0}}-\frac{1}{p_{1}}, \frac{1}{s}=\left(\frac{1}{q_{1}}-\frac{1}{q_{0}}\right)_{+}$. If $q_{1}<q_{0}$, then for any $\varepsilon>0$ there exists $\varphi_{1} \in L_{r, s+\varepsilon}$ such that $\varphi_{1} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$, if $q_{1} \geq q_{0}$ there exists $\varphi_{2} \in L_{r-\varepsilon, \infty}$ such that $\varphi_{2} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$.

Proof Let $\varepsilon$ be an arbitrary positive number, and numbers $\beta_{1}, \beta_{2}$ be such that

$$
\beta_{1}>\frac{1}{s+\varepsilon}, \quad \beta_{2}>\frac{1}{q_{0}}, \quad \beta_{1}+\beta_{2}<\frac{1}{s}+\frac{1}{q_{0}}=\frac{1}{q_{1}} .
$$

Let

$$
\begin{aligned}
& b_{k}=\frac{1}{(|k|+1)^{1 / r^{\prime}} \ln ^{\beta_{1}}(|k|+1)}, \\
& a_{k}=\frac{1}{(|k|+1)^{1 / p_{0}} \ln ^{\beta_{2}}(|k|+1)},
\end{aligned}
$$

and

$$
\varphi_{1} \sim \sum_{k=-\infty}^{+\infty} b_{k} e^{2 \pi i k x} .
$$

Then for $m \neq 0$

$$
\begin{aligned}
& (a * b)_{m}=\sum_{k=-\infty}^{+\infty} \frac{1}{(|k|+1)^{1 / r^{\prime}} \ln ^{\beta_{1}}(|k|+1)(|k-m|+1)^{1 / p_{0}} \ln ^{\beta_{2}}(|k-m|+1)} \\
& \sim \int_{-\infty}^{+\infty} \frac{d x}{|x|^{1 / r^{\prime}}|\ln | x| |^{\beta_{1}}|x-m|^{1 / p_{0}}|\ln | x-m| |^{\beta_{2}}}, \\
& \int_{-\infty}^{+\infty} \frac{d x}{|x|^{1 / r^{\prime}}|\ln | x| |^{\beta_{1}}|x-m|^{1 / p_{0}}|\ln | x-m| |^{\beta_{2}}} \\
& =|m|^{-\left(\frac{1}{r^{\prime}}+\frac{1}{p_{0}}\right)+1} \cdot \int_{-\infty}^{+\infty} \frac{d y}{|y|^{1 / r^{\prime}}|\ln | y|+\ln | m| |^{\beta_{1}}|y-1|^{1 / p_{0}}|\ln | y-\left.1|+\ln | m\right|^{\beta_{2}}} \\
& =\left.|m|^{-\left(\frac{1}{r^{\prime}}+\frac{1}{p_{0}}\right)+1}|\ln | m\right|^{-\beta_{1}-\beta_{2}} \cdot \int_{-\infty}^{+\infty} \frac{d y}{|y|^{1 / r^{\prime}}\left|\frac{\ln |y|}{\ln |m|}+1\right|^{\beta_{1}}|y-1|^{1 / p_{0}}\left|\frac{\ln |y-1|}{\ln |m|}+1\right|^{\beta_{2}}} \\
& \geq|m|^{-\left(\frac{1}{r^{\prime}}+\frac{1}{p_{0}}\right)+1}|\ln | m| |^{-\beta_{1}-\beta_{2}} \cdot \int_{-\infty}^{+\infty} \frac{d y}{|y|^{1 / r^{\prime}}|\ln | y|+1|^{\beta_{1}}|y-1|^{1 / p_{0}}|\ln | y-1|+1|^{\beta_{2}}} .
\end{aligned}
$$

Thus, $(a * b)_{m} \geq c(|m|+1)^{-\left(\frac{1}{r^{\prime}}+\frac{1}{p_{0}}\right)+1}|\ln (|m|+2)|^{-\beta_{1}-\beta_{2}}$. Since

$$
\sum_{m=0}^{+\infty}\left(\left((m+1)^{-\left(\frac{1}{r^{\prime}}+\frac{1}{p_{0}}\right)+1}|\ln (|m|+2)|^{-\beta_{1}-\beta_{2}}\right)^{q_{1}}(|m|+1)^{\left(\frac{q_{1}}{p_{1}}-1\right)}\right)=\infty,
$$

$a * b \notin l_{p_{1}, q_{1}}$, and therefore $\varphi_{1} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$. Since Fourier coefficients of $\varphi_{1}$ are the sequence $\left\{b_{k}\right\}_{k \in Z}$ it follows that $\varphi_{1} \in L_{r, s}$.
To prove the second part of the proposition, we take $s=\infty$. Let numbers $\alpha_{1}$ and $\alpha_{2}$ be such that

$$
\alpha_{1}>\frac{1}{(r-\varepsilon)^{\prime}}=1-\frac{1}{r-\varepsilon}, \quad \alpha_{2}>\frac{1}{p_{0}}, \quad \alpha_{1}+\alpha_{2}<1-\frac{1}{r}+\frac{1}{p_{0}}
$$

(note that the last inequality does not contradict the previous two). Choosing

$$
b_{k}=\frac{1}{(|k|+1)^{\alpha_{1}}}, \quad a_{k}=\frac{1}{(|k|+1)^{\alpha_{2}}}, \quad \varphi_{2} \sim \sum_{k=-\infty}^{+\infty} b_{k} e^{2 \pi i k x},
$$

we can show that

$$
a * b \sim\left\{(|k|+1)^{-\alpha_{1}-\alpha_{2}+1}\right\}_{k \in Z} .
$$

Hence $a * b \notin l_{p_{1}, q_{1}}$, and therefore $\varphi_{2} \notin M_{p_{0} q_{0}}^{p_{1} q_{1}}$. At the same time taking into account the monotonicity of the sequence $\left\{b_{k}\right\}_{k \in \mathbb{Z}}$ and Hardy-Littlewood theorem, we have that $\varphi_{2} \in$ $L_{r-\varepsilon, \infty}$. The statement is proved.

Theorem 6 Let $1<p_{0}<p_{1}<2,1<q_{1} \leq q_{0}, \frac{1}{r}-\alpha=\frac{1}{p_{0}}-\frac{1}{p_{1}}, \frac{1}{s}=\frac{1}{q_{1}}-\frac{1}{q_{0}}$. Then for any $\varepsilon>0$ there exist $\varphi_{1} \in B_{r, \infty}^{\alpha-\varepsilon} \cap B_{r-\varepsilon, \infty}^{\alpha}$ and $\varphi_{2} \in B_{r, s+\varepsilon}^{\alpha}$ such that $\varphi_{1} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}, \varphi_{2} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$.

Proof Let $s<\infty$ and numbers $\beta_{1}, \beta_{2}$ be such that

$$
\beta_{1}>\frac{1}{s+\varepsilon}, \quad \beta_{2}>\frac{1}{q_{0}}, \quad \beta_{1}+\beta_{2}<\frac{1}{s}+\frac{1}{q_{0}}=\frac{1}{q_{1}} .
$$

Let $b=\left\{b_{k}\right\}_{k \in Z}$ and $a=\left\{a_{k}\right\}_{k \in Z}$, where

$$
\begin{aligned}
& b_{k}=\frac{1}{(|k|+1)^{\alpha-\frac{1}{r}+1} \ln ^{\beta_{1}}(|k|+2)^{\beta_{1}}}, \\
& a_{k}=\frac{1}{(|k|+1)^{k / p_{0}} \ln ^{\beta_{2}}(|k|+2)^{\beta_{2}}} .
\end{aligned}
$$

It is obvious that $a \in l_{p_{0}, q_{0}}$, and $\varphi_{2} \sim \sum_{k=-\infty}^{+\infty} b_{k} e^{2 \pi i k x}$ belongs to $B_{r, s+\varepsilon}^{\alpha}$.
It is easy to show that

$$
(a * b)_{m} \geq c(|m|+1)^{\alpha-\frac{1}{r}+\frac{1}{p_{0}}}(\ln (|m|+2))^{\beta_{1}+\beta_{2}}
$$

and consequently, $a * b \notin l_{p_{1}, q_{1}}$. Therefore $\varphi_{2} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$.
To construct the function $\varphi_{1}$, it is sufficient to consider the sequences

$$
b=\left\{\frac{1}{(|m|+1)^{\gamma_{1}}}\right\}_{m \in Z}, \quad a=\left\{\frac{1}{(|m|+1)^{\gamma_{2}}}\right\}_{m \in Z},
$$

where

$$
\gamma_{1}>\max \left(\alpha-\varepsilon-\frac{1}{r}+1, \alpha-\frac{1}{r+\varepsilon}+1\right), \quad \gamma_{2}>\frac{1}{p_{0}}
$$

and

$$
\gamma_{1}+\gamma_{2}<\alpha-\frac{1}{r}+\frac{1}{p_{0}} .
$$

$\varphi_{1} \sim \sum_{k=-\infty}^{+\infty} b_{k} e^{2 \pi i k x}$. The proof that $\varphi_{1} \in B_{r, \infty}^{\alpha-\varepsilon} \cap B_{r-\varepsilon, \infty}^{\alpha}, \varphi_{1} \notin M_{p_{0}, q_{0}}^{p_{1}, q_{1}}$ is similar to the proof of the first part.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally to writing this article. All authors read and approved the final manuscript.

## Author details

${ }^{1}$ Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, Barcelona, Bellaterra 08193, Spain. ${ }^{2}$ Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Munaitpasova 5, Astana 010008, Kazakhstan. ${ }^{3}$ Institute of Applied Mathematics, Gogolya 38, Karaganda 470055, Kazakhstan.

## Acknowledgements

The authors thank the referees for their careful reading and valuable comments on how to improve the article. This paper was partly supported by the grant MTM 2011-27637.

Received: 16 December 2011 Accepted: 6 June 2012 Published: 25 June 2012

## References

1. Stechkin, SB: About bilinear form. Dokl. Akad. Nauk SSSR 71(3), 237-240 (1950)
2. Hirshman, II: On multiplier transformations. Duke Math. J. 26, 221-242 (1959)
3. Edelstein, SL: Bounded convolutions in $L_{p}\left(Z_{m}\right)$ and the smoothness of the symbol of the operator. Math. Notes 22(6), 873-884 (1977)
4. Birman, MS, Solomyak, MZ: Quantitative analysis in Sobolev embedding theorems, application to spectral theory. In: Tenth Mathematical School (Summer School, Kaciveli/Nalchik, 1972). Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1974)
5. Karadzhov, GE: Trigonometrical problems of multipliers. In: Constructive Function Theory'81 (Varna, 1981), pp. 82-86. Publ. House Bulgar. Acad. Sci., Sofia (1983)
6. O'Neil, RO: Convolution operators and $L_{p, q}$ spaces. Duke Math. J. 30, 129-142 (1963)
7. Tleukhanova, NT, Smailov, ES, Nursultanov, ED: Interpolation of bilinear maps. Vestn. RUDN. Ser. Mat. 3(2), 108-117 (1996)
8. Bergh, J, Löfström, J: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)
9. Stein, EM: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482-492 (1956)
10. Boas, RP: Integrability Theorem for Trigonometric Transforms. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 38. Springer, New York (1967)
11. Liflyand, E, Tikhonov, S: Extended solution of Boas' conjecture on Fourier transforms. C. R. Math. Acad. Sci. Paris 346(21-22), 1137-1142 (2008)
12. Nursultanov, ED: On the coefficients of multiple Fourier series from $L_{p}$-spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 64(1), 95-122 (2000). Translation in Izv. Math. 64(1), 93-120 (2000)

## doi:10.1186/1029-242X-2012-146

Cite this article as: Jumabayeva et al.: On spectral properties of the modified convolution operator. Journal of Inequalities and Applications 2012 2012:146.


[^0]:    © 2012 Jumabayeva et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

