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Abstract
This paper deals with Durrmeyer type generalization of q-Baskakov type operators
using the concept of q-integral, which introduces a new sequence of positive
q-integral operators. We show that this sequence is an approximation process in the
polynomial weighted space of continuous functions defined on the interval [0,∞).
An estimate for the rate of convergence and weighted approximation properties are
also obtained.
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1 Introduction
In the year Agrawal andMohammad [] introduced a new sequence of linear positive
operators by modifying the well-known Baskakov operators having weight functions of
Szasz basis function as

Dn(f ,x) = n
∞∑
k=

pn,k(x)
∫ ∞


sn,k–(t)f (t)dt + pn,(x)f (), x ∈ [,∞), (.)

where

pn,k(x) =

(
n + k – 

k

)
xk

( + x)n+k
, sn,k(t) = e–nt

(nt)k

k!
.

It is observed in [] that these operators reproduce constant as well as linear functions.
Later, some direct approximation results for the iterative combinations of these operators
were studied in [].
A lot of works on q-calculus are available in literature of different branches of mathe-

matics and physics. For systematic study, we refer to the work of Ernst [], Kim [, ],
and Kim and Rim []. The application of q-calculus in approximation theory was initiated
by Phillips [], who was the first to introduce q-Bernstein polynomials and study their
approximation properties. Very recently the q-analogues of the Baskakov operators and
their Kantorovich and Durrmeyer variants have been studied in [, ] and [] respectively.
We recall some notations and concepts of q-calculus. All of the results can be found in []
and []. In what follows, q is a real number satisfying  < q < .
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For n ∈N,

[n]q :=
 – qn

 – q
,

[n]q! :=

⎧⎨
⎩[n]q[n – ]q · · · []q, n = , , . . . ,

, n = .

The q-binomial coefficients are given by

[
n
k

]
q

=
[n]q!

[k]q![n – k]q!
,  ≤ k ≤ n.

The q-Beta integral is defined by []

�q(t) =
∫ 

–q


xt–Eq(–qx)dqx, t > , (.)

which satisfies the following functional equation:

�q(t + ) = [t]q�q(t), �q() = .

For f ∈ C[,∞), q >  and each positive integer n, the q-Baskakov operators [] are
defined as

Bn,q(f ,x) =
∞∑
k=

[
n + k – 

k

]
q

q
k(k–)


xk

( + x)n+kq
f
(

[k]q
qk–[n]q

)

=
∞∑
k=

pqn,k(x)f
(

[k]q
qk–[n]q

)
,

(.)

where

( + x)nq :=

⎧⎨
⎩( + x)( + qx) · · · ( + qn–x

)
, n = , , . . . ,

, n = .

Remark  The first three moments of the q-Baskakov operators are given by

Bn,q(,x) = ,

Bn,q(t,x) = x,

Bn,q
(
t,x

)
= x +

x
[n]q

(
 +


q
x
)
.

As the operatorsDn(f ,x) have mixed basis functions in summation and integration and
have an interesting property of reproducing linear functions, we were motivated to study
these operators further. Here we define the q-analogue of the operators as

Dq
n(f ,x) = [n]q

∞∑
k=

pqn,k(x)
∫ q/(–qn)


q–ksqn,k–(t)f

(
tq–k

)
dqt + pqn,(x)f (), (.)
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where x ∈ [,∞) and

pqn,k(x) =

[
n + k – 

k

]
q

q
k(k–)


xk

( + x)n+kq
, sqn,k(t) = Eq

(
–[n]qt

) ([n]qt)k
[k]q!

.

In case q = , the above operators reduce to the operators (.). In the present paper, we
estimate a local approximation theorem and the rate of convergence of these new opera-
tors as well as their weighted approximation properties.

2 Moment estimation
Lemma  The following equalities hold:

(i) Dq
n(,x) = ,

(ii) Dq
n(t,x) = x,

(iii) Dq
n(t,x) = x + x

[n]q ( + q + x
q ).

Proof The operatorsDq
n are well defined on the function , t, t. Then for every x ∈ [,∞),

we obtain

Dq
n(,x) = [n]q

∞∑
k=

pqn,k(x)
∫ q/(–qn)


q–k

([n]qt)k–

[k – ]q!
Eq

(
–[n]qt

)
dqt + pqn,(x).

Substituting [n]qt = qy and using (.), we have

Dq
n(,x) = [n]q

∞∑
k=

pqn,k(x)
∫ /(–q)


q–k

(qy)k–

[k – ]q!
Eq(–qy)

qdqy
[n]q

+ pqn,(x)

=
∞∑
k=

pqn,k(x) + pqn,(x) = Bn,q(,x) = ,

where Bn,q(f ,x) is the q-Baskakov operator defined by (.).
Next, we have

Dq
n(t,x) = [n]q

∞∑
k=

pqn,k(x)
∫ q/(–qn)


q–k

([n]qt)k–

[k – ]q!
Eq

(
–[n]qt

)
tq–k dqt.

Again substituting [n]qt = qy and using (.), we have

Dq
n(t,x) = [n]q

∞∑
k=

pqn,k(x)
∫ /(–q)


q–k

(qy)k

[k – ]q![n]q
Eq(–qy)

qdqy
[n]qqk

=
∞∑
k=

pqn,k(x)q
[k]q
[n]qqk

= Bn,q(t,x) = x.

Finally,

Dq
n
(
t,x

)
= [n]q

∞∑
k=

pqn,k(x)
∫ q/(–qn)


q–k

([n]qt)k–

[k – ]q!
Eq

(
–[n]qt

)
tq–k dqt.
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Again substituting [n]qt = qy, using (.) and [k + ]q = [k]q + qk , we have

Dq
n
(
t,x

)
= [n]q

∞∑
k=

pqn,k(x)
∫ /(–q)


q–k

(qy)k+

[k – ]q![n]q
Eq(–qy)q–k

qdqy
[n]q

=
∞∑
k=

pqn,k(x)
[k + ]q[k]q
[n]qqk–

=
∞∑
k=

pqn,k(x)
([k]q + qk)[k]q

[n]qqk–

= Bn,q
(
t,x

)
+

q
[n]q

Bn,q(t,x) = x +
x

[n]q

(
 + q +

x
q

)
. �

Remark  If we put q = , we get the moments of a new sequence Dn(f ,x) considered in
[] as operators as

Dn(t – x,x) = ,

Dn
(
(t – x),x

)
=
x(x + )

n
.

Lemma  Let q ∈ (, ), then for x ∈ [,∞) we have

Dq
n
(
(t – x),x

)
=
x(x + q[]q)

q[n]q
.

3 Direct theorems
By CB[,∞) we denote the space of real valued continuous bounded functions f on the
interval [,∞); the norm-‖ · ‖ on the space CB[,∞) is given by

‖f ‖ = sup
≤x<∞

∣∣f (x)∣∣.
The Peetre’s K-functional is defined by

K(f , δ) = inf
{‖f – g‖ + δ

∥∥g ′′∥∥ : g ∈W 
∞

}
,

where W ∞ = {g ∈ CB[,∞) : g ′, g ′′ ∈ CB[,∞)}. By [, pp.], there exists a positive
constant C >  such that K(f , δ) ≤ Cω(f , δ/), δ >  and the second order modulus of
smoothness is given by

ω
(
f ,

√
δ
)
= sup

<h≤√
δ

sup
≤x<∞

∣∣f (x + h) – f (x + h) + f (x)
∣∣.

Also, for f ∈ CB[,∞) a usual modulus of continuity is given by

ω(f , δ) = sup
<h≤δ

sup
≤x<∞

∣∣f (x + h) – f (x)
∣∣.
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Theorem  Let f ∈ CB[,∞) and  < q < . Then for all x ∈ [,∞) and n ∈N, there exists
an absolute constant C >  such that

∣∣Dq
n(f ,x) – f (x)

∣∣ ≤ Cω

(
f ,

√
x(x + q[]q)

q[n]q

)
.

Proof Let g ∈W ∞ and x, t ∈ [,∞). By Taylor’s expansion, we have

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u)du.

Applying Lemma , we obtain

Dq
n(g,x) – g(x) =Dq

n

(∫ t

x
(t – u)g ′′(u)du,x

)
.

Obviously, we have | ∫ t
x (t – u)g ′′(u)du| ≤ (t – x)‖g ′′‖. Therefore,

∣∣Dq
n(g,x) – g(x)

∣∣ ≤Dq
n
(
(t – x),x

)∥∥g ′′∥∥ =
x(x + q[]q)

q[n]q

∥∥g ′′∥∥.
Using Lemma , we have

∣∣Dq
n(f ,x)

∣∣ ≤ [n]q
∞∑
k=

pqn,k(x)
∫ q/(–qn)


q–ksqn,k–(t)

∣∣f (tq–k)∣∣dqt + pqn,(x)
∣∣f ()∣∣ ≤ ‖f ‖.

Thus

∣∣Dq
n(f ,x) – f (x)

∣∣ ≤ ∣∣Dq
n(f – g,x) – (f – g)(x)

∣∣ + ∣∣Dq
n(g,x) – g(x)

∣∣
≤ ‖f – g‖ + x(x + q[]q)

q[n]q

∥∥g ′′∥∥.
Finally, taking the infimumover all g ∈W ∞ and using the inequalityK(f , δ) ≤ Cω(f , δ/),
δ > , we get the required result. This completes the proof of Theorem . �

We consider the following class of functions:
Let Hx [,∞) be the set of all functions f defined on [,∞) satisfying the condition

|f (x)| ≤ Mf ( + x), whereMf is a constant depending only on f . By Cx [,∞), we denote
the subspace of all continuous functions belonging to Hx [,∞). Also, let C∗

x [,∞) be
the subspace of all functions f ∈ Cx [,∞), for which lim|x|→∞ f (x)

+x is finite. The norm on
C∗
x [,∞) is ‖f ‖x = supx∈[,∞)

|f (x)|
+x . We denote the modulus of continuity of f on closed

interval [,a], a >  as by

ωa(f , δ) = sup
|t–x|≤δ

sup
x,t∈[,a]

∣∣f (t) – f (x)
∣∣.

We observe that for function f ∈ Cx [,∞), the modulus of continuity ωa(f , δ) tends to
zero.
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Theorem  Let f ∈ Cx [,∞), q ∈ (, ) and ωa+(f , δ) be its modulus of continuity on the
finite interval [,a + ] ⊂ [,∞), where a > . Then for every n > ,

∥∥Dq
n(f ) – f

∥∥
C[,a] ≤

Mf a( + a)( + a)
q[n]q

+ ω
(
f ,

√
a(a + q[]q)

q[n]q

)
.

Proof For x ∈ [,a] and t > a + , since t – x > , we have

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + x + t

)
≤ Mf

(
 + x + (t – x)

)
(.)

≤ Mf
(
 + a

)
(t – x).

For x ∈ [,a] and t ≤ a + , we have

∣∣f (t) – f (x)
∣∣ ≤ ωa+

(
f , |t – x|) ≤

(
 +

|t – x|
δ

)
ωa+(f , δ) (.)

with δ > .
From (.) and (.) we can write

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a

)
(t – x) +

(
 +

|t – x|
δ

)
ωa+(f , δ) (.)

for x ∈ [,a] and t ≥ . Thus

∣∣Dq
n(f ,x) – f (x)

∣∣ ≤ Dq
n
(∣∣f (t) – f (x)

∣∣,x)
≤ Mf

(
 + a

)
Dq

n
(
(t – x),x

)
+ωa+(f , δ)

(
 +


δ
Dq

n
(
(t – x),x

)) 

.

Hence, by using Schwarz inequality and Lemma , for every q ∈ (, ) and x ∈ [,a]

∣∣Dq
n(f ,x) – f (x)

∣∣ ≤ Mf ( + a)x(q[]q + x)
q[n]q

+ωa+(f , δ)
(
 +


δ

√
x(q[]q + x)

q[n]q

)

≤ Mf a( + a)( + a)
q[n]q

+ωa+(f , δ)
(
 +


δ

√
a(a + q[]q)

q[n]q

)
.

By taking δ =
√

a(q[]q+a)
q[n]q we get the assertion of our theorem. �

4 Higher order moments and an asymptotic formula
Lemma  ([]) Let  < q < , we have

Bn,q
(
t,x

)
=


[n]q

x +
 + q
q

[n + ]q
[n]q

x +

q

[n + ]q[n + ]q
[n]q

x,

http://www.journalofinequalitiesandapplications.com/content/2012/1/144
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Bn,q
(
t,x

)
=


[n]q

x +

q

(
 + q + q

) [n + ]q
[n]q

x

+


q[]q
(
 + q + q + q

) [n + ]q[n + ]q
[n]q

x

+


q[]q[]q[]q
(
 + q + q + q + q + q + q

)

× [n + ]q[n + ]q[n + ]q
[n]q

x.

Now, we present higher order moments for the operators (.).

Lemma  Let  < q < , we have

Dq
n
(
t,x

)
=
[n + ]q[n + ]q

q[n]q
x +

(
 + q
q

[n + ]q
[n]q

+
( + q)q
[n]q

+
( + q)
[n]q

)
x

+
(


[n]q

+
( + q)q
[n]q

+
( + q)q

[n]q

)
x,

Dq
n
(
t,x

)
=

(
( + q + q + q + q + q + q)

q[]q[]q[]q
[n + ]q[n + ]q[n + ]q

[n]q

)
x

+
(
( + q + q + q)

q[]q
[n + ]q[n + ]q

[n]q
+
q( + q + q)

[n]q
[n + ]q[n + ]q

)
x

+
(
( + q + q)

q
[n + ]q
[n]q

+
( + q)( + q + q)

q[n]q
[n + ]q

+
q( + q + q + q)

[n]q
+
q( + q + q + q)

[n]q

)
x

+
(


[n]q

+
q( + q + q)

[n]q

+
q( + q + q + q)

[n]q
+
q( + q + q + q)

[n]q

)
x.

The proof of Lemma  can be obtained by using Lemma .
We consider the following classes of functions:

Cm[,∞) :=
{
f ∈ C[,∞) : ∃Mf > 

∣∣f (x)∣∣ <Mf
(
 + xm

)
and ‖f ‖m := sup

x∈[,∞)

|f (x)|
 + xm

}
,

C∗
m[,∞) :=

{
f ∈ Cm[,∞) : lim

x→∞
|f (x)|
 + xm

< ∞
}
, m ∈ N.

Theorem  Let qn ∈ (, ), then the sequence {Dqn
n (f )} converges to f uniformly on [,A]

for each f ∈ C∗
 [,∞) if and only if limn→∞ qn = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/144
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Theorem  Assume that qn ∈ (, ), qn →  and qnn → a as n → ∞. For any f ∈ C∗
[,∞)

such that f ′, f ′′ ∈ C∗
[,∞) the following equality holds

lim
n→∞[n]qn

(
Dqn

n (f ;x) – f (x)
)
=

(
x + x

)
f ′′(x)

uniformly on any [,A], A > .

Proof Let f , f ′, f ′′ ∈ C∗
[,∞) and x ∈ [,∞) be fixed. By using Taylor’s formula, we may

write

f (t) = f (x) + f ′(x)(t – x) +


f ′′(x)(t – x) + r(t;x)(t – x), (.)

where r(t;x) is the Peano form of the remainder, r(·;x) ∈ C∗
 [,∞) and limt→x r(t;x) = .

Applying Dqn
n to (.), we obtain

[n]qn
(
Dqn

n (f ;x) – f (x)
)
=


f ′′(x)[n]qnDqn

n
(
(t – x);x

)
+ [n]qnDqn

n
(
r(t;x)(t – x);x

)
.

By the Cauchy-Schwarz inequality, we have

Dqn
n

(
r(t;x)(t – x);x

) ≤
√
Dqn

n
(
r(t;x);x

)√
Dqn

n
(
(t – x);x

)
. (.)

Observe that r(x;x) =  and r(·;x) ∈ C∗
 [,∞). Then it follows from Theorem  and

Lemma , that

lim
n→∞Dqn

n
(
r(t;x);x

)
= r(x;x) =  (.)

uniformly with respect to x ∈ [,A]. Now from (.), (.) and Remark , we get immedi-
ately

lim
n→∞[n]qnDqn

n
(
r(t;x)(t – x);x

)
= .

Then, we get the following

lim
n→∞[n]qn

(
Dqn

n (f ;x) – f (x)
)

= lim
n→∞

(


f ′′(x)[n]qnDqn

n
(
(t – x);x

)
+ [n]qnDqn

n
(
r(t;x)(t – x);x

))

=
(
x + x

)
f ′′(x). �
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