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Abstract
In this paper, a class of nonlinear and nonautonomous neutral functional differential
equations is considered. By developing a new integral inequality, we obtain sufficient
conditions for the existence of a global attracting set of neutral functional differential
equations with time-varying delays. The results have extended and improved the
related reports in the literature.
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1 Introduction
The asymptotic properties of neutral functional differential equations have attracted

considerable attention in the past few decades, andmany significant results have been ob-
tained [–]. One of the most popular ways to analyze the stability property and asymp-
totic behavior is the method of Lyapunov functionals [–]. However, to construct a suit-
able Lyapunov functional is not easy for certain equations. The characteristic equation is
another important researching tool. It seems to work well for constant delays in neutral
equations [, ]. Meanwhile, the known approach to the study of differential inequalities
for nonautonomous neutral functional differential equations was presented in Azbelev’s
book []. These inequality methods are based on the representation formula of a solu-
tion and the analysis of Cauchy, Green’s and fundamental matrices. In this way, various
assertions about the estimates of solutions, maximum principles and stability on neutral
differential equations were obtained. Important results in this direction can be found in
[–] and in the monograph []. Recently, by using differential and integral inequalities,
Xu et al. have studied attracting and invariant sets of functional differential systems [, ]
and impulsive functional differential equations []. However, the inequalities mentioned
above are ineffective in studying the attracting sets of a class of nonlinear and nonau-
tonomous neutral functional differential equations.
Motivated by the above discussions, in this paper, we will improve the inequality estab-

lished in [] so that it is effective for neutral functional differential equations. Combining
with the properties of nonnegative matrices, we obtained some sufficient conditions en-
suring the global attracting set for a class of nonlinear and nonautonomous neutral differ-
ential equations with time-varying coefficients and unbounded delays. The results extend
the earlier publications.
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2 Preliminaries
In this section, we introduce some notations and recall some basic definitions.
E denotes the n×n identity matrix,R is the set of real numbers andR+ = [,+∞).A≤ B

(A < B) means that each pair of corresponding elements of A and B satisfies the inequality
“≤ (<).” Especially, A is called a nonnegative matrix if A ≥ , where  denotes the n × n
zero matrix.
C[X,Y ] denotes the space of continuous mappings from the topological space X to the

topological space Y . Especially, let C �= C [(–∞, t],Rn] denote the family of all bounded
continuous Rn-valued functions φ on (–∞, t], here t ≥ .
For x ∈ R

n, A ∈ R
n×n, ϕ ∈ C, τ ∈ C[R,R+], we define [x]+ = (|x|, |x|, . . . , |xn|)T , [A]+ =

(|aij|)n×n, [ϕ(t)]+τ (t) = (‖ϕ(t)‖τ (t),‖ϕ(t)‖τ (t), . . . ,‖ϕn(t)‖τ (t))T , ‖ϕi(t)‖τ (t) = sup≤s≤τ (t) |ϕi(t –
s)|, i = , , . . . ,n.
We consider the following differential equation

⎧⎨
⎩

d
dt

[
x(t) –H

(
t,x

(
t – τ (t)

))]
= A(t)x(t) + F

(
t,x

(
t – τ (t)

))
, t ≥ t,

x(t) = ϕ(t), –∞ < t ≤ t,
()

where x = (x, . . . ,xn)T ∈ R
n, H ,F ∈ C[R × R

n,Rn], F(t, ) ≡ , τ ∈ C[R,R+], limt→+∞(t –
τ (t)) = +∞. We always assume that for any ϕ ∈ C, the system () has at least one solution
through (t,ϕ) denoted by x(t, t,ϕ) or simply x(t) if no confusion should occur.

Definition . (Xu []) f ∈ UCt means that f ∈ C[R+ × R,R+] and for any given α and
any ε >  there exist positive numbers B, T and A satisfying

∫ t

α

f (t, s)ds≤ B,
∫ t–T

α

f (t, s)ds < ε, ∀t ≥ A. ()

Especially, f ∈UCt if f (t, s) = f (t – s) and
∫ ∞
 f (u)du < ∞.

Definition . The set S ⊂R
n is called a global attracting set of (), if for any initial value

ϕ ∈ C, the solution x(t) �= x(t, t,ϕ) converges to S as t → +∞. That is,

dist(x(t),S)→  as t → +∞,

where dist(x,S) = inf{|x – a| : a ∈ S} and | · | is a norm of Rn.

For a nonnegative matrix A ∈R
n×n, let ρ(A) denote the spectral radius of A. Then ρ(A)

is an eigenvalue of A and its eigenspace is denoted by

	ρ(A)
�= {z ∈ R

n|Az = ρ(A)z},

which includes all positive eigenvectors of A provided that the nonnegative matrix A has
at least one positive eigenvector (see Refs. []).

Lemma . (Lasalle []) If A≥  and ρ(A) < , then (E –A)– ≥ .
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3 Main results
Theorem . Let y ∈ C[R,Rn

+] be a solution of the delay integral inequality

y(t) ≤ G(t, t) + B
[
y(t)

]+
τ (t) +

∫ t

t
Q(t, s)

[
y(s)

]+
τ (s) ds + J , t ≥ t, ()

y(t) ≤ ϕ(t), ∀t ∈ (–∞, t], ()

where G ∈ C[R+ × R+,Rn
+], B ∈ R

n×n
+ , Q ∈ C[R+ × R,Rn×n

+ ], J = (j, . . . , jn)T ≥ , ϕ ∈
C[(–∞, t],Rn

+], limt→+∞(t – τ (t)) = +∞. Assume that the following conditions are satis-
fied:

(A) G(t, t) →  as t → +∞, and there exists a constant matrix 
 ≥  such that

∫ t

t
Q(t, s)ds≤ 
, ∀t ≥ t. ()

(A) Let 
 = 
 + B, ρ(
) < .
Then there exist z > , z ∈ 	ρ(
) and a constant k > , such that

y(t) < kz + (E –
)–J , for t ≥ t. ()

Proof By the condition 
 ≥  and the properties of nonnegative matrices, there exists a
positive vector z such that
z = ρ(
)z. Togetherwith ρ(
) <  andLemma., this implies
that (E –
)– exists and (E –
)– ≥ .
For the initial conditions y(t) ≤ ϕ(t), –∞ < t ≤ t, we have

y(t) ≤ kz + (E –
)–J , –∞ < t ≤ t, ()

where z ∈ 	ρ(
), z > , k = ‖ϕ‖
min≤i≤n zi

≥ , ‖ ϕ ‖=max≤i≤n{sup–∞<t≤t |ϕi(t)|}.
From limt→+∞ G(t, t) = , there must be a constant T >  such that

G(t, t)≤  – ρ(
)


kz, for t > t + T . ()

By the continuity of y(t), together with () and (), there exists a constant k > k such that

y(t) < kz + (E –
)–J , for t ∈ (–∞, t + T]. ()

In the following, we shall prove that

y(t) < kz + (E –
)–J , for t > t + T . ()

If this is not true, from () and the continuity of y(t), then there must be a constant t >
t + T and some integer i such that

yi(t) =
{
kz + (E –
)–J

}
i, ()

y(t) ≤ kz + (E –
)–J , for t ≤ t, ()
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where {·}i denotes the ith component of vector {·}.
Using (), (), (), () and ρ(
) < , we obtain that

yi(t) ≤
{
G(t, t) + B

[
y(t)

]+
τ (t)

+
∫ t

t
Q(t, s)

[
y(s)

]+
τ (s) ds + J

}
i

≤
{
 – ρ(
)


kz +

[
B +

∫ t

t
Q(t, s)ds

][
kz + (E –
)–J

]
+ J

}
i

≤
{
 – ρ(
)


kz +


[
kz + (E –
)–J

]
+ (E –
)(E –
)–J

}
i

≤
{
 – ρ(
)


kz + ρ(
)kz + (
 + E –
)(E –
)–J

}
i

≤
{
 + ρ(
)


kz + (E –
)–J

}
i

<
{
kz + (E –
)–J

}
i.

()

This contradicts the equality in (), and so () holds. The proof is complete. �

In order to study the attracting set, we rewrite Eq. () as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(t) = �(t, t)
[
ϕ(t) –H

(
t,ϕ

(
t – τ (t)

))]
+H

(
t,x

(
t – τ (t)

))
+

∫ t

t
�(t, s)

[
A(s)H

(
s,x

(
s – τ (s)

))
+ F

(
s,x

(
s – τ (s)

))]
ds, t ≥ t,

x(t) = ϕ(t), –∞ < t ≤ t,

()

where �(t, t) is the fundamental matrix of the linear equation ẋ(t) = A(t)x(t).
For (), we suppose the following:

(B): [F(t,x(t – τ (t)))]+ ≤ Q(t)[x(t)]+τ (t) + J(t), [H(t,x(t – τ (t)))]+ ≤ Ĥ[x(t)]+τ (t), where Q ∈
C[R,Rn×n

+ ], Ĥ ∈R
n×n
+ , J(t) = (J(t), . . . , Jn(t))T ≥ , Ji ∈ C[R,R+], i = , , . . . ,n.

(B): [�(t, s)]+{[A(s)]+Ĥ+Q(s)} = (wij(t, s))n×n,wij ∈UCt , limt→+∞ �(t, t) = . For ∀t ≥ t,
there exist a constant matrix 
 ≥  and a vector Ĵ ≥  such that

∫ t

t

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}
ds≤ 
,

∫ t

t

[
�(t, s)

]+J(s)ds≤ Ĵ .

(B): Let 
 = 
 + Ĥ , ρ(
) < .

Theorem . Assume that (B)-(B) hold. Then S = {x ∈R
n|[x]+ ≤ (E –
)– Ĵ} is a global

attracting set of ().

Proof From () and (B), we can get for ∀t ≥ t,

[
x(t)

]+ ≤ [
�(t, t)

]+[
ϕ(t) –H

(
t,ϕ

(
t – τ (t)

))]+ + Ĥ
[
x(t)

]+
τ (t)

+
∫ t

t

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}[
x(s)

]+
τ (s) ds +

∫ t

t

[
�(t, s)

]+J(s)ds. ()
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By (B)-(B) and Theorem ., there exists a constant k >  such that

[
x(t)

]+ < kz + (E –
)– Ĵ , for t ≥ t, ()

where z ∈ 	ρ(
), z > , k > ‖ϕ‖
min≤i≤n zi

, ‖ϕ‖ =max≤i≤n{sup–∞<t≤t |ϕi(t)|}.
From (), there must be a constant vector σ ≥  such that

lim
t→+∞

[
x(t)

]+ = σ ≤ kz + (E –
)– Ĵ . ()

Next, we will show that σ ∈ S. From limt→+∞ �(t, t) = , wij ∈ UCt , for any ε >  and
e = (, , . . . , )T ∈R

n
+, there exists a positive number T > t such that for all t > T

[
�(t, t)

]+[
ϕ(t) –H

(
t,ϕ

(
t – τ (t)

))]+ < εe

, ()

∫ t–T

t

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}[
kz + (E –
)– Ĵ

]
ds <

εe

. ()

According to the definition of superior limit and limt→+∞(t – τ (t)) = +∞, there exists suf-
ficiently large T ≥ T such that

[
x(t)

]+
r(t) < σ + εe, t ≥ T, ()

where r(t) = T + supt–T≤s≤t τ (s). Therefore, from (B), () and ()-(), when t ≥ T, we
obtain

[
x(t)

]+ ≤ εe


+ Ĥ
[
x(t)

]+
τ (t) +

∫ t–T

t

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}[
x(s)

]+
τ (s) ds

+
∫ t

t–T

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}[
x(s)

]+
τ (s) ds + Ĵ

≤ εe


+ Ĥ
[
x(t)

]+
τ (t)

+
∫ t–T

t

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}[
kz + (E –
)– Ĵ

]
ds

+
∫ t

t–T

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}[
x(s)

]+
τ (s) ds + Ĵ

≤ εe + Ĥ(σ + εe) +
∫ t

t–T

[
�(t, s)

]+{[A(s)]+Ĥ +Q(s)
}
(σ + εe)ds + Ĵ

≤ εe +
(σ + εe) + Ĵ .

()

Due to () and the definition of superior limit, there exists T ≥ T such that [x(T)]+ >
σ – εe. Combining with (), we get

σ – εe <
[
x(T)

]+ ≤ εe +
(σ + εe) + Ĵ . ()

Letting ε → , we have σ ≤ (E –
)– Ĵ , that is σ ∈ S, and the proof is completed. �
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Remark . Theorem . is a generalization of the results in [, ] asH ≡  in () with-
out the boundedness of τ (t).

Corollary . Suppose that the conditions of Theorem . hold and J(t) ≡ . If x(t) =  is
an equilibrium point of System (), then the equilibrium point x(t) =  is globally asymp-
totically stable.

4 Example
Consider the following scalar equation

d
dt

[
x(t) –



x
(
t – τ (t)

)]
= –atx(t) + btx

(
t – τ (t)

)
+ J(t), t ≥ , ()

where a > , b are constants, J(t) = sin t and τ (t) = 
 (t + sin t).

We easily verify that |�(t, )| = e–a
∫ t
 vdv, limt→+∞ �(t, ) = . For any t ≥ , we get

∫ t


e–a

∫ t
s v dv

(


as + |bs|

)
ds≤

(
a

+ |b|

)∫ t


e–a

∫ t
s v dvs ds≤ 


+

|b|
a
,

∫ t


e–a

∫ t
s v dv| sin s|ds≤

∫ t


e–a

∫ t
s v dvs ds≤ 

a
.

If |b|
a < 

 , we can get S = {x ∈R
n||x| ≤ 

a–|b| } is the global attracting set for ().

Remark. If J(t) ≡  and |b|
a < 

 , then every solution of () tends to zero at∞. However,
the methods in [, ] are inefficient for () because the variable coefficients A(t) = –at
and Q(t) = bt are unbounded for t ≥ .
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