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Abstract

The purpose of this paper is to introduce a new system of general nonlinear
regularized nonconvex variational inequalities and verify the equivalence between
the proposed system and fixed point problems. By using the equivalent formulation,
the existence and uniqueness theorems for solutions of the system are established.
Applying two nearly uniformly Lipschitzian mappings S1 and S2 and using the
equivalent alternative formulation, we suggest and analyze a new perturbed p-step
projection iterative algorithm with mixed errors for finding an element of the set of
the fixed points of the nearly uniformly Lipschitzian mappingQ = (S1, S2) which is
the unique solution of the system of general nonlinear regularized nonconvex
variational inequalities. We also discuss the convergence analysis of the proposed
iterative algorithm under some suitable conditions.
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1 Introduction
The theory of variational inequalities introduced by Stampacchia [1] in the early 1960s

have enjoyed vigorous growth for the last 30 years. Variational inequality theory

describes a broad spectrum of interesting and important developments involving a link

among various fields of mathematics, physics, economics, and engineering sciences.

The ideas and techniques of this theory are being used in a variety of diverse areas and

proved to be productive and innovative (see [2-7]). One of the most interesting and

important problems in variational inequality theory is the development of an efficient

numerical method. There is a substantial number of numerical methods including pro-

jection method and its variant forms, Wiener-Holf (normal) equations, auxiliary princi-

ple, and descent framework for solving variational inequalities and complementarity

problems. For the applications, physical formulations, numerical methods and other

aspects of variational inequalities (see [1-52] and the references therein). Projection

method and its variant forms represent important tool for finding the approximate

solution of various types of variational and quasi-variational inequalities, the origin of

which can be traced back to Lions and Stampacchia [21]. The projection type methods

were developed in 1970s and 1980s. The main idea in this technique is to establish the
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equivalence between the variational inequalities and the fixed point problem using the

concept of projection. This alternative formulation enables us to suggest some iterative

methods for computing the approximate solution (see [36,42,43]).

It is worth mentioning that most of the results regarding the existence and iterative

approximation of solutions to variational inequality problems have been investigated

and considered so far to the case where the underlying set is a convex set. Recently,

the concept of convex set has been generalized in many directions, which has potential

and important applications in various fields. It is well known that the uniformly prox-

regular sets are nonconvex and include the convex sets as special cases, for more

details (see for example [11,12,17,45,46,30,31]). In recent years, Bounkhel et al. [17],

Cho et al. [40], Moudafi [24], Noor [25,26] and Pang et al. [30] have considered varia-

tional inequalities and equilibrium problems in the context of uniformly prox-regular

sets. They suggested and analyzed some projection type iterative algorithms by using

the prox-regular technique and auxiliary principle technique.

On the other hand, related to the variational inequalities, we have the problem of

finding the fixed points of the nonexpansive mappings, which is the subject of current

interest in functional analysis. It is natural to consider a unified approach to these two

different problems. Motivated and inspired by the problems, Noor and Huang [27]

considered the problem of finding the common element of the set of the solutions of

variational inequalities and the set of the fixed points of the nonexpansive mappings. It

is well known that every nonexpansive mapping is a Lipschitzian mapping. Lipschitzian

mappings have been generalized by various authors. Sahu [50] introduced and investi-

gated nearly uniformly Lipschitzian mappings as a generalization of Lipschitzian

mappings.

Motivated and inspired by the recent results in this area, in this paper, we introduce

and consider a new system of general nonlinear regularized nonconvex variational

inequalities involving four different nonlinear operators. We first establish the equiva-

lence between the system of general nonlinear regularized nonconvex variational

inequalities and fixed point problems and, by the equivalent formulation, we discuss

the existence and uniqueness of solution of the proposed system. By using two nearly

uniformly Lipschitzian mappings S1 and S2 and the equivalent alternative formulation,

we suggest and analyze a new perturbed p-step iterative algorithm with mixed errors

for finding an element of the set of the fixed points of the nearly uniformly Lipschit-

zian mappingQ = (S1, S2) which is the unique solution of the system of general non-

linear regularized nonconvex variational inequalities. We also discuss the convergence

analysis of the proposed iterative algorithm under some suitable conditions.

2 Preliminaries
Throughout this paper, let H be a real Hilbert space with the inner product 〈·,·〉 and the

norm || · || and K be a nonempty convex subset of H. We denote by dK (·) or d(·, K) the

usual distance function to the subset K, i.e., dK (u) = infvÎK ||u - v|| Let us recall the fol-

lowing well-known definitions and some auxiliary results of nonlinear convex analysis

and nonsmooth analysis [31,44-46].

Definition 2.1. Let u ∈ His a point not lying in K. A point v Î K is called a closest

point or a projection of u onto K if, dK (u) = ||u - v||. The set of all such closest points

is denoted by PK (u), i.e.,
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PK(u) := {v ∈ K : dK(u) = ||u − v||}.

Definition 2.2. The proximal normal cone of K at a point u Î K is given by

NP
K(u) := {ξ ∈ H : u ∈ PK(u + αξ), for some α > 0}.

Clarke et al. [45], in Proposition 1.1.5, give a characterization of NP
K(u) as the

following:

Lemma 2.3. Let K be a nonempty closed subset in H. Then ξ ∈ NP
K(u)if and only if

there exists a constant a = a(ξ, u) >0 such that 〈ξ, v - u〉 ≤ a ||v - u||2 for all v Î K.

The above inequality is called the proximal normal inequality. The special case in

which K is closed and convex is an important one. In Proposition 1.1.10 of [45], the

authors give the following characterization of the proximal normal cone the closed and

convex subset K ⊂ H:

Lemma 2.4. Let K be a nonempty, closed and convex subset in H. Then ξ ∈ NP
K(u)if

and only if 〈ξ, v - u〉 ≤ 0 for all v Î K.

Definition 2.5. Let X be a real Banach space and f:X®ℝ be Lipschitz with constant τ

near a given point x Î X; that is, for some ε > 0, we have |f (y) -f(z)| ≤ τ|| y - z|| for all

y, z Î B(x; ε), where B(x; ε) denotes the open ball of radius ε > 0 and centered at x.

The generalized directional derivative of f at x in the direction v, denoted as f° (x; v), is

defined as follows:

f ◦(x; v) = lim sup
y→x,t↓0

f (y + tv) − f (y)
t

,

where y is a vector in X and t is a positive scalar.

The generalized directional derivative defined earlier can be used to develop a notion

of tangency that does not require K to be smooth or convex.

Definition 2.6. The tangent cone TK (x) to K at a point x in K is defined as follows:

TK(x) := {v ∈ H : d◦
K(x; v) = 0}.

Having defined a tangent cone, the likely candidate for the normal cone is the one

obtained from TK (x) by polarity. Accordingly, we define the normal cone of K at x by

polarity with TK (x) as follows:

NK(x) := {ξ : 〈ξ , v〉 ≤ 0, ∀v ∈ TK(x)}.

Definition 2.7. The Clarke normal cone, denoted by NC
K(x), is given by

NC
K(x) = co[NP

K(x)], where co[S]means the closure of the convex hull of S.

It is clear that one always has NP
K(x) ⊆ NC

K(x). The converse is not true in general.

Note that NC
K(x) is always closed and convex cone, whereas NP

K(x) is always convex,

but may not be closed (see [31,44,45]).

In 1995, Clarke et al. [46], introduced and studied a new class of nonconvex sets,

called proximally smooth sets; subsequently Poliquin et al. [31] investigated the afore-

mentioned sets, under the name of uniformly prox-regular sets. These have been suc-

cessfully used in many nonconvex applications in areas, such as optimizations, economic

models, dynamical systems, differential inclusions, etc. For such applications, see

[14-16,18]. This class seems particularly well suited to overcome the difficulties which

arise due to the nonconvexity assumptions on K. We take the following characterization
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proved in [46] as a definition of this class. We point out that the original definition was

given in terms of the differentiability of the distance function (see [46]).

Definition 2.8. For any r Î (0, +∞], a subset Kr of H is called normalized uniformly

prox-regular (or uniformly r-prox-regular [46]) if every nonzero proximal normal to Kr

can be realized by an r-ball.

This means that, for all x̄ ∈ Kr and 0 �= ξ ∈ NP
Kr
(x̄) with ||ξ|| = 1,

〈ξ , x − x̄〉 ≤ 1
2r

||x − x̄||2, ∀x ∈ Kr .

Obviously, the class of normalized uniformly prox-regular sets is sufficiently large to

include the class of convex sets, p-convex sets, C1,1 submanifolds (possibly with bound-

ary) of H, the images under a C1,1 diffeomorphism of convex sets and many other non-

convex sets (see [19,46]).

Lemma 2.9. [46]A closed set K ⊆ His convex if and only if it is proximally smooth of

radius r for all r >0.

If r = +∞, then, in view of Definition 2.8 and Lemma 2.9, the uniform r-prox-regular-

ity of Kr is equivalent to the convexity of Kr, which makes this class of great impor-

tance. For the case of that r = +∞, we set Kr = K.

The following proposition summarizes some important consequences of the uniform

prox-regularity needed in the sequel. The proof of this results can be found in [31,46].

Proposition 2.10. Let r >0 and Kr be a nonempty closed and uniformly r-prox-regular

subset of H. SetU(r) = {u ∈ H : 0 < dKr (u) < r}. Then the following statements hold:

(1) For all x Î U(r), one has PKr(x) �= ∅;
(2) For all r′ Î (0, r), PKris Lipschitz continuous with constant
r

r−r′ on U(r′) = {u ∈ H : 0 < dKr (u) < r′};
(3) The proximal normal cone is closed as a set-valued mapping.

As a direct consequent of part (c) of Proposition 2.10, we have NC
Kr
(x) = NP

Kr
(x).

Therefore, we define NKr(x) := NC
Kr
(x) = NP

Kr
(x) for such a class of sets.

In order to make clear the concept of r-prox-regular sets, we state the following con-

crete example: The union of two disjoint intervals [a, b] and [c, d] is r-prox-regular

with r = c−b
2 . The finite union of disjoint intervals is also r-prox-regular and r depends

on the distances between the intervals.

Definition 2.11. Let T : H × H → H and g : H → H be two single-valued operators.

Then the operator T is said to be:

(1) monotone in the first variable if, for all x, y ∈ H,

〈T(x, u) − T(y, v), x − y〉 ≥ 0, ∀u, v ∈ H;

(2) r-strongly monotone in the first variable if there exists a constant r >0 such that,

for all x, y ∈ H,

〈T(x, u) − T(y, v), x − y〉 ≥ r||x − y||2, ∀u, v ∈ H;
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(3) �-strongly monotone with respect to g in the first variable if there exists a con-

stant � >0 such that, for all x, y ∈ H,

〈T(x, u) − T(y, v), g(x) − g(y)〉 ≥ κ||x − y||2, ∀u, v ∈ H;

(4) (θ, ν)-relaxed cocoercive in the first variable if there exist constants θ, ν >0 such

that, for all x, y ∈ H,

〈T(x, u) − T(y, v), x − y〉 ≥ −θ ||T(x, u) − T(y, v)||2 + v||x − y||2, ∀u, v ∈ H;

(5) µ-Lipschitz continuous in the first variable if there exists a constant µ >0 such

that, for all x, y ∈ H,

||T(x, u) − T(y, v)|| ≤ μ|| x − y ||, ∀u, v ∈ H.

Definition 2.12. A nonlinear single-valued operator g : H → H is said to be g-
Lipschitz continuous if there exists a constant g > 0 such that

||g(x) − g(y)|| ≤ γ ||x − y||, ∀x, y ∈ H.

In the next definitions, several generalizations of the nonexpansive mappings which

have been introduced by various authors in recent years are stated.

Definition 2.13. A nonlinear mapping T : H → H is said to be:

(1) nonexpansive if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ H;

(2) L-Lipschitzian if there exists a constant L >0 such that

||Tx − Ty|| ≤ L|| x − y||, ∀x, y ∈ H;

(3) generalized Lipschitzian if there exists a constant L >0 such that

||Tx − Ty|| ≤ L
(|| x − y|| + 1

)
, ∀x, y ∈ H;

(4) generalized (L, M)-Lipschitzian [50] if there exist two constants L, M >0 such

that

||Tx − Ty|| ≤ L
(||x − y|| +M

)
, ∀x, y ∈ H;

(5) asymptotically nonexpansive [48] if there exists a sequence {kn}⊆ [1,∞) with

limn®∞ kn = 1 such that for each n Î N,

||Tnx − Tny|| ≤ kn||x − y||, ∀x, y ∈ H;

(6) pointwise asymptotically nonexpansive [49] if, for each n ≥ 1,

||Tnx − Tny|| ≤ αn(x)|| x − y||, ∀x, y ∈ H,

where an ® 1 pointwise on X;

(7) uniformly L-Lipschitzian if there exists a constant L >0 such that, for each n Î N,

||Tnx − Tny|| ≤ L||x − y||, ∀x, y ∈ H.
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Definition 2.14. [50] A nonlinear mapping T : H → His said to be:

(1) nearly Lipschitzian with respect to the sequence {an} if, for each nÎN, there

exists a constant kn >0 such that

||Tnx − Tny|| ≤ kn
(||x − y|| + an

)
, ∀x, y ∈ H, (2:1)

where {an} is a fix sequence in [0, ∞) with an ® 0 as n ® ∞.

For an arbitrary, but fixed n Î N, the infimum of constants kn in (2.1) is called

nearly Lipschitz constant, which is denoted by h(Tn). Notice that

η(Tn) = sup
{ ||Tnx − Tny||

||x − y|| + an
: x, y ∈ H, x �= y

}
.

A nearly Lipschitzian mapping T with the sequence {(an, h(Tn))} is said to be:

(2) nearly nonexpansive if h(Tn) = 1 for all n Î N, that is,

||Tnx − Tny|| ≤ ||x − y|| + an, ∀x, y ∈ H;

(3) nearly asymptotically nonexpansive if h(Tn) ≥ 1 for all n Î N and limn®∞ h(Tn)

= 1, in other words, kn ≥ 1 for all n Î N with limn®∞ kn = 1;

(4) nearly uniformly L-Lipschitzian if h(T n) ≤ L for all n Î N, in other words, kn =

L for all nÎN.

Remark 2.15. It should be pointed that

(1) Every nonexpansive mapping is a asymptotically non-expansive mapping and

every asymptotically non-expansive mapping is a pointwise asymptotically nonex-

pansive mapping. In addition, the class of Lipschitzian mappings properly includes

the class of pointwise asymptotically nonexpansive mappings.

(2) It is obvious that every Lipschitzian mapping is a generalized Lipschitzian map-

ping. Furthermore, every mapping with a bounded range is a generalized Lipschit-

zian mapping. It is easy to see that the class of generalized (L, M)-Lipschitzian

mappings is more general than the class of generalized Lipschitzian mappings.

(3) Clearly, the class of nearly uniformly L-Lipschitzian mappings properly includes

the class of generalized (L, M)-Lipschitzian mappings and that of uniformly L-

Lipschitzian mappings. Note that every nearly asymptotically nonexpansive map-

ping is nearly uniformly L-Lipschitzian.

Now, we present some new examples to investigate relations between these

mappings.

Example 2.16. Let H = R and define a mapping T : H → H as follow:

T(x) =
{ 1

γ
, x ∈ [0, γ ],

0, x ∈ (−∞, 0) ∪ (γ , ∞),

where g > 1 is a constant real number. Evidently, the mapping T is discontinuous at

the points x = 0, g. Since every Lipschitzian mapping is continuous it follows that T is

not Lipschitzian. For each n Î N, take an = 1
γ n. Then
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|Tx − Ty| ≤ |x − y| + 1
γ

= |x − y| + a1, ∀x, y ∈ R.

Since Tnz = 1
γ , for all z Î ℝ and n ≥ 2, it follows that, for all x, y Î ℝ and n ≥ 2,

|Tnx − Tny| ≤ |x − y| + 1
γ n

= |x − y| + an.

Hence T is a nearly nonexpansive mapping with respect to the sequence {an} = { 1
γ n }.

The following example shows that the nearly uniformly L-Lipschitzian mappings are

not necessarily continuous.

Example 2.17. Let H = [0, b], where b Î (0, 1] is an arbitrary constant real number,

and let the self-mapping T of H be defined as below:

T(x) =
{

γ x, x ∈ [0, b),
0, x = b,

where g Î (0, 1) is also an arbitrary constant real number. It is plain that the map-

ping T, is discontinuous in the point b. Hence T is not a Lipschitzian mapping. Take,

for each n Î N, an = gn−1. Then, for all n Î N and x, y Î [0, b), we have

|Tnx − Tny| = |γ nx − γ ny| = γ n|x − y| ≤ γ n|x − y| + γ n

≤ γ |x − y| + γ n = γ (|x − y| + an).

If x Î [0, b) and y = b, then, for each nÎN, we have T nx = gnx and T ny = 0. Since 0

<|x − y| ≤ b ≤ 1, it follows that, for all nÎN,

|Tnx − Tny| = |γ nx − 0| = γ nx ≤ γ nb ≤ γ n < γ n|x − y| + γ n

≤ γ |x − y| + γ n = γ (|x − y| + an).

Hence T is a nearly uniformly g-Lipschitzian mapping with respect to the sequence

{an} = {gn−1}.
Obviously, every nearly nonexpansive mapping is a nearly uniformly Lipschitzian

mapping. In the following example, we show that the class of nearly uniformly

Lipschitzian mappings properly includes the class of nearly nonexpansive mappings.

Example 2.18. Let H = R and the self-mapping T of H be defined as follow:

T(x) =

⎧⎨
⎩

1
2 , x ∈ [0, 1) ∪ {2},
2, x = 1,
0, x ∈ (−∞, 0) ∪ (1, 2) ∪ (2, +∞).

Evidently, the mapping T is discontinuous in the points x = 0, 1, 2. Hence, T is not a

Lipschitzian mapping. Take, for each n Î N, an = 1
2n. Then T is not a nearly nonexpan-

sive mapping with respect to the sequence { 1
2n } because, taking x = 1 and y = 1

2, we

have Tx = 2, Ty = 1
2and

|Tx − Ty| > |x − y| + 1
2
= |x − y| + a1.

However,

|Tx − Ty| ≤ 4(|x − y| + 1
2
) = 4(|x − y| + a1), ∀x, y ∈ R
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and for all n ≥ 2,

|Tnx − Tny| ≤ 4(|x − y| + 1
2n

) = 4(|x − y| + an), ∀x, y ∈ R,

since Tnz = 1
2 for all z Î ℝ and n ≥ 2. Hence, for each L ≥ 4, T is a nearly uniformly

L-Lipschitzian mapping with respect to the sequence { 1
2n }.

It is clear that every uniformly L-Lipschitzian mapping is a nearly uniformly L-

Lipschitzian mapping. In the next example, we show that the class nearly uniformly L-

Lipschitzian mappings properly includes the class of uniformly L-Lipschitzian

mappings.

Example 2.19. Let H = R and the self-mapping T of H be defined the same as in

Example 2.18. Then T is not a uniformly 4-Lipschitzian mapping. If x = 1 and

y ∈ (1, 32), then we have |T × − Ty| >4|x − y| because of 0 < |x − y| < 1
2. But, in view

of Example 2.18, T is a nearly uniformly 4-Lipschitzian mapping.

The following example shows that the class of generalized Lipschitzian mappings

properly includes the class of Lipschitzian mappings and that of mappings with

bounded range.

Example 2.20. [35] Let H = R and T : H → H be a mapping defined by

T(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 1, x ∈ (−∞, −1),

x −
√
1 − (x + 1)2, x ∈ [−1, 0),

x +
√
1 − (x − 1)2, x ∈ [0, 1],

x + 1, x ∈ (1, ∞).

Then T is a generalized Lipschitzian mapping which is not Lipschitzian and whose

range is not bounded.

3 System of general regularized nonconvex variational inequalities
In this section, we introduce a new system of general nonlinear regularized nonconvex

variational inequalities and establish the existence and uniqueness theorem for a solu-

tion of the mentioned system.

Let Kr be an uniformly r-prox-regular subset of H and let Ti : H × H → Hand

gi : H → H(i = 1, 2) be four nonlinear single-valued operators. For any given constants

r, h >0, we consider the problem of finding (x*, y*) Î Kr × Kr such that{ 〈ρT1(y∗, x∗) + x∗ − g1(y∗), g1(x) − x∗〉 + 1
2r ||g1(x) − x∗||2 ≥ 0, ∀x ∈ H,

〈ηT2(x∗, y∗) + y∗ − g2(x∗), g2(x) − y∗〉 + 1
2r ||g2(x) − y∗||2 ≥ 0, ∀x ∈ H.

(3:1)

The problem (3.1) is called a system of general nonlinear regularized nonconvex var-

iational inequalities involving four different nonlinear operators (SGNRNVID).

Some special cases of the system (3.1) can be found in [1,26,28,32-34,47] and the

references therein.

Lemma 3.1. Let Ti, gi(i = 1, 2), r, h be the same as in the system (3.1) and suppose

further that gi(H) = Krfor each i = 1, 2. Then the system (3.1) is equivalent to that of

finding (x*, y*) Î Kr × Kr such that{
0 ∈ ρT1(y∗, x∗) + x∗ − g1(y∗) +NP

Kr
(x∗),

0 ∈ ηT2(x∗, y∗) + y∗ − g2(x∗) +NP
Kr
(y∗), (3:2)
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where NP
Kr
(s)denotes the P-normal cone of Kr at s in the sense of nonconvex analysis.

Proof. Let (x*, y*) Î Kr × Kr be a solution of the system (3.1). If rT1(y*, x*) + x* −g1
(y*) = 0, because the vector zero always belongs to any normal cone, then

0 ∈ ρT1(y∗, x∗) + x∗ − g1(y∗) +NP
Kr
(x∗). If rT1(y*, x*) + x* - g1(y*) ≠ 0, then, for all

x ∈ H, we have

〈−(ρT1(y∗, x∗) + x∗ − g1(y∗)), g1(x) − x∗〉 ≤ 1
2r

||g1(x) − x∗||2.

Since g1(H) = Kr, by Lemma 2.3, it follows that

−(ρT1(y∗, x∗) + x∗ − g1(y∗)) ∈ NP
Kr
(x∗),

and so

0 ∈ ρT1(y∗, x∗) + x∗ − g1(y∗) +NP
Kr
(x∗),

Similarly, one can establish that

0 ∈ ηT2(x∗, y∗) + y∗ − g2(x∗) +NP
Kr
(y∗).

Conversely, if (x*, y*) Î Kr × Kr is a solution of the system (3.2), then it follows from

Definition 2.8 that (x*, y*) is a solution of the system (3.1). This completes the proof.

The problem (3.2) is called the general nonlinear nonconvex variational inclusions

system associated with the system of general nonlinear regularized nonconvex varia-

tional inequalities (3.1).

Now, we prove the existence and uniqueness theorem for a solution of the system of

general nonlinear regularized nonconvex variational inequalities (3.1). For this end, we

need the following lemma in which by using the projection operator technique, we ver-

ify the equivalence between the system of general nonlinear regularized nonconvex var-

iational inequalities (3.1) and a fixed point problem.

Lemma 3.2. Let Ti, gi(i = 1, 2), r and h be the same as in the system (3.1) and sup-

pose further that gi(H) = Krfor each i = 1, 2. Then (x*, y*) Î Kr × Kr is a solution of

the system (3.1) if and only if

{
x∗ = PKr(g1(y

∗) − ρT1(y∗, x∗)),
y∗ = PKr (g2(x

∗) − ηT2(x∗, y∗)) (3:3)

provided that ρ < r′
1+||T1(y∗,x∗)||and η < r′

1+||T2(x∗,y∗)||, where r’ Î (0, r) and PKris the pro-

jection of Honto Kr.

Proof. Let (xi*, y*) Î Kr × Kr be a solution of the system (3.1). Since g1(y*), g2(x*) Î

Kr, ρ < r′
1+||T1(y∗,x∗)|| and η < r′

1+||T2(x∗,y∗)||, it is easy to check that two the points g1(y*) −

rT1(y*, x*) and g2(x*) − hT2(x*, y*) belong to U(r′). Therefore, the r-prox regularity of

Kr implies that two the sets PKr(g1(y
∗) − ρT1(y∗, x∗)) and PKr (g2(x

∗) − ηT2(x∗, y∗))
are nonempty and singleton, that is, the equations (3.3) are well defined. By using

Lemma 3.1, we have
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{
0 ∈ ρT1(y∗, x∗) + x∗ − g1(y∗) +NP

Kr
(x∗),

0 ∈ ηT2(x∗, y∗) + y∗ − g2(x∗) +NP
Kr
(y∗),

⇔{
g1(y∗) − ρT1(y∗, x∗) ∈ x∗ +NP

Kr
(x∗) = (I +NP

Kr
)(x∗),

g2(x∗) − ηT2(x∗, y∗) ∈ y∗ +NP
Kr
(y∗) = (I +NP

Kr
)(y∗),

⇔{
x∗ = PKr(g1(y

∗) − ρT1(y∗, x∗)),
y∗ = PKr (g2(x

∗) − ηT2(x∗, y∗)),

where I is identity operator and we have used the well-known fact that

PKr = (I +NP
Kr
)−1. This completes the proof.

Theorem 3.3. Let Ti, gi(i = 1, 2), r and h be the same as in the system (3.1) such

that gi(H) = Krfor each i = 1, 2. Suppose that for each i = 1, 2, Ti is πi-strongly mono-

tone with respect to gi and si -Lipschitz continuous in the first variable and gi is δi-

Lipschitz continuous. If the constants r and h satisfy the following conditions:

ρ <
r′

1 + ||T1(y, x)|| , η <
r′

1 + ||T2(x, y)|| , ∀x, y ∈ H, (3:4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|ρ − π1
σ 2
1
| <

√
r2π2

1−σ 2
1 (r2δ

2
1−(r−r′)2)

rσ 2
1

,

|η − π2

σ 2
2
| <

√
r2π2

2−σ 2
2 (r2δ

2
2−(r−r′)2)

rσ 2
2

,

rπi > σi

√
r2δ2i − (r − r′)2,

rδi > r − r′, (i = 1, 2),

(3:5)

where r′ Î(0, r), then the system (3.1) admits a unique solution.

Proof. Define the mappings ψ, φ : H × H → Kr by

ψ(x, y) = PKr(g1(y) − ρT1(y, x)),

φ(x, y) = PKr(g2(x) − ηT2(x, y))
(3:6)

for all (x, y) ∈ H × H, respectively. Since g1(y), g2(x) Î Kr for x, y ∈ H, all easily

check that the mappings ψ and � are well defined. Define || · ||∗ on H × H by

||(x, y)||∗ = ||x|| + ||y||, ∀(x, y) ∈ H × H.

It is obvious that (H × H, || · ||∗) is a Hilbert space. In addition, define a mapping F :

Kr × Kr ® Kr × Kr as follows:

F(x, y) = (ψ(x, y), φ(x, y)), ∀(x, y) ∈ Kr × Kr . (3:7)

Now, we verify that F is a contraction mapping. Indeed, let (x, y), (x̂, ŷ) ∈ Kr × Kr be

given. Since two the points g1(y) − rT1(y, x) and g1(ŷ) − ρT1(ŷ, x̂) belong to U(r′), by

using Proposition 2.10, we have

||ψ(x, y) − ψ(x̂, ŷ)|| = ||PKr (g1(y) − ρT1(y, x)) − PKr(g1(ŷ) − ρT1(ŷ, x̂))||
≤ r

r − r′
||g1(y) − g1(ŷ) − ρ(T1(y, x) − T1(ŷ, x̂))||.

(3:8)

Since T1 is π1-strongly monotone with respect to g1 and s1-Lipschitz continuous in

the first variable and g1 is δ1-Lipschitz continuous, we conclude that
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||g1(y) − g1(ŷ) − ρ(T1(y, x) − T1(ŷ, x̂))||2
= ||g1(y) − g1(ŷ)||2 − 2ρ〈T1(y, x) − T1(ŷ, x̂), g1(y) − g1(ŷ)} + ρ2||T1(y, x) − T1(ŷ, x̂)||2
≤ (δ21 − 2ρπ1 + ρ2σ 2

1 )||y − ŷ||2.
(3:9)

Substituting (3.9) in (3.8), it follows that

||ψ(x, y) − ψ(x̂, ŷ)|| ≤ θ ||y − ŷ||, (3:10)

where

θ =
r

r − r′

√
δ21 − 2ρπ1 + ρ2σ 2

1 .

Since T2 is π2-strongly monotone with respect to g2 and s2-Lipschitz continuous in

the first variable and g2 is δ2-Lipschitz continuous, by the similar way given in the

proofs of (3.8)-(3.10), we can prove that

||φ(x, y) − φ(x̂, ŷ)|| ≤ ω||x − x̂||, (3:11)

where

ω =
r

r − r′

√
δ22 − 2ηπ2 + η2σ 2

2 .

It follows from (3.7), (3.10) and (3.11) that∥∥F(x, y) − F(x̂, ŷ)
∥∥

∗ = ||ψ(x, y) − ψ(x̂, ŷ)|| + ||φ(x, y) − φ(x̂, ŷ)||
≤ ϑ ||(x, y) − (x̂, ŷ)||∗,

(3:12)

where ϑ = max{θ, ω}. By the condition (3.5), we note that 0 ≤ ϑ <1 and so (3.12)

guarantees that F is a contraction mapping. According to Banach’s fixed point theo-

rem, there exists a unique point (x*, y*) Î Kr × Kr such that F(x*, y*) = (x*, y*). From

(3.6) and (3.7), we conclude that x∗ = PKr(g1(y
∗) − ρT1(y∗, x∗)) and

y∗ = PKr(g2(x
∗) − ηT2(x∗, y∗)). Now, Lemma 3.2 guarantees that (x*, y*) Î Kr × Kr is a

solution of the system (3.1). This completes the proof.

4 Perturbed projection and iterative algorithms
In this section, by applying two nearly uniformly Lipschitzian mappings S1 and S2 and

using the equivalent alternative formulation (3.3), we suggest and analyze a new per-

turbed p-step projection iterative algorithm with mixed errors for finding an element

of the set of the fixed points ofQ = (S1, S2) which is the unique solution of the system

of general nonlinear regularized nonconvex variational inequalities (3.1).

Let S1 : Kr ® Kr be a nearly uniformly L1-Lipschitzian mapping with the sequence
{an}∞n=1 and S2 : Kr ® Kr be a nearly uniformly L2-Lipschitzian mapping with the

sequence {bn}∞n=1. We define the self-mappingQ of Kr × Kr as follows:

Q(x, y) = (S1x, S2y), ∀x, y ∈ Kr . (4:1)

ThenQ = (S1, S2) : Kr × Kr → Kr × Kr is a nearly uniformly max{L1, L2}-Lipschitzian

mapping with the sequence {an + bn}n=1 with respect to the norm || · ||* in H × H.

Since, for any (x, y), (x’, y’) Kr × Kr and n Î N, we have

||Qn(x, y) − Qn(x′, y′)||∗
= ||(Sn1x, Sn2y) − (Sn1x

′, Sn2y
′)||∗ = ||(Sn1x − Sn1x

′, Sn2y − Sn2y
′)||∗

= ||Sn1x − Sn1x
′|| + ||Sn2y − Sn2y

′|| ≤ L1(||x − x′|| + an) + L2(||y − y′|| + bn)

≤ max{L1, L2}(||x − x′|| + ||y − y′|| + an + bn) = max{L1, L2}(||(x, y) − (x′, y′)||∗ + an + bn).
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We denote the sets of all the fixed points of Si(i = 1, 2) andQ by Fix(Si) and Fix(Q),

respectively, and the set of all the solutions of the system (3.1) by SGNRNVID(Kr, Ti,

gi, i = 1, 2). In view of (4.1), for any (x, y) Î Kr × Kr, (x, y) ∈ Fix(Q) if and only if x Î
Fix(S1) and y Î Fix(S2), that is, Fix(Q) = Fix(S1, S2) = Fix(S1) × Fix(S2).

We now characterize the given problem. Let the operators Ti, gi(i = 1,2) and the con-

stants r, h be the same as in the system (3.1) and, further, suppose that gi(H) = Kr for

each i = 1, 2. If (x∗, y∗) ∈ Fix(Q)∩ SGNRNVID (Kr, Ti, gi, i = 1, 2), ρ < r′
1+||T1(y∗,x∗)|| and

η < r′
1+||T2(y∗,x∗) ||, where r’ Î (0, r), then by using Lemma 3.2, it is easy to see that for each n

Î N, {
x∗ = Sn1x

∗ = PKr(g1(y
∗) − ρT1(y∗, x∗)) = Sn1PKr(g1(y

∗) − ρT1(y∗, x∗)),
y∗ = Sn2y

∗ = PKr(g2(x
∗) − ηT2(x∗, y∗)) = Sn2PKr(g2(x

∗) − ηT2(x∗, y∗)). (4:2)

The fixed point formulation (4.2) enables us to suggest the following iterative algo-

rithm with mixed errors for finding an element of the set of the fixed points of the

nearly uniformly Lipschitzian mapping Q = (S1, S2) which is the unique solution of the

system of the general nonlinear regularized nonconvex variational inequalities (3.1).

Algorithm 4.1. Let Ti, gi(i = 1, 2), r and h be the same as in the system (3.1) such

that gi(H) = Kr for each i = 1, 2. Furthermore, let the constants r and h satisfy the

condition (3.4). For an arbitrary chosen initial point (x1, y1) ∈ H × H, compute the

iterative sequence {(xn, yn)}∞n=1 in H × H in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = (1 − αn,1 − βn,1)xn + αn,1(Sn1PKr(�(vn,1, νn,1)) + en,1) + βn,1jn,1 + rn,1,

yn+1 = (1 − αn,1 − βn,1)yn + αn,1(Sn2PKr(�(vn,1, νn,1)) + ln,1) + βn,1sn,1 + kn,1,

vn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1(Sn1PKr(�(vn,i+1, νn,i + 1)) + en,i + 1) + βn,i+1jn,i+1 + rn,i+1,

νn,i = (1 - αn,i + 1 - βn,i + 1)yn + αn,i + 1(Sn2PKr(�(vn,i + 1, νn,i + 1)) + ln,i + 1) + βn,i + 1sn,i + 1 + kn,i + 1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)xn + αn,p(Sn1PKr (�(xn, yn)) + en,p) + βn,pjn,p + rn,p,

νn,p−1 = (1–αn,p − −βn,p)yn + αn,p(Sn2PKr(�(xn, yn)) + ln,p) + βn,psn,p + kn,p,

i = 1, 2, . . . , p − 2,

(4:3)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(vn,i, Vn,i) = g1(Vn,i) − ρT1(Vn,i, vn,i),

�(vn,i, Vn,i) = g2(vn,i) − ηT2(vn,i, Vn,i),

�(xn, yn) = g1(yn) − ρT1(yn, xn),

�(xn, yn) = g2(xn) − ηT2(xn, yn),

i = 1, 2, . . . , p − 2,

S1, S2: Kr ® Kr, are two nearly uniformly Lipschitzian mappings, {αn,i}∞n=1,
{βn,i}∞n=1(i = 1, 2, . . . , p) are 2p sequences in interval [0, 1] such that

αn,i + βn,i ≤ 1, αn,i + βn,i ≤ 1,
∑∞

n=1 βn,i < ∞ and {en,i}∞n=1, {ln,i}∞n=1, {jn,i}∞n=1, {sn,i}∞n=1,
{kn,i}∞n=1(i = 1, 2, . . . , p), {kn,i}∞n=1(i = 1, 2, . . . , p) are 6p sequences in H to take into

account a possible inexact computation of the resolvent operator point satisfying the

following conditions: {jn,i}∞n=1, {sn,i}∞n=1(i = 1, 2, . . . , p) are 2p bounded sequences in H
and {en,i}∞n=1, {ln,i}∞n=1, {rn,i}∞n=1, {kn,i}∞n=1(i = 1, 2, . . . , p) are 4p sequencs in H such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
en,i = e

′
n,i + e

′′
n,i, ln,i = l

′
n,i + l

′′
n,i, n ∈ N, i = 1, 2, . . . , p,

lim
n→∞ ||(e′

n,i, l
′
n,i)||∗ = 0, i = 1, 2, . . . , p,

∞∑
n=1

||(e′′
n,i, l

′′
n,i)||∗ < ∞,

∞∑
n=1

||(rn,i, kn,i)||∗ < ∞, i = 1, 2, . . . , p.
(4:4)
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If Si ≡ I for each i = 1, 2, then Algorithm 4.1 reduces to the following iterative algo-

rithm for solving the system (3.1).

Algorithm 4.2. Assume that Ti, gi(i = 1, 2), r and h are the same as in Algorithm

4.1. Moreover, let the constants r and h satisfy the condition (3.4). For an arbitrary

chosen initial point (x1, y1) ∈ H × H, compute the iterative sequence {(xn, yn)}∞n=1 in
H × H in the following way:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = (1 − αn,1 − βn,1)xn + αn,1(PKr(�(vn,1, νn,1)) + en,1) + βn,1jn,1 + rn,1,

yn+1 = (1 − αn,1 − βn,1)yn + αn,1(PKr(�(vn,1, νn,1)) + ln,1) + βn,1sn,1 + kn,1,

vn,i = (1 − αn,i+1 − βn,i+1)xn + αn,i+1(PKr(�(vn,i+1, νn,i + 1)) + en,i + 1) + βn,i+1jn,i+1 + rn,i+1,

Vn,i = (1–αn,i + 1 − −βn,i + 1)yn + αn,i + 1(PKr(�(vn,i + 1, νn,i + 1)) + ln,i + 1) + βn,i + 1sn,i + 1 + kn,i + 1,

· · ·
vn,p−1 = (1 − αn,p − βn,p)xn + αn,p(PKr(�(xn, yn)) + en,p) + βn,pjn,p + rn,p,

νn,p - 1 = (1–αn,p − −βn,p)yn + αn,p(PKr(�(xn, yn)) + ln,p) + βn,psn,p + kn,p,

i = 1, 2, . . . , p − 2,

where F(vn,i, νn,i), Ψ(vn,i, νn,i)(i = 1, 2, ..., p − 2), F(xn, yn), Ψ(xn, yn), {αn,i}∞n=1, {βn,i}∞n=1,
{ln,i}∞n=1, {ln,i}∞n=1, {jn,i}∞n=1, {sn,i}∞n=1, {rn,i}∞n=1, {kn,i}∞n=1(i = 1, 2, . . . , p) are the same as in

Algorithm 4.1.

Algorithm 4.3. Let Ti, gi(i = 1, 2), r and h be the same as in Algorithm 4.1. Further-

more, suppose that the constants r and h satisfy the condition (3.4). For an arbitrary

chosen initial point (x1, y1) ∈ H × H, compute the iterative sequence {(xn, yn)}∞n=1 in
H × H, by the following iterative processes:{

xn+1 = (1 − αn)xn + αnSn1PKr(g1(yn) − ρT1(yn, xn)),
yn+1 = (1 − αn)yn + αnSn2PKr(g2(xn) − ηT2(xn, yn)),

where S1, S2 are the same as in Algorithm 4.1 and {αn}∞n=1 is a sequence in [0, 1]

satisfying
∑∞

n=1 αn = ∞.

If Si ≡ I for each i = 1, 2, then Algorithm 4.3 reduces to the following iterative algo-

rithm for solving the system (3.1).

Algorithm 4.4. Let Ti, gi(i = 1, 2), r and h be the same as in Algorithm 4.1. Further-

more, assume that the constants r and h satisfy the condition (3.4). For an arbitrary

chosen initial point (x1, y1) ∈ H × H, compute the iterative sequence {(xn, yn)}∞n=1 in
H × H in the following way:{

xn+1 = (1 − αn)xn + αnPKr(g1(yn) − ρT1(yn, xn)),
yn+1 = (1 − αn)yn + αnPKr(g2(xn) − ηT2(xn, yn)),

where the sequence {αn}∞n=1 is the same as in Algorithm 4.3.

Remark 4.5. Algorithms 2.1-2.4 in [20], Algorithms 3.1-3.7 in [28], Algorithms 2.1-

2.3 in [32], Algorithms 2.1 and 2.2 in [33] and Algorithms 2.1-2.4 in [34] are special

cases of Algorithms 4.1-4.4. In brief, for a suitable and appropriate choice of the opera-

tors Si, Ti, gi(i = 1, 2) and the constants r and h, one can obtain a number of new and

previously known iterative schemes for solving the system (3.1) and related problems.

This clearly shows that Algorithms 4.1-4.4 are quite general and unifying.

Remark 4.6. It should be pointed that

(1) If en,i = ln,i = rn,i = kn,i = 0 for all n Î N and i = 1, 2, ..., p, then Algorithms 4.1

and 4.2 change into the perturbed iterative process with mean errors.

(2) When en,i = ln,i = jn,i = sn,i = rn,i = kn,i = 0 for all n Î N and i = 1, 2, ..., p, then

Algorithms 4.1 and 4.2 reduce to the perturbed iterative process without error.
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5 Main results
In this section, we establish the strong convergence of the sequences generated by per-

turbed projection iterative Algorithms 4.1 and 4.2, under some suitable conditions. We

need the following lemma for verifying our main results.

Lemma 5.1. Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying the

following condition: There exists a positive integer n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0,

where tn Î [0, 1,
∑∞

n=0 tn = ∞, limn®∞ bn = 0 and
∑∞

n=0 cn < ∞. Then limn®0 an = 0.

Proof. The proof directly follows from Lemma 2 in Liu [22].

Theorem 5.2. Let Ti, gi(i = 1, 2), r and h be the same as in Theorem 3.3. Suppose

that all the conditions of Theorem 3.3 hold and the constants r, h satisfy the conditions

(3.4) and (3.5). Assume that S1 : Kr ® Kr is a nearly uniformly L1-Lipschitzian map-

ping with the sequence {an}∞n=1, S2 : Kr ® Kr is a nearly uniformly L2-Lipschitzian map-

ping with the sequence {bn}∞n=1, andQis a self-mapping of Kr × Kr, defined by (4.1) such

that Fix(Q) ∩ SGNRNVID(Kr ,Ti, gi, i = 1, 2) �= ∅. Moreover, for each i = 1, 2, let Liϑ <

1, where ϑ is the same as in (3.12) If there exists a constant a > 0 such that∏p
i=1 αn,i > αfor each nÎN, then the iterative sequence {(xn, yn)}∞n=1generated by Algo-

rithm 4.1 converges strongly to the only element of

Fix(Q) ∩ SGNRNVID(Kr ,Ti, gi, i = 1, 2).

Proof. According to Theorem 3.3, the system (3.1) has a unique solution (x*, y*) in

Kr × Kr. Since, ρ < r′
1+||T1(y∗,x∗)|| and η < r′

1+||T1(y∗,x∗)||, it follows from Lemma 3.2 that (x*,

y*) satisfies the equations (3.3) Since SGNRNVID(Kr, Ti, gi, i = 1, 2) is a singleton set

and Fix(Q) ∩ SGNRNVID(Kr ,Ti, gi, i = 1, 2) �= ∅, we conclude that x* Î Fix(S1) and y*

Î Fix(S2). Hence, for each i = 1, 2, ..., p and nÎN, we can write{
x∗ = (1 − αn,i − βn,i)x∗ + αn,iSn1PKr(g1(y

∗) − ρT1(y∗, x∗)) + βn,ix∗,
y∗ = (1 − αn,i − βn,i)y∗ + αn,iSn2PKr(g2(x

∗) − ηT2(x∗, y∗)) + βn,iy∗,
(5:1)

Where the sequences {an,i}∞n=1 and {βn,i}∞n=1(i = 1, 2, . . . , p) are the same as in Algo-

rithm 4.1. Let � = max{supn≥0||jn,i − x∗||, supn≥0||sn,i − y∗||, i = 1, 2, . . . , p}. Since g1

(y*) g1(yn) Î Kr, ρ < r′
1+||T1(y∗,x∗)|| and ρ < r′

1+||T1(y∗,x∗)||, for all nÎN, we can easily check

that the points g1(y*) - rT1(y*,x*) and g1(yn) - rT1(yn, xn) (nÎN), belong to U(r’). By

using (4.3), (5.1), Proposition (2.10) and the assumptions, we have

||xn+1 − x∗||
≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1||Sn1PKr(g1(νn, 1) − ρT1(νn,1, vn,1))

−Sn1PKr(g1(y
*) − ρT1(y∗, x∗))|| + βn,1||jn,1 − x∗|| + αn,1||en,1|| + ||rn,1||

≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1L1
(||PKr (g1(νn,1) − ρT1(νn ,1, vn,1))

−PKr(g1(y
∗) − ρT1(y∗, x∗))|| + an

)
+ βn,1||jn,1 − x∗|| + αn,1(||e′n,1|| + ||e′′n,1||) + ||rn,1||

≤ (1 − αn,1 − βn,1)||xn − x∗|| + αn,1L1

(
r

r − r′
||g1(νn, 1) − g1(y*)

−ρ(T1(νn, 1, vn,1) − T1(y*, x*))|| + an
)
+ αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1|| + βn,1�

≤ (1-αn,1 − βn,1)||xn − x*|| + αn,1L1θ ||νn, 1 − y∗||
+ αn,1||e′n,1|| + ||e′′n,1|| + ||rn,1|| + αn,1L1an + βn,1�,

(5:2)

where θ is the same as in (3.10). In similar way to the proof of (5.2), we can get

||yn+1 − y∗|| ≤ (1 − αn,1 − βn,1)||yn − y∗|| + αn,1L2ω||vn,1 − x∗||
+ αn,1||l′n,1|| + ||l′′n,1|| + ||kn,1|| + αn,1L2bn + βn,1�,

(5:3)
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where ω is the same as in (3.11). Letting L = max{L1, L2} and using (5.2) and (5.3),

we obtain

||(xn+1, yn+1) − (x∗, y∗)||∗
≤ (1 − αn,1 − βn,1)||(xn, yn) − (x∗, y∗)||∗ + αn,1Lϑ ||(vn,1, νn,1) − (x*, y*)||*

+ αn,1||(e′n,1, l′n,1)||*+||(e′′n,1, l′′n,1)||*+||(rn,1, kn,1)||* + αn,1L(an + bn) + 2βn,1�,

(5:4)

where ϑ is the same as in (3.12).

As in the proof of the inequalities (5.2)-(5.4), for each i Î {1, 2, ..., p - 2}, we can

prove that

||(vn,i, νn,i) − (x*, y*)||*
≤ (1 − αn,i + 1 − βn,i + 1)||(xn, yn) − (x*, y*)||* + αn,i + 1Lϑ ||(vn,i + 1, νn,i + 1) − (x*, y*)||*

+ αn,i + 1||(e′n,i + 1, l′n,i + 1)||* + ||(e′′n,i + 1, l′′n,i + 1)||* + ||(rn,i+1, kn,i+1)||*
+ αn,i + 1L(an + bn) + 2βn,i+1�

(5:5)

and

||(vn,p−1, νn ,p−1) − (x*, y*)||*
≤ (1−αn,p − βn,p)||(xn, yn) − (x*, y*)||* + αn,pLϑ ||(xn, yn) − (x*, y*)||*

+ αn,p||(e′
n,p, l

′
n,p)||∗+||(e′′

n,p, l
′′
n,p)||∗+||(rn,p, kn,p)||∗+αn,pL(an+bn) +2βn,p�.

(5:6)

It follows from (5.5) and (5.6) that

||(vn,1, νn,1) − (x*, y*)||*
≤ (1-αn,2 − βn,2)||(xn, yn) − (x*, y*)||* + αn,2Lϑ ||(vn,2, νn,2) − (x*, y*)||*

+ αn,2||(e′
n,2, l

′
n,2)||* + ||(e′′

n,2, l
′′
n,2)||* + ||(rn,2, kn,2)||* + αn,2L(an + bn) + 2βn,2�

≤ (1 − αn,2 − βn,2)||(xn, yn) − (x∗, y∗)||∗ + αn,2Lϑ((1 − αn,3 − βn,3)
∥∥(xn, yn) − (x∗, y∗)

∥∥
∗

+ αn,3Lϑ ||(vn,3, νn,3) − (x*, y*)||* + αn,3||(e′
n,3, l

′
n,3)||* + ||(e′

n,3, l
′′
n,3)||* + ||(rn,3, kn,3)||*

+ αn,3L(an + bn) + 2βn,3�) + αn,2||(e′
n,2, l

′
n,2)||∗ + ||(e′′

n,2, l
′′
n,2)||∗

+ ||(rn,2, kn,2)||∗ + αn,2L(an + bn) + 2βn,2�

= (1 − αn,2 − βn,2 + αn,2(1 − αn,3 − βn,3)Lϑ)||(xn, yn) − (x∗, y∗)||∗
+ αn,2αn,3L2ϑ2||(vn,3, νn,3) − (x*, y*)||* + αn,2||(e′

n,2, l
′
n,2)||*

+ αn,2αn,3Lϑ ||(e′
n,3, l

′
n,3)||* + ||(e′′

n,2, l
′′
n,2)||* + αn,2Lϑ ||(e′′

n,3, l
′′
n,3)||* + ||(rn,2, kn,2)||*

+ αn,2Lϑ ||(rn,3, kn,3)||* + (αn,2L + αn,2αn,3L
2ϑ)(an + bn) + 2(βn,2 + αn,2βn,3Lϑ)�

≤
...

≤ (
1 − αn,2 − βn,2 + αn,2(1 − αn,3 − βn,3)Lϑ + αn,2αn,3(1 − αn,4 − βn,4)L2ϑ2

+ · · · +
p−1∏
i=2

αn,i(1 − αn,p − βn,p)Lp−2ϑp−2 +
p∏
i=2

αn,iLp−1ϑp−1

)
||(xn, yn) − (x∗, y∗)||∗

+ αn,2||(e′
n,2, l

′
n,2)||∗ + αn,2αn,3Lϑ ||(e′

n,3, l
′
n,3)||∗ + · · · +

p∏
i=2

αn,iL
p−2ϑp−2||(e′

n,p, l
′
n,p)||∗

+ ||(e′′
n,2, l

′′
n,2)||∗ + αn,2Lϑ ||(e′′

n,3, l
′′
n,3)||∗ + · · · +

p−1∏
i=2

αn,iLp−2ϑp−2||(e′′
n,p, l

′′
n,p)||∗

+ ||(rn,2, kn,2)||∗ + αn,2Lϑ ||(rn,3, kn,3)||∗ + · · · +
p−1∏
i=2

αn,iLp−2ϑp−2||(rn,p, kn,p)||∗

+

(
αn,2L + αn,2αn,3L2ϑ + αn,2αn,3αn,4L3ϑ2 + · · · +

p∏
i=2

αn,iLp−1ϑp−2

)
(an + bn)

+ 2

(
βn,2 + αn,2βn,3Lϑ + αn,2αn,3βn,4L2ϑ2 + · · · +

p−1∏
i=2

αn,iβn,pLp−2ϑp−2

)
�.

(5:7)

Balooee and Je Cho Journal of Inequalities and Applications 2012, 2012:141
http://www.journalofinequalitiesandapplications.com/content/2012/1/141

Page 15 of 23



Applying (5.4) and (5.7), we get

(xn+1, yn+1) − (x∗, y∗)||∗
≤ (

1 − αn,1 − βn,1 + αn,1(1 − αn,2 − βn,2)Lϑ + αn,1αn,2(1 − αn,3 − βn,3)L2ϑ2

+ · · · +
p−1∏
i=1

αn,i (1 − αn,p − βn,p)Lp−1ϑp−1 +
p∏
i=1

αn,iLpϑp

)
||(xn, yn) − (x∗, y∗)||∗

+ αn,1||(e′
n,1, l

′
n,1)||∗ + αn,1αn,2Lϑ ||(e′

n,2, l
′
n,2)||∗ + · · · +

p∏
i=1

αn,iLp−1ϑp−1||(e′
n,p, l

′
n,p)||∗

+ ||(e′′
n,1, l

′′
n,1)||∗ + αn,1Lϑ ||(e′′

n,2, l
′′
n,2)||∗ + · · · +

p−1∏
i=1

αn,iLp−1ϑp−1||(e′′
n,p, l

′′
n,p)||∗

+ ||(rn,1, kn,1)||∗ + αn,1Lϑ ||(rn,2, kn,2)||∗ + · · · +
p−1∏
i=1

αn,iL
p−1ϑp−1

∥∥(rn,p, kn,p)∥∥∗

+

(
αn,1L + αn,1αn,2L2ϑ + αn,1αn,2αn,3L3ϑ2 + · · · +

p∏
i=1

αn,iLpϑp−1

)
(an + bn)

+ 2

(
βn,1 + αn,1βn,2Lϑ + αn,1αn,2βn,3L

2ϑ2 + · · · +
p−1∏
i=1

αn,iβn,pL
p−1ϑp−1

)
�

≤
[
1 − (1 − Lϑ)

p∏
i=1

αn,iLp−1ϑp−1

]
||(xn, yn) − (x∗, y∗)||∗ +

p∑
i=1

i∏
j=1

αn,jLi−1ϑ i−1||(e′
n,i, l

′
n,i)||∗

+ ||(e′′
n,1, l

′′
n,1)||∗ +

p∑
i=2

i−1∏
j=1

αn,jLi−1ϑ i−1||(e′′
n,i, l

′′
n,i)||∗ + ||(rn,1, kn,1)||∗

+
p∑
i=2

i−1∏
j=1

αn,jLi−1ϑ i−1||(rn,i, kn,i)||∗ +
p∑
i=1

i∏
j=1

αn,jLiϑ i−1(an + bn)

+ 2(βn,1 +
p∑
i=2

i−1∏
j=1

αn,jβn,iL
i−1ϑ i−1)�

≤
[
1 − (1 − Lϑ)

p∏
i=1

αn,iL
p−1ϑp−1

]
||(xn, yn) − (x∗, y∗)||∗

+ (1 − Lϑ)
p∏
i=1

αn,iLp−1ϑp−1

∑p
i=1

∏i
j=1 αn,jLi−1ϑ i−1||(e′′

n,i, l
′′
n,i)||∗ +

∑p
i=1

∏i
j=1 αn,jLiϑ i−1(an + bn)

α(1 − Lϑ)Lp−1ϑp−1

+ ||(e′′
n,1, l

′′
n,1)||∗ +

p∑
i=2

i−1∏
j=1

αn,jL
i−1ϑ i−1||(e′′

n,i, l
′′
n,i)||∗ + ||(rn,1, kn,1)||∗

+
p∑
i=2

i−1∏
j=1

αn,jLi−1ϑ i−1||(rn,i, kn,i)||∗ + 2

⎛
⎝βn,1 +

p∑
i=2

i−1∏
j=1

αn,jβn,iLi−1ϑ i−1

⎞
⎠ �.

(5:8)

Since Lϑ <1, limn®∞ an = limn®∞ bn = 0 and
∑∞

n=1 βn,i < ∞ for each i Î {1, 2, ..., p},

in view of (4.4), it is obvious that all the conditions of Lemma 5.1 are satisfied. Now,

Lemma 5.1 and (5.8) guarantee that (xn, yn) ® (x*, y*) as n ® ∞ and so the sequence

{(xn, yn)}∞n=0 generated by Algorithm 4.1 converges strongly to the unique solution (x*,

y*) of the system (3.1). This completes the proof.

Corollary 5.3. Suppose that Ti, gi(i = 1, 2), r and h are the same as in Theorem 3.3

and let all the conditions Theorem 3.3 hold. Furthermore, assume that the constants r
and h satisfy the conditions (3.4) and (3.5) and, for each i = 1, 2, Liϑ <1, where ϑ is the

same as in (3.12). If there exists a constant a >0 such that
∏p

i=1 αn,i > αfor each n Î N,

then the iterative sequence {(xn, yn)}∞n=1generated by Algorithm 4.2 converges strongly to

the unique solution of the system (3.1).

As in the proof of Theorem 5.2, one can prove the convergence of the iterative

sequence generated by Algorithms 4.3 and 4.4.
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6 Comments on results in the papers [20,28,33,47]
In view of Definition 2.11, we note that the condition relaxed cocoercivity of the

operator T is weaker than the condition strongly monotonicity of T. In other words,

the class of relaxed cocoercive mappings is more general than the class of strongly

monotone mappings. In fact, Chang et al. [20], Verma [33], Huang and Noor [47],

Noor and Noor [28] studied the convergence analysis of the proposed iterative algo-

rithms under the condition of strong monotonicity. In the present section, we show

that, under the mild condition, that is, the relaxed cocoercivity, the main results in the

papers [20,28,33,47] still hold.

Let K be a closed convex subset of H and let T : K × K → H be a nonlinear opera-

tor. Verma [33] and Chang et al. [20] introduced and considered the following system

of nonlinear variational inequalities (SNVI): Find (x*, y*) Î K × K such that{ 〈ρT(y∗, x∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K,ρ > 0,
〈ηT(x∗, y∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K, η > 0.

(6:1)

Verma [33] proposed the following two-step iterative algorithm for solving the SNVI

(6.1):

Algorithm 6.1. (Algorithm 2.1 [33]) For arbitrary chosen initial points x0, y0 Î K,

compute the sequences {xk} and {yk} such that{
xk+1 = (1 − ak)xk + akPK[yk − ρT(yk, xk)],
yk = PK[xk − ηT(xk, yk)],

where r, h >0 are constants, PK is the H projection of H onto K, 0 ≤ ak ≤ 1 and∑∞
k=0 a

k = ∞.

He also studied the convergence analysis of the suggested iterative algorithm under

some certain conditions as follows:

Theorem 6.2. (Theorem 2.1 [33]) Let Hbe a real Hilbert space and let K be a none-

mpty closed convex subset of H. Let T : K × K → H be (g, r)-relaxed cocoercive and µ-

Lipschitz continuous in the first variable. Suppose that (x*, y*) Î K × K is a solution to

the SNVI (6.1), the sequences {xk} and {yk} are generated by Algorithm 6.1,

0 ≤ ak ≤ 1,
∞∑
k=0

ak = ∞.

Then the sequences {xk} and {yk}, respectively, converge to x* and y* for

0 < ρ <
2(r − γμ2)

μ2
, 0 < η <

2(r − γμ2)
μ2

.

We note that the condition 0 < ρ <
2(r−γμ2)

μ2 implies that r > gµ2. Since

T : K × K → H is (g, r)-relaxed cocoercive and µ-Lipschitz continuous in the first vari-

able, the condition r > gµ2 guarantees that the operator T is (r − gµ2)-strongly mono-

tone in the first variable. Hence, one can rewrite the statement of Theorem 6.2 as

follows:

Theorem 6.3. Let Hbe a real Hilbert space and let K be a nonempty closed convex

subset of H. Let T : K × K → Hbe ξ-strongly monotone and µ-Lipschitz continuous in

the first variable. Suppose that (x*, y*) Î K × K is a solution to the SNVI (6.1), the
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sequences {xk} and {yk} are generated by Algorithm 6.1 and

0 ≤ ak ≤ 1,
∞∑
k=0

ak = ∞.

Then the sequences {xk} and {yk}, respectively, converge to x* and y* for

0 < ρ <
2ξ

μ2and 0 < ρ <
2ξ

μ2.

Remark 6.4. Theorem 2.3 in [33] has been stated with the condition relaxed cocoer-

civity of the operator T. Similarly, the conditions of Theorem 2.3 imply that the opera-

tor T is, in fact, strongly monotone. Hence Theorem 2.3 from [33] has been proved

with the condition strongly monotonicity of the operator T, not the mild condition

relaxed cocoercivity.

Chang et al. [20] proposed the following two-step iterative method for solving the

SNVI (6.1):

Algorithm 6.5. (Algorithm 2.1 [20]) For arbitrary chosen initial points x0, y0 Î K,

compute the sequences {xn} and {yn} such that{
xn+1 = (1 − αn)xn + αnPK[yn − ρT(yn, xn)],
yn = (1 − βn)xn + βnPK[xn − ηT(xn, yn)],

where r, h > 0 are two constants, PK is the projection of H onto K and {an} and {bn}
are sequences in [0, 1].

They also studied the convergence analysis of the proposed iterative algorithm under

some certain conditions as follows:

Theorem 6.6. (Theorem 3.1 [20]) Let Hbe a real Hilbert space and let K be a none-

mpty closed convex subset of H. Let T(., .) : K × K → H be two-variable (g, r)-relaxed
cocoercive and µ-Lipschitz continuous in the first variable. Suppose that (x, y ) Î K ×K

is a solution to the SNVI (6.1) and that {xn} and {yn} are the sequences generated by

Algorithm 6.5. If {an} and {bn} are two sequences in [0, 1] satisfying the following condi-

tions:

(a)
∑∞

n=0 αn = ∞;

(b)
∑∞

n=0 (1 − βn) < ∞;

(c) 0 < ρ, η <
2(r−γμ2)

μ2 ;

(d) r >gμ2,

then the sequences {xn} and {yn} converge strongly to x* and y*, respectively.

Similarly, since T is (g, r)-relaxed cocoercive and µ-Lipschitz continuous in the first

variable, the condition (d) implies that the operator T is (r − gµ2)-strongly monotone

in the first variable. Accordingly, we can rewrite the statement of Theorem 6.6 as

follows:

Theorem 6.7. Let Hbe a real Hilbert space and let K be a nonempty closed convex

subset of H. Let T(·, ·) : K × K → Hbe two-variable ξ-strongly monotone and µ-

Lipschitz continuous in the first variable. Suppose that (x*, y*) is a solution to the SNVI

(6.1) and that {xn} and {yn} are the sequences generated by Algorithm 6.5. If {an} and

{bn} are two sequences in [0, 1] satisfying the following conditions:
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(a)
∑∞

n=0 αn = ∞;

(b)
∑∞

n=0 (1 − βn) < ∞;

(c) 0 < ρ, η <
2ξ

μ2 ,

then the sequences {xn} and {yn} converge strongly to x* and y*, respectively.

Remark 6.8. Theorems 3.2-3.4 in [20] have been stated with the condition relaxed

cocoercivity of the operator T. The conditions of the aforesaid Theorems imply that

the operator T in these theorems is in fact strongly monotone. Therefore, Theorems

3.2-3.4 in [20] have been stated with the condition strongly monotonicity of the opera-

tor T instead of the mild condition relaxed cocoercivity.

For given two different nonlinear operators T1, T2 : K × K → H, Huang and Noor

[47] introduced and considered the problem of finding (x, y) Î K × K such that{ 〈ρT1(y∗, x∗) + x∗ − y∗, x − x∗} ≥ 0, ∀x ∈ K, ρ > 0,
〈ηT2(x∗, y∗) + y∗ − x∗, x − y∗} ≥ 0, ∀x ∈ K, η > 0,

(6:2)

which is called a system of nonlinear variational inequalities involving two different

nonlinear operators (SNVID).

They proposed the following two-step iterative algorithm for solving the SNVID

(6.2):

Algorithm 6.9. (Algorithm 2.1 [47]) For arbitrary chosen initial points x0, y0 Î K,

compute the sequences {xn} and {yn} such that{
xn+1 = (1 − an)xn + anPK[yn − ρT1(yn, xn)],
yn+1 = PK[xn+1 − ηT2(xn+1, yn)],

where an Î [0, 1] for all n ≥ 0, r, h > 0 are two constants and PK is the projection of

H onto K.

Meanwhile, they studied the convergence analysis of the proposed iterative algorithm

under some certain conditions as follows:

Theorem 6.10. (Theorem 3.1 [47]) Let K be a nonempty closed convex subset of a

real Hilbert space Hand let (x*, y*) be the solution of the SNVID (6.2). If

T1 : K × K → His (g1, r1)-relaxed cocoercive and µ1-Lipschitz continuous in the first

variable, and T2 : K × K → H is (g2, r2)-relaxed cocoercive and µ2-Lipschitz continuous

in the first variable with conditions

0 < ρ < min
{
2(r1 − γ1μ

2
1)

μ2
1

,
2(r2 − γ2μ

2
2)

μ2
2

}
,

0 < η < min
{
2(r1 − γ1μ

2
1)

μ2
1

,
2(r2 − γ2μ

2
2)

μ2
2

}
,

and r1 > γ1μ
2
1, r2 > γ2μ

2
2,μ1 > 0,μ2 > 0, an ∈ [0, 1],

∑∞
n=0

an = ∞, then, for arbi-

trarily chosen initial points x0, y0 Î K, the sequences {xn} and {yn} obtained from expli-

cit Algorithm 6.9 converge strongly to x* and y* respectively.

In similar way, since, for each i = 1, 2, the operator Ti is (gi, ri)-relaxed cocoercive

and µi-Lipschitz continuous in the first variable, the conditions ri > γiμ
2
i (i = 1, 2) guar-

antee that, for each i = 1, 2, the operator Ti is (ri - γiμ
2
i )-strongly monotone in the first

variable. Therefore, one can rewrite the statement of Theorem 6.10 as follows:
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Theorem 6.11. Let K be a nonempty closed convex subset of a real Hilbert space

Hand let (x*, y*) be a solution of the SNVID (6.2). Suppose that for each i = 1, 2, the

operator Ti : K × K → H is ξi-strongly monotone and µi-Lipschitz continuous in the first

variable. If the constants r, h > 0 satisfy the following conditions:

0 < ρ, η < min
{
2ξ1

μ2
1
,
2ξ2

μ2
2

}
, an ∈ [0, 1],

∞∑
n=0

an = ∞,

then, for arbitrarily chosen initial points x0, y0 Î K, the sequences {xn} and {yn}

obtained from explicit Algorithm 6.9 converge strongly to x* and y*, respectively.

Remark 6.12. The operator T in Theorems 3.2 and 3.3 from [47] is relaxed cocoer-

cive. But, by using the conditions of the aforesaid theorems we note that the operator

T in these theorems is in fact strongly monotone. Accordingly, Theorems 3.2 and 3.3

in [47] have been stated with the strongly monotonicity of the operator T, not the

relaxed cocoercivity.

For given different nonlinear operators T1,T2 : H × H → H and g, h : H → H, Noor

and Noor [28] introduced and considered the problem of finding (x, y) Î K × K such

that { 〈ρT1(y∗, x∗) + x∗ − g(y∗), g(x) − x∗} ≥ 0, ∀x ∈ H : g(x) ∈ K, ρ > 0,
〈ηT2(x∗, y∗) + y∗ − h(x∗), h(x) − y∗} ≥ 0, ∀x ∈ H : h(x) ∈ K, η > 0,

(6:3)

which is called a system of general nonlinear variational inequalities involving four

different nonlinear operators (SGNVID).

They proposed the following two-step iterative scheme for solving the SGNVID (6.3):

Algorithm 6.13. (Algorithm 3.1 [28]) For arbitrary chosen initial points x0, y0 Î K,
compute the sequences {xn} and {yn} such that{

xn+1 = (1 − an)xn + anPK[g(yn) − ρT1(yn, xn)],
yn+1 = PK[h(xn+1) − ηT(xn+1, yn)],

where an Î [0, 1] for all n ≥ 0, r, h > 0 are two constants and PK is the projection of

H onto K.

They also studied the convergence analysis of the proposed iterative algorithm under

some certain conditions as follows:

Theorem 6.14. (Theorem 4.1 [28]) Let (x*, y*) be a solution of the SGNVID (6.3).

Suppose that T1 : H × H → H is (g1, r1)-relaxed cocoercive and µ1-Lipschitz continu-

ous in the first variable and T2 : H × H → H is (g2, r2)-relaxed cocoercive and µ2-

Lipschitz continuous in the first variable. Let g be (g3, r3)-relaxed cocoercive and µ3-

Lipschitz continuous and let h be (g4, r4)-relaxed cocoercive and µ4-Lipschitz continu-

ous. If

∣∣∣∣ρ − r1 − γ1μ
2
1

μ2
1

∣∣∣∣ <

√
(r1 − γ1μ

2
1)

2 − μ2
1κ1(2 − κ1)

μ2
1

, r1 > γ1μ
2
1 + μ1

√
κ1(2 − κ1), κ1 < 1,

∣∣∣∣η − r2 − γ2μ
2
2

μ2
2

∣∣∣∣ <

√
(r2 − γ2μ

2
2)

2 − μ2
2κ2(2 − κ2)

μ2
2

, r2 > γ2μ
2
2 + μ2

√
κ1(2 − κ1), κ2 < 1,

(6:4)

where

κ1 =
√
1 − 2(r3 − γ3μ

2
3) + μ2

3, κ2 =
√
1 − 2(r4 − γ4μ

2
4) + μ2

4, an ∈ [0, 1],
∞∑
n=0

an = ∞, (6:5)
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then, for arbitrarily chosen initial points x0, y0 Î K, the sequences {xn} and {yn}

obtained from Algorithm 6.13 converge strongly to x* and y*, respectively.

The condition (6.4) implies that, for each i = 1, 2, ri > riμ2
i . Since, for each i = 1, 2,

the operator Ti is (gi, ri)-relaxed cocoercive and µi-Lipschitz continuous in the first

variable, the conditions ri > riμ2
i (i = 1, 2) guarantee that, for each i = 1, 2, the operator

Ti is (ri − riμ2
i )-strongly monotone in the first variable. Since, for each i = 1, 2, �i < 1,

it follows from the condition (6.5) that, for each i = 3, 4, ri >giµ2i.
Similarly, since g is (g3, r3)-relaxed cocoercive and µ3-Lipschitz continuous, and h is

(g4, r4)-relaxed cocoercive and µ4-Lipschitz continuous, the conditions ri > giµ2i(i = 3,

4) imply that the operator g is (r3 − g3µ
2
3)-strongly monotone and the operator h is (r4

− g4µ
2
4)-strongly monotone. Therefore, one can rewrite the statement of Theorem 6.14

as follows:

Theorem 6.15. Let (x*, y*) be a solution of the SGNVID (6.3). Suppose that for each

i = 1, 2, the operator Ti : H × H → H is ξi-strongly monotone and µi-Lipschitz contin-

uous in the first variable. Let g be ξ3-strongly monotone and µ3-Lipschitz continuous

and h be ξ4-strongly monotone and µ4-Lipschitz continuous. If the constants r and h
satisfy the following conditions:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|ρ − ζ 2
1

μ2
1
| <

√
ζ 2
1 −μ2

1κ1(2−κ1)
μ2
1

,

|η − ζ 2
2

μ2
2
| <

√
ζ 2
2 −μ2

2κ2(2−κ1)
μ2
2

,

ξi > μi
√

κi(2 − κi), κi < 1(i = 1, 2),

κi =
√
1 − 2ξi + μ2

i , 2ξi ≤ 1 + μ2
i (i = 1, 2),

then, for arbitrarily chosen initial points x0, y0 Î K, the sequences {xn} and {yn}

obtained from Algorithm 6.13 converge strongly to x and y, respectively.

Remark 6.16. The operators Ti(i = 1, 2) in Theorems 4.2 and 4.4 from [28] are

relaxed cocoercive. While the conditions of the aforesaid theorems guarantee that the

operators Ti(i = 1, 2) in these theorems are in fact strongly monotone. Therefore, The-

orems 4.2 and 4.4 in [28] have been stated with the condition strongly monotonicity of

the operators Ti(i = 1, 2), not the mild condition relaxed cocoercivity. In addition, The-

orem 4.3 in [28] has been stated with the condition relaxed cocoercivity of the opera-

tor T. The conditions of Theorem 4.3 imply that the operator T in this theorem is in

fact strongly monotone. Therefore, Theorem 4.3 in [28] has been stated with the con-

dition strongly monotonicity of the operator T instead of the mild condition relaxed

cocoercivity.

Remark 6.17. In view of the above facts, we note that Theorem 5.2 extends and

improves Theorems 3.1-3.4 in [20], Theorems 4.1-4.4 in [28], Theorems 3.1-3.3 in [32]

and Theorems 2.1-2.3 in [33] and [34].

7 Conclusion
In this paper, we have introduced and considered a new system of general nonlinear

regularized nonconvex variational inequalities involving four different nonlinear opera-

tors and established the equivalence between the aforesaid system and a fixed point

problem. By this equivalent formulation, we have discussed the existence and unique-

ness of solution of the system of general nonlinear regularized nonconvex variational

inequalities. This equivalence and two nearly uniformly Lipschitzian mappings Si(i = 1,
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2) are used to suggest and analyze a new perturbed p-step iterative algorithm with

mixed errors for finding an element of the set of the fixed points of the nearly uni-

formly Lipschitzian mappingQ = (S1, S2) which is the unique solution of the system of

general nonlinear regularized nonconvex variational inequalities. In the final section,

we have presented some remarks on results presented by Change et al [20], Huang

and Noor [47], Noor and Noor [28] and Verma [32-34]. We also have shown that

their results are special cases of our results. Several special cases are also discussed. It

is expected that the results proved in this paper may simulate further research regard-

ing the numerical methods and their applications in various fields of pure and applied

sciences.
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