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Abstract

In this investigation, motivated from Breaz study, we introduce a new family of
integral operator using famous convolution technique. We also apply this newly
defined operator for investigating some interesting mapping properties of certain
subclasses of analytic and univalent functions.
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1. Introduction
Let A denote the class of analytic function satisfying the condition f(0) = f’(0) - 1 = 0 in

the open unit disc U = {z :| z |< 1} . By S, C, S*, C*, and K we means the well-known

subclasses of A which consist of univalent, convex, starlike, quasi-convex, and close-to-

convex functions, respectively. The well-known Alexander-type relation holds between

the classes C and S* and C* and K, that is,

f (z) ∈ C ⇔ zf ′ (z) ∈ S∗,

and

f (z) ∈ C∗ ⇔ zf ′ (z) ∈ K.

It was proved in [1] that a locally univalent function f(z) is close-to-convex, if and

only if

θ2∫
θ1

Re
{
1 +

zf ′′ (z)
f ′ (z)

}
dθ > −π , z = rei θ , (1:1)

for each r Î (0,1) and every pair θ1, θ2 with 0 ≤ θ1<θ2 ≤ 2π.

Let Pk(ξ) be the class of functions p(z) analytic in U with p(0) = 1 and

2π∫
0

∣∣∣∣Re p (z) − ξ

1 − ξ

∣∣∣∣ dθ ≤ kπ , z = rei θ , k ≥ 2.

This class was introduced in [2] and for k = 2, ξ = 0, the class pk(ξ) reduces to the

class P of functions with positive real part. We consider the following classes:
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Rk (ξ) =
{
f (z) ∈ A :

zf ′ (z)
f (z)

∈ Pk (ξ) , z ∈ U
}

Tk (ξ) =
{
f (z) ∈ A : ∃ g (z) ∈ C :

f ′ (z)
g′ (z)

∈ Pk (ξ) , z ∈ U
}
.

These classes were studied by Noor [3-5] and Padmanabhan and Parvatham [2]. Also

it can easily be seen that R2(0) = S* and T2(0) = K, where S* and K are the well-known

classes of starlike and close-to-convex functions.

Using the same method as that of Kaplan [1], Noor [6] extend the result of Kaplan

given in (1.1), and proved that a locally univalent function f(z) is in the class Tk, if and

only if

θ2∫
θ1

Re
{
1 +

zf ′′ (z)
f ′ (z)

}
dθ > − k

2
π , z = rei θ , (1:2)

for each r Î (0,1) and every pair θ1, θ2 with 0 ≤ θ1 <θ2 ≤ 2π

For any two analytic functions

f (z) =
∞∑
n=0

an z
n and g (z) =

∞∑
n=0

bn z
n, (z ∈ U) ,

the convolution (Hadamard product) of f(z) and g(z) is defined by

f (z) ∗ g (z) =
∞∑
n=0

an bn z
n, (z ∈ U) .

Using the techniques from convolution theory many authors generalized Breaz

operator in several directions, see [7,8] for example. Here, we introduce a generalized

integral operator In (fi, gi, hi)(z): A
n ® A as follows

In
(
fi, gi, hi

)
(z) =

z∫
0

n∏
i=1

((
fi (t) ∗ gi (t)

)′)αi(
hi (t)
t

)βi

dt, (1:3)

where fi(z), gi(z), hi(z) Î A with fi(z) * gi(z) ≠ 0 and ai, bi ≥ 0 for i = 1, 2,..., n. The

operator In(fi, gi, hi)(z) reduces to many well-known integral operators by varying the

parameters ai, bi and by choosing suitable functions instead of fi(z), gi(z). For example,

(i) If we take gi (z) =
z

(1 − z)
for all 1 ≤ i ≤ n, we obtain the integral operator

In
(
fi, hi

)
(z) =

z∫
0

n∏
i=1

(
fi

′
(t)

)αi(
hi (t)
t

)βi

dt, (1:4)

introduced in [9].

(ii) If we take ai = 0 and 1 ≤ i ≤ n, we obtain the integral

In ( hi) (z) =

z∫
0

n∏
i=1

(
hi (t)
t

)βi

dt,

introduced and studied by Breaz and Breaz [10].
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(iii) If we take gi (z) =
z

(1 − z)
, βi = 0, we obtain the integral operator

In
(
fi
)
(z) =

z∫
0

n∏
i=1

(
fi

′
(t)

)αi

dt,

introduced and studied by Breaz et al. [11].

(iv) If we take n = 1, a1 = 0 and b1 = 1 in (1.4), we obtain the Alexander integral

operator

In ( h1) (z) =

z∫
0

(
h1 (t)
t

)
dt,

introduced in [12].

(v) If we take n = 1, a1 = 0 and b1 = b, we obtain the integral operator

In ( h1) (z) =

z∫
0

(
h1 (t)
t

)β

dt,

studied in [13].

In this article, we study the mapping properties of different subclasses of analytic and

univalent functions under the integral operator given in (1.3). To prove our main

results, we need the following lemmas.

Lemma 1.1 [14]. Let f(z) Î Rk(ξ) for k ≤ 2, 0 ≤ ξ < 1. Then with 0 ≤ θ1 <θ2 ≤ 2π and

z = reiθ, r < 1,

θ2∫
θ1

Re
{
zf ′ (z)
f (z)

}
dθ > −

(
k
2

− 1
)

(1 − ξ) π .

Lemma 1.2 [15]. If f(z) Î C and g(z) Î K, then f(z)*g(z) Î K.

2. Main results
Theorem 2.1. Let fi(z) Î S*, gi(z) Î C* and hi(z) Î Rk(ξ) with 0 ≤ ξ < 1, k ≥ 2 for all 1

≤ i ≤ n If

n∑
i=1

(
αi +

(
k

2
− 1

)
(1 − ρ) βi

)
≤ 1, (2:1)

then integral operator defined by (1.3) belongs to the class of close-to-convex

functions.

Proof. Let fi(z) Î S* and gi(z) Î C*. Then there exists �i(z) Î C such that

fi (z) = zϕi
′ (z) .

Now consider

fi (z) ∗ gi (z) = zϕi
′ (z) ∗ gi (z) = ϕi (z) ∗ zgi ′ (z) .

Since gi(z) Î C*, then by Alexander-type relation zg′
i (z) ∈ K. So, by Lemma 1.2, we

have
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ϕi (z) ∗ zgi′ (z) ∈ K,

which implies that

fi (z) ∗ gi (z) ∈ K

and hence, by using (1.1),

θ2∫
θ1

Re

{
1 +

z
(
fi (z) ∗ gi (z)

)′′(
fi (z) ∗ gi (z)

)′

}
dθ > −π . (2:2)

From (1.3), we obtain

In
(
fi, gi, hi

)′
(z) =

n∏
i=1

((
fi (z) ∗ gi (z)

)′)αi
(
hi (z)
z

)βi

. (2:3)

Differentiating (2.3) logarithmically, we have

1 +
In

(
fi, gi, hi

)′′
(z)

In
(
fi, gi, hi

)′
(z)

=
n∑
i=1

αi
z
(
fi (z) ∗ gi (z)

)′′(
fi (z) ∗ gi (z)

)′ +
n∑
i=1

βi

(
zhi

′
(z)

hi (z)
− 1

)
+ 1

=
n∑
i=1

αi

(
1 +

z
(
fi (z) ∗ gi (z)

)′′(
fi (z) ∗ gi (z)

)′

)
+

n∑
i=1

βi

(
zhi

′
(z)

hi (z)

)
+ 1 −

n∑
i=1

(αi + βi) .

Taking real part and then integrating with respect to θ, we get

θ2∫
θ1

Re

{
1 +

In
(
fi, gi, hi

)′′
(z)

In
(
fi, gi, hi

)′
(z)

}
dθ =

n∑
i=1

αi

θ2∫
θ1

Re

(
1 +

z
(
fi (z) ∗ gi (z)

)′′(
fi (z) ∗ gi (z)

)′

)
dθ

+
n∑
i=1

βi

θ2∫
θ1

Re
(
zhi

′
(z)

hi (z)

)
dθ +

(
1 −

n∑
i=1

(αi + βi)

)
(θ2 − θ1) .

Using (2.2) and Lemma 1.1, we have

θ2∫
θ1

Re

{
1 +

In
(
fi, gi, hi

)′′
(z)

In
(
fi, gi, hi

)′
(z)

}
dθ > −π

n∑
i=1

(
αi +

(
k
2

− 1
)

(1 − ρ) βi

)

+

(
1 −

n∑
i=1

(αi + βi)

)
(θ2 − θ1)

From (2.1), we can easily write

n∑
i=1

(αi + βi) <

n∑
i=1

(
αi +

(
k

2
− 1

)
(1 − ρ) βi

)
≤ 1 .

This implies that

n∑
i=1

(αi + βi) < 1 ,
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so, minimum is for θ1 = θ2, we obtain

θ2∫
θ1

Re

{
1 +

In
(
fi, gi, hi

)′′
(z)

In
(
fi, gi, hi

)′
(z)

}
dθ > −π ,

and this implies that In(fi, gi, hi)(z) Î K.

For k = 2 in Theorem 2.1, we obtain

Corollary 2.3. Let fi(z) Î S*, gi(z) Î C* and hi(z) Î S*(ξ) with 0 ≤ ξ < 1, for all 1 ≤ i ≤

n. If

n∑
i=1

αi ≤ 1,

then In(fi, gi, hi)(z) Î K.

Theorem 2.4. Let fi(z) Î Tk and hi(z) Î Rk for 1 ≤ i ≤ n. If ai, bi ≥ 0 such that ai +

bi ≠ 0 and

n∑
i=1

(
k

2
(αi + βi) − βi

)
≤ 1, (2:4)

then In(fi, hi)(z) defined by (1.4) belongs to the class of close-to-convex functions.

Proof. From (1.4), we have

In
(
fi, hi

)′
(z) =

n∏
i=1

(
fi

′
(z)

)αi

(
hi (z)
z

)βi

. (2:5)

Differentiating (2.5) logarithmically, we have

1 +
In

(
fi, hi

)′′
(z)

In
(
fi, hi

)′
(z)

=
n∑
i=1

αi

(
1 +

z fi
′′
(z)

fi
′
(z)

)
+

n∑
i=1

βi

(
z hi

′
(z)

hi (z)

)
+ 1 −

n∑
i=1

(αi + βi) .

Taking real part and then integrating with respect to θ, we get

θ2∫
θ1

Re

(
1 +

In
(
fi, hi

)′′
(z)

In
(
fi, hi

)′
(z)

)
dθ =

n∑
i=1

αi

θ2∫
θ1

Re
(
1 +

z fi
′′
(z)

fi
′
(z)

)
dθ +

n∑
i=1

βi

θ2∫
θ1

Re
(
zhi

′
(z)

hi (z)

)
dθ

+

(
1 −

n∑
i=1

(αi + βi)

)
(θ2 − θ1) .

> −kπ
2

n∑
i=1

αi −
(
k
2

− 1
)

π

n∑
i=1

βi +

(
1 −

n∑
i=1

(αi + βi)

)
(θ2 − θ1) ,

where we have used Lemma 1.1 and (1.2)

= −
n∑
i=1

((
k
2

)
(αi + βi) − βi

)
+

(
1 −

n∑
i=1

(αi + βi)

)
(θ2 − θ1) .

From (2.4), we can obtain

n∑
i=1

(αi + βi) < 1 .

Arif et al. Journal of Inequalities and Applications 2012, 2012:13
http://www.journalofinequalitiesandapplications.com/content/2012/1/13

Page 5 of 6



So minimum is for θ1 = θ2, thus we have

θ2∫
θ1

Re

(
1 +

In
(
fi, hi

)′′
(z)

In
(
fi, hi

)′
(z)

)
dθ > −π .

This implies that In(fi, hi)(z) Î K.

For k = 2 in Theorem 2.4, we obtain the following result.

Corollary 2.5. Let fi(z) Î K, hi(z) Î S* for 1 ≤ i ≤ n and

n∑
i=1

(
k

2
(αi + βi) − βi

)
≤ 1 ,

then In(fi, hi)(z) defined by (1.4) belongs to the class of close-to-convex functions.
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