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Abstract

In this article, we consider the proximal point algorithm for the problem of
approximating zeros of maximal monotone mappings. Strong convergence theorems
for zero points of maximal monotone mappings are established in the framework of
Hilbert spaces.
2000 AMS Subject Classification: 47H05; 47H09; 47J25.

Keywords: fixed point, nonexpansive mapping, maximal monotone mapping, zero

1. Introduction
The theory of maximal monotone operators has emerged as an effective and powerful

tool for studying many real world problems arising in various branches of social, physi-

cal, engineering, pure and applied sciences in unified and general framework. Recently,

much attention has been payed to develop efficient and implementable numerical

methods including the projection method and its variant forms, auxiliary problem prin-

ciple, proximal-point algorithm and descent framework for solving variational inequal-

ities and related optimization problems (see [1-32] and the references therein). The

proximal point algorithm, can be traced back to Martinet [33] in the context of convex

minimization and Rockafellar [34] in the general setting of maximal monotone opera-

tors, has been extended and generalized in different directions by using novel and

innovative techniques and ideas.

In this article, we investigate the problem of approximating a zero of the maximal

monotone mapping based on a proximal point algorithm in the framework of Hilbert

spaces. Strong convergence of the iterative algorithm is obtained.

2. Preliminaries
Throughout this article, we assume that H is a real Hilbert space, whose inner product

and norm are denoted by 〈·,·〉 and ǀǀ · ǀǀ, respectively. Let T be a set-valued mapping.

(a) The set D(T) defined by

D(T) = {u ∈ H : T(u) �= ∅}

is called the effective domain of T.
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(b) The set R(T) defined by

R(T) =
⋃
u∈H

T(u)

is called the range of T.

(c) The set G(T) defined by

G(T) = {(u, v) ∈ H × H : u ∈ D(T), v ∈ R(T)}

is said to be the graph of T.

Recall the following definitions.

(c) T is said to be monotone if
〈
u − v, x − y

〉 ≥ 0, ∀(u, x), (v, y) ∈ G(T).

(d) T is said to be maximal monotone if it is not properly contained in any other

monotone operator.

For a maximal monotone T : D(T) ® 2H, we can defined the resolvent of T by

Jt = (I + tT)−1, t > 0. (2:1)

It is well known that Jt: H ® D(T) is nonexpansive, and F(Jt) = T-1(0), where F(Jt)

denotes the set of fixed points of Jt. The Yosida approximation Tt is defined by

Tt =
1
t
(I − Jt), t > 0.

It is well known that Ttx Î T Jtx, ∀x Î H and ǁTtxǁ ≤ ǀTxǀ, where

|Tx| = inf{∥∥y∥∥ : y ∈ Tx},

for all x Î D(T).

Let C be a nonempty, closed and convex subset of H. Next, we always assume that T:

C ® 2H is a maximal monotone mapping with T−1(0) �= ∅ , where T-1(0) denotes the

set of zeros of T.

The class of monotone mappings is one of the most important classes of mappings

among nonlinear mappings. Within the past several decades, many authors have been

devoting to the studies on the existence and convergence of zero points for maximal

monotone mappings. A classical method to solve the following set-valued equation

0 ∈ Tx, (2:2)

is the proximal point algorithm. To be more precise, start with any point x0 Î H,

and update xn+1 iteratively conforming to the following recursion

xn ∈ xn+1 + βnTxn+1, n ≥ 0, (2:3)

where {bn} ⊂ [b, ∞), (b > 0) is a sequence of real numbers. However, as pointed in

[15], the ideal form of the method is often impractical since, in many cases, to solve

the problem (2.3) exactly is either impossible or the same difficult as the original pro-

blem (2.2). Therefore, one of the most interesting and important problems in the the-

ory of maximal monotone operators is to find an efficient iterative algorithm to

compute approximately zeroes of T.
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In 1976, Rockafellar [35] gave an inexact variant of the method

x0 ∈ H, xn + en+1 ∈ xn+1 + λnTxn+1, n ≥ 0, (2:4)

where {en} is regarded as an error sequence. This is an inexact proximal point algo-

rithm. It was shown that, if

∞∑
n=0

‖en‖ < ∞, (A)

then the sequence {xn} defined by (1.4) converges weakly to a zero of T provided that

T−1(0) �= ∅ . In [16], Güller obtained an example to show that Rockafellar’s proximal

point algorithm (1.4) does not converge strongly, in general.

Recently, many authors studied the problems of modifying Rockafellar’s proximal

point algorithm so that strong convergence is guaranteed. Cho et al. [13] proved the

following result.

Theorem CKZ. Let H be a real Hilbert space, Ω a nonempty closed convex subset of

H, and T: Ω ® 2H a maximal monotone operator with T−1(0) �= ∅ . Let PΩ be the

metric projection of H onto Ω. Suppose that, for any given xn Î H, bn > 0 and en Î H,

there exists x̄n ∈ � conforming to the SVME (2.4), where {bn} ⊂ (0, + ∞) with bn ® ∞

as n ® ∞ and

∞∑
n=1

‖en‖2 < ∞. (B)

Let {an} be a real sequence in [0, 1] such that

(i) an ® 0 as n ® ∞,

(ii)
∑∞

n=0 αn = ∞.

for any fixed u Î Ω, define the sequence {xn} iteratively as follows:

xn+1 = αnu + (1 − αn)P�(x̄n − en), n ≥ 0.

Then {xn} converges strongly to a fixed point z of T, where z = limt® ∞ Jtu.

In this article, motivated by Theorem CKZ, we continue to consider the problem of

approximating a zero of the maximal monotone mapping T. Strong convergence theo-

rems are established under mild restrictions imposed on the error sequence {en} com-

paring with the restriction (B). The results which include Cho et al. [13] as a special

case also improve the corresponding results announced by many others.

In order to prove our main result, we need the following lemmas.

Lemma 2.1. (Bruck [[35], Lemma 1]). Let H be a Hilbert space and C a nonempty,

closed and convex subset H. For all u Î C, limt® ∞ Jtu exists and it is the point of T-1

(0) nearest u.

Lemma 2.2 (Eckstein [[15], Lemma 2]). For any given xn Î C, ln > 0, and en Î H,

there exists x̄n ∈ C conforming to the following set-valued mapping equation (in short,

SVME):

xn + en ∈ x̄n + λnTx̄n. (2:5)
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Furthermore, for any p Î T-1(0), we have

〈xn − x̄n, xn − x̄n + en〉 ≤ 〈
xn − p, xn − x̄n + en

〉

and

∥∥x̄n − en − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − x̄n‖2 + ‖en‖2.

Lemma 2.3 (Liu [36]). Assume that {an} is a sequence of nonnegative real numbers

such that

αn+1 ≤ (1 − γn)αn + δn,

where {gn} is a sequence in (0,1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞;

(ii) lim supn®∞ δn/gn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn®∞ an = 0.

3. Main results
Theorem 3.1. Let H be a real Hilbert space, C a nonempty, closed and convex subset of

H and T: C ® 2H a maximal monotone operator with T−1(0) �= ∅ . Let PC be a metric

projection from H onto C. For any xn Î H and ln > 0, find x̄n ∈ C and en Î H conform-

ing to the SVME (2.5), where {ln} ⊂ (0, ∞) with ln ® ∞ as n ® ∞ and

‖en‖ ≤ ηn ‖xn − x̄n‖ (C)

with supn≥0 hn = h < 1. Let {an} and {bn} be real sequences in [0, 1] satisfying an +

bn < 1 and the following control conditions:

lim
n→∞ αn = lim

n→∞ βn = 0 and
∞∑
n=0

αn = ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu + βnxn + (1 − αn − βn)PC(x̄n − en). n ≥ 0, (3:1)

where u Î C is a fixed element. Then the sequence {xn} generated by (3.1) strongly

converges to a zero point z of T, where z = limt®∞ Jtu, if and only if en ® 0 as n ® ∞.

Proof. First, show that the necessity. Assume that xn ® z as n ® ∞, where z Î T-1

(0). It follows from (2.5) that

‖x̄n − z‖ ≤ ‖xn − z‖ + ‖en‖
≤ ‖xn − z‖ + ηn ‖xn − x̄n‖
≤ (1 + ηn) ‖xn − z‖ + ηn ‖x̄n − z‖ .

This implies that

‖x̄n − z‖ ≤ 1 + ηn

1 − ηn
‖xn − z‖ .

It follows that x̄n → z as n ® ∞. Note that

‖en‖ ≤ ηn ‖xn − x̄n‖ ≤ ηn(‖xn − z‖ + ‖z − x̄n‖).
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This shows that en ® 0 as n ® ∞.

Next, we show the sufficiency. The proof is divided into three steps.

Step 1. Show that {xn} is bounded.

From the assumption (C), we see that

‖en‖ ≤ ‖xn − x̄n‖ .

For any p Î T-1 (0), it follows from Lemma 2.2 that

∥∥PC(x̄n − en) − p
∥∥2 ≤ ∥∥x̄n − en − p

∥∥2
≤ ∥∥xn − p

∥∥2 − ‖xn − x̄n‖2 + ‖en‖2

≤ ∥∥xn − p
∥∥2.

That is,
∥∥PC(x̄n − en) − p

∥∥ ≤ ∥∥xn − p
∥∥ . (3:2)

It follows from (3.2) that
∥∥xn+1 − p

∥∥ =
∥∥αn(u − p) + (1 − αn)[PC(x̄n − en) − p]

∥∥
≤ αn

∥∥u − p
∥∥ + (1 − αn)

∥∥PC(x̄n − en) − p
∥∥

≤ αn
∥∥u − p

∥∥ + (1 − αn)
∥∥xn − p

∥∥ .
(3:3)

Putting

M = max{∥∥x0 − p
∥∥ , ∥∥u − p

∥∥},

we show that ǀǀxnǀǀ ≤ M for all n ≥ 0. It is easy to see that the result holds for n = 0.

Assume that the result holds for some n ≥ 0. That is, ǀǀxn - pǀǀ ≤ M. Next, we prove

that ǀǀxn+1 - pǀǀ ≤ M. Indeed, we see from (3.3) that
∥∥xn+1 − p

∥∥ ≤ M.

This shows that the sequence {xn} is bounded.

Step 2. Show that lim supn®∞〈u - z, xn+1 -z〉 ≤ 0, where z = limt®∞ Jtu.

From Lemma 2.1, we see that limt®∞ Jtu exists, which is the point of T-1(0) nearest

to u. Since T is maximal monotone, Ttu Î TJtu and Tln xn Î TJln xn, we see

〈
u − Jtu, Jλn xn − Jtu

〉
= −t

〈
Ttu, Jtu − Jλnxn

〉
= −t

〈
Ttu − Tλnxn, Jtu − Jλnxn

〉 − t
〈
Tλnxn, Jtu − Jλnxn

〉
= − t

λn

〈
xn − Jλnxn, Jtu − Jλnxn

〉
.

Since ln ® ∞ as n ® ∞, for any t > 0, we have

lim sup
n→∞

〈
u − Jtu, Jλnxn − Jtu

〉 ≤ 0. (3:4)

On the other hand, by the nonexpansivity of Jln, we obtain
∥∥Jλn(xn + en) − Jλnxn

∥∥ ≤ ∥∥(xn + en) − xn
∥∥ = ‖en‖ .
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From the assumption en ® 0 as n ® ∞ and (3.4), we arrive at

lim sup
n→∞

〈
u − Jtu, Jλn(xn + en) − Jtu

〉 ≤ 0. (3:5)

From (2.5), we see that
∥∥PC(x̄n − en) − Jλn(xn + en)

∥∥ ≤ ∥∥(x̄n − en) − Jλn(xn + en)
∥∥ ≤ ‖en‖ .

That is,

lim
n→∞

∥∥PC(x̄n − en) − Jλn(xn + en)
∥∥ = 0. (2:6)

Combining (3.5) with (3.6), we arrive at

lim sup
n→∞

〈
u − Jtu,PC(x̄n − en) − Jtu

〉 ≤ 0. (3:7)

On the other hand, we see from the algorithm (3.1) that

xn+1 − PC(x̄n − en) = αn[u − PC(x̄n − en)] + βn[xn − PC(x̄n − en)].

It follows from the condition limn®∞ an = limn®∞ bn = 0 that

xn+1 − PC(x̄n − en) → 0 as n → ∞,

which combines with (3.7) yields that

lim sup
n→∞

〈u − Jtu, xn+1 − Jtu〉 ≤ 0, ∀t ≥ 0. (3:8)

From z = limt®∞ Jtu and (3.8), we arrive at

lim sup
n→∞

〈u − z, xn+1 − z〉 ≤ 0. (3:9)

Step 3. Show that xn ® z as n ® ∞.

It follows from (3.2) that

‖xn+1 − z‖2 =
〈
αnu + βnxn + (1 − αn − βn)PC(x̄n − en) − z, xn+1 − z

〉
≤ αn 〈u − z, xn+1 − z〉 + βn 〈xn − z, xn+1 − z〉
+ (1 − αn − βn)

〈
PC(x̄n − en) − z, xn+1 − z

〉
≤ αn 〈u − z, xn+1 − z〉 + βn ‖xn − z‖ ‖xn+1 − z‖
+ (1 − αn − βn)

∥∥PC(x̄n − en) − z
∥∥ ‖xn+1 − z‖

≤ αn 〈u − z, xn+1 − z〉 + βn ‖xn − z‖ ‖xn+1 − z‖
+ (1 − αn − βn) ‖xn − z‖ ‖xn+1 − z‖

= αn 〈u − z, xn+1 − z〉 + (1 − αn) ‖xn − z‖ ‖xn+1 − z‖
≤ αn 〈u − z, xn+1 − z〉 + 1 − αn

2
(‖xn − z‖2 + ‖xn+1 − z‖2).

This implies that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + αn 〈u − z, xn+1 − z〉 . (3:10)

Applying Lemma 2.3 to (3.10), we obtain that xn ® z as n ® ∞. This completes the

proof.

As a corollary of Theorem 3.1, we have the following.
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Corollary 3.2. Let H be a real Hilbert space, C a nonempty, closed and convex subset

of H and T: C ® 2H a maximal monotone operator with T−1(0) �= ∅ . Let PC be a

metric projection from H onto C. For any xn Î H and ln > 0, find x̄n ∈ C and en Î H

conforming to the SVME (2.5), where {ln} ⊂ (0, ∞) with ln ® ∞ as n ® ∞ and

‖en‖ ≤ ηn ‖xn − x̄n‖

with supn≥0 hn = h < 1. Let {an} be a real sequence in (0,1) satisfying the following

control conditions:

lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu + (1 − αn)PC(x̄n − en). n ≥ 0,

where u Î C is a fixed element. Then the sequence {xn} strongly converges to a zero

point z of T, where z = limt® ∞, Jtu, if and only if en ® 0 as n ® ∞.

Remark 3.3. Corollary 3.2 improves Theorem CKZ by relaxing the restriction

imposed on the sequence {en}. In [34], Rockafellar obtained a weak convergence by

assuming that
∑∞

n=0 ‖en‖ < ∞ , see [34] for more details.

Next, as applications of Theorem 3.1, we consider the problem of finding a minimi-

zer of a convex function.

Let H be a Hilbert space, and f: H ® (-∞, +∞] be a proper convex lower semi-con-

tinuous function. Then the subdifferential ∂f of f is defined as follows:

∂f (x) = {y ∈ H : f (z) ≥ f (x) +
〈
z − x, y

〉
, z ∈ H}, ∀x ∈ H.

Theorem 3.4. Let H be a real Hilbert space and f: H ® (-∞, +∞] a proper convex

lower semi-continuous function. Let {ln} be a sequence in (0, +∞) with ln ® ∞ as n ®
∞ and {en} a sequence in H with en ® ∞ as n ® ∞. Assume that

‖en‖ ≤ ηn ‖xn − x̄n‖

with supn≥0 hn = h < 1. Let x̄nbe the solution of SVME (2.5) with T replacing by ∂f.

That is,

xn + en ∈ x̄n + λn∂f (x̄n), ∀n ≥ 0.

Let {an} and {bn} be real sequences in [0, 1] satisfying an + bn <1 and the following

control conditions:

lim
n→∞ αn = lim

n→∞ βn = 0 and
∞∑
n=0

αn = ∞.

Let {xn} be a sequence generated by the following manner:
⎧⎪⎪⎨
⎪⎪⎩
x0 ∈ H,

x̄n = argminx∈H{f (x) + 1
2λn

‖x − xn − en‖2},
xn+1 = αnu + βnxn + (1 − αn − βn)(x̄n − en). n ≥ 0,
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where u Î H is a fixed element. If ∂f (0) �= ∅, the sequence {xn} converges strongly to a

minimizer of f nearest to u.

Proof. Since f: H ® (-∞, +∞] is a proper convex lower semi-continuous function, we

have that the subdifferential ∂ f of f is maximal monotone by Theorem 1 of [34].

Notice that

x̄n = argmin
x∈H

{
f (x) +

1
2βn

‖x − xn − en‖2
}

is equivalent to the following

0 ∈ ∂f (x̄n) +
1
λn

(x̄n − xn − en).

It follows that

xn + en ∈ x̄n + λn∂f (x̄n), ∀n ≥ 0.

By Theorem 3.1, we can obtain the desired conclusion immediately.

As a corollary of Theorem 3.4, we have the following.

Corollary 3.5. Let H be a real Hilbert space and f: H ® (-∞, +∞] a proper convex

lower semi-continuous function. Let {ln} be a sequence in (0, +∞) with ln ® ∞ as n ®
∞ and {en} a sequence in H with en ® ∞ as n ® ∞. Assume that

‖en‖ ≤ ηn ‖xn − x̄n‖

with supn≥0 hn = h < 1. Let x̄nbe the solution of SVME (2.5) with T replacing by ∂f.

That is,

xn + en ∈ x̄n + λn∂f (x̄n), ∀n ≥ 0.

Let {an} be a real sequence in [0, 1] ssatisfying the following control conditions:

lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

Let {xn} be a sequence generated by the following manner:
⎧⎪⎪⎨
⎪⎪⎩
x0 ∈ H,

x̄n = argminx∈H{f (x) + 1
2λn

‖x − xn − en‖2},
xn+1 = αnu + (1 − αn)(x̄n − en). n ≥ 0,

where u Î H is a fixed element. If ∂f (0) �= ∅, the sequence {xn} converges strongly to a

minimizer of f nearest to u.
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