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Abstract

The current paper is devoted to random dynamics of stochastic partly dissipative
systems perturbed by Lévy noise. By the technique of dissipative in probability and
multivalued random dynamical systems (MRDS), the existences of random attractor
for MRDS generated by the stochastically perturbed partly dissipative systems are
provided, both the weaker restrictions and stronger restrictions on the coefficients of
Lévy noise respectively.
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1 Introduction
Global attractors play an important role in the study of asymptotic behavior of various

nonlinear systems. There is a great amount of works toward the global attractors for

dissipative autonomous as well as nonautonomous and random equations, see [1-7],

etc. Dynamical systems driven by non-Gaussian processes, such as Lévy processes,

have attracted a lot of attention recently. Stochastic differential equations driven by

Lévy processes have been summarized in [8]. Peszat and Zabczyk [9] have presented a

basic framework for partial differential equations driven by Lévy processes, which

extended several results known for stochastic partial differential equations (SPDEs) dri-

ven by Wiener processes. For more works on SPDEs driven by Lévy processes, see [9]

and references therein.

Recently, the authors in [6] developed the new frame of the random attractor for

infinite dimensional systems, in which, the solution is not necessarily required to be

unique, but the corresponding multivalued random dynamical systems (MRDS) is dissi-

pative with probability one. Kapustyan et al. [10] follows the idea of the one in [6], and

study the random attractor of reaction diffusion systems perturbed by càdlàg process.{
∂u(t,x)

∂ t = a�u(t, x) − f (u(t, x)) + h(x) + g(u(t, x))η(t,ω),
u|∂Q = 0. u|t=0 = u0(x).

(1:1)

where a > 0, Q ⊂ Rn is a bounded domain with smooth boundary, f, g Î C(R), h Î L2

(Q), f and g satisfy some appropriate assumptions, and h(t, ω) is a stochastic càdlag

process with right continuity and left limits.
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Global attractors for deterministic FitzHugh-Nagumo systems and partly dissipative

deterministic reaction diffusion systems have been investigated in [11] for the bounded

domain case and in [7] for the unbounded domain case. Regarding the stochastic

FitzHugh-Nagumo system as well as the following general partly dissipative random

reaction diffusion system⎧⎪⎨
⎪⎩

∂u(t,x)
∂ t = �u(t, x) + h(θtω, x, u) + f (θtω, x, u, v),

∂v(t,x)
∂ t = −σ v(t, x) + g(θtω, x, u),

u|∂Q = 0.
(1:2)

where D ⊂ Rn is a smooth bounded domain, h : Ω × D × R ® R, f : Ω × D × R2 ®
R and g : Ω × D × R ® R are measurable and satisfy some appropriate hypotheses.

The authors in [5] show the existence of random attractor for the general random

partly dissipative reaction diffusion equation (1.2), and provide the Hausdorff dimen-

sion of random attractor of stochastic FitzHugh-Nagumo systems, [12] shows the exis-

tence of pullback attractor of the non-autonomous FitzHugh-Nagumo systems on

unbounded domains. The author in [13] study the stochastic partly FitzHugh-Nagumo

systems driven by Gaussian white noise, and show the existence of random attractor

by uniform estimates on solution for large space and time variable via a cut-off

technique.

Motivated by Kapustyan et al. [10], we consider the following partly dissipative reac-

tion diffusion systems perturbed by Lévy noise.

⎧⎪⎪⎨
⎪⎪⎩

∂u(t,x)
∂ t − d�u(t, x) + h(x, u) + f (x, u, v) = k1(u)L(t,ω), (x, t) ∈ D × R+,

∂v(t,x)
∂ t + σ (x)v + g(x, u) = k2(v)L(t,ω), (x, t) ∈ D × R+,

u|∂D = 0.
u|t=0 = u0(x), v|t=0 = v0(x),

(1:3)

where d > 0,L(t, ω) is a stochastic Lévy process which trajectories are right-continu-

ous and have left limits. Functions h, f, g, k1, k2 and s are twice continuously differenti-

able in all variables and satisfy

(H1) c1|u|
p - c3 ≤ h(x, u)u ≤ c2|u|

p + c3, p > 2.

(H2)
∣∣f (x, u, v)∣∣ ≤ c4(1 + |u|p1 + |v|) , 0 <p1 <p - 1.

(H3) δ(x) ≥ δ > 0.

(H4) |g’(u)| ≤ c5,
∣∣g′

xi(x, u)
∣∣ ≤ c5(1 + |u|) , i = 1, . . ., n, where δi > 0, i = 1, . . ., 5.

(H5) (h′
u(x, u) + f ′

u(x, u, v))ξ
2
1 + f ′

v(x, u, v)ξ1ξ2 ≥ −c6(ξ21 + ξ22 ) , i = 1, . . ., n, where

δ6 > 0.

(H6) there exist some positive constants a1, a2, b1 and b2 such that∣∣k1(u)∣∣ ≤ a1 |u| + b1,
∣∣k2(v)∣∣ ≤ a2 |v| + b2.

In current paper, we study the long time behavior of stochastic partly dissipative

equations (1.3) perturbed by Lévy noise. By the technique of dissipative in probability

and MRDS, the existences of random attractor for MRDS generated by the perturbed

partly dissipative systems (1.3) are provided, both the weaker restrictions and stronger

restrictions on the coefficients of Lévy noise, respectively.

It is necessary to point out that, comparing with the main result for (1.1) in [10], the

two difficulties we need to tackle are the measurability and the asymptotic
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compactness of the solutions operators of stochastic partly dissipative systems (1.3). By

the similar arguments in [4], the measurability for stochastic partly dissipative systems

perturbed by Lévy noise, so we will use the technique of dissipative in probability and

MRDS, to show the existences of random attractor for MRDS generated by the sto-

chastically perturbed partly dissipative systems (1.3).

The rest of the paper is organized as follows. In Section 2, we present some defini-

tions and theorems about MRDS. Section 3 is devoted to the study of the existence of

random attractor of partly dissipative random reaction diffusion systems perturbed by

Lévy noise in terms of dissipative in probability, the weaker restrictions and stronger

restrictions on the coefficients of Lévy noise, respectively.

2 Multivalued random dynamical systems
In this section, we recall the definitions of multivalued random dynamical systems and

random attractors, the reader is referred to [6,10] for details.

Definition 2.1. [9]Let E be a Banach space, and let X = (X(t), t ≥ 0) be a E valued

stochastic process defined on a probability space (	,F ,P) . It is called as a Lévy process

if

(L1) X(0) = 0, a.s.;

(L2) X has independent and stationary increments; and

(L3) X is stochastically continuous, i.e. for all δ > 0 and for all s ≥ 0

lim
t→s

P(
∣∣X(t) − X(s)

∣∣ > δ) = 0.

We can choose the sample space Ω = D(R) of Lévy process as

	 = D(R) = {ω(·) : R → R, ∀t ∈ R, lim
s→t− ω(s) = ω(t−), lim

s→t+
ω(s) = ω(t)}

It is easy to check that Ω = D(R) is the Skorokhod metric space with Borel s-algebra
F.

θtω(·) = ω(t + ·),

P is θt-invariant probability measure. The matric r can be defined by

ρ(ω1,ω2) = �∞
i=1

1
2i

ρi(ω1,ω2)
1 + ρi(ω1,ω2)

,

where

ρi(ω1,ω2) = inf
λ∈�

(
sup

t∈[−i,i]

∣∣ω1(t) − ω2(λ(t))
∣∣ + sup

t∈[−i,i]

∣∣t − λ(t)
∣∣) ,

Λ = {l(⋅)| : l(⋅) : [-i, i] ® [-i, i], l(-i) = -i, l(i) = i, l(⋅) is continuous and monotoni-

cally increasing function}.

Remark 2.1. It follows from [9]that Lévy process h(t, ω) is a stochastic càdlàg process

with trajectories without discontinuities of the second kind, that is to say, the sample

path is right continuous with left limits.

In this paper, we just use the càdlàg property of the Lévy process, and L(t, ω) = ω(t) =

π(θtω), where π : Ω ® R, and π(ω) = ω(0).
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Let C(X) be the family of all nonempty closed subset of X, b(X) be the family of all

nonempty and bounded sunset of X. In the sequel, we will introduce the definition of

MRDS.

Definition 2.2. [10]A multivalued mapping G : R+ × Ω × X ® C(X) is called as a

MRDS if

(1) the mapping (t, x) ® G(t, ω)x is measurable for all x Î X

(2) G(0, ω)x = x and G(t + s, ω)x ⊂ G(t, θsω)G(s, ω)x for all t, s Î R+, x Î X, ω Î Ω.

Definition 2.3. [10]A measurable set A(ω) is called a random attractor for a MRDS

G if for P-almost all ω Î Ω,

(1) A(θtω) ⊂ G(t, ω)A(ω) for all t Î R+;

(2) for all B Î b(X), dist(G(t, θ-tω))B, A(ω)) ® 0, t ® +∞;

(3) A(ω) is a compact set in X.

The following hypotheses is developed by Kapustyan et al. [10], which are key tools

to show the existence of random attractor for MRDS generated by stochastic equations

(1.3).

(G1) the mapping (t,ω) → G(t,ω)B is measurable for all B Î b (X)

(G2) for all � > 0, there exists R = R(�) such that for all B Î b (X), there exists T = T

(B, R, �) for which

P
{
supt≥T ||G(t, θ−tω)B|| > R

}
< ε.

As the authors pointed out in the paper [10] that, the condition (G1) is used to show

the measurability of the map, and the condition (G2) is used to show the MRDS is dis-

sipative in probability.

For a given B ∈ B(X) , define

∧Bn(ω) =
⋂
T>0

⋃
t≥T

G(t, θ−tω)B, A =
⋃

B∈B(X)
∧Bn(ω) =

∞⋃
k=1

∧Bn(ω).

Then, ∧Bn(ω) consists of the limit of all convergent sequences {ξn}, where

ξn ∈ G(tn, θ−tnω)B , and tn ® ∞.

Theorem 2.1. ( [10], Theorem 1)

Let a mapping x ® G(t, ω)x be upper semicontinuous and compact-valued for all t Î
R+ and ω Î Ω, let conditions (G1) and (G2) hold for a MRDS G and let the set G(t, ω)

BR be precompact in X for all ω Î Ω, t > 0 and R > 0. Then,

A(ω) =
∞⋃
n=1

∧Bn(ω)

is a random attractor for G. Therefore, the attractor is unique, it is a minimal set

among closed attracting sets, and it is a maximal set among compact, measurable,

semiinvariant sets.
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3 Random attractor for MRDS of (1.3)
In this section, we will prove the solution of equation (1.3) can generate a MRDS, and

the MRDS posses a random attractor.

Lemma 3.1. Under the assumptions (H1)-(H5), there exists the positive constants m1,

m2, δ3, ca, cr such that the solution ((u(t), v(t)) of the equations (1.3) satisfy the follow-

ing estimates.

∣∣u(t)∣∣2 + ∣∣v(t)∣∣2 ≤
(∣∣u(0)∣∣2 + ∣∣v(0)∣∣2) e(∫ t

0 (m1|ω(p)|−m2)dp
)

+

t∫
0

(
c3 |D| + δ3 + (ca + cr)

∣∣ω(s)∣∣)e(∫ t
s (m1|ω(p)|−m2)dp

)
ds.

Proof. Multiplying the first equation of system (1.3) by u and the second equation of

system (1.3) by v, Integrating them over D, we have

1
2
d
dt

(|u|2 + |v|2) + d‖u‖2 +
∫
D

σ (x)v2dx +
∫
D

h(x, u)udx +
∫
D

[
f (x, u, v)u + g(x, v)v

]
dx

=
∫
D

k1(x, u)ω(t)udx +
∫
D

k2(x, v)ω(t)vdx.

It follows from (H6) and Young inequality that there exist two constants a > 0 and

r > 0 such that

2(k1(u)ω(t), u) ≤ (2a1 + r) |ω| |u|2 + cr |ω| ,
2(k2(v)ω(t), v) ≤ (2a2 + a) |ω| |v|2 + ca |ω| .

Due to (H4), there exists a constant c7 > 0 such that

∣∣g(x, ξ)∣∣ ≤ c7(1 + |ξ |), ∀ξ ∈ R, x ∈ D.

We deduce from (H1) to (H3) that

d
dt

(|u|2 + |v|2) + 2d‖u‖2 + 2δ|v|2 + 2c1

∫
D

|u|pdx

≤ 2c3 |D| + 2(c4 + c7)
∫
D

(|u| + |u|p1+1)dx + 2(c4 + c7)
∫
D

|v| (1 + |u|)dx

+(cr + ca) |ω| + (2a1 + r) |ω| ‖u‖2 + (2a2 + a) |ω| ‖v‖2.

Notice that

(c4 + c7)
∫
D

(|v| (1 + |u|)dx ≤ δ

2

∫
D

|v|2dx + (c4 + c7)
2

2δ

∫
D

(1 + |u|)2dx.

Let q = max{p1 + 1, 2}, then there exists a constant δ2 > 0 such that

(c4 + c7)

(
|ξ | + |ξ |p1+1 + (c4 + c7)

2

2δ

(
1 + |ξ |2) ≤ δ2

(|ξ |q + 1
))
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Thus,

(c4 + c7)
∫
D

(
|u| + |u|p1+1 + (c4 + c7)

2

2δ
(1 + |u|)2

)
dx ≤ c1

4

∫
D

|u|pdx + δ3.

Hence

d
dt

(|u|2 + |v|2) + 2d‖u‖2 + δ|v|2 + 3
2
c1 |u|pp

≤ c3 |D| + δ3 + (ca + cr) |ω| + (2a1 + r) |ω| |u|2 + (2a2 + a) |ω| |v|2.
(3:1)

Let m1 = max{2a1 + r, 2a2 + a}, m2 = min {δ, 2dl1}, where l1 > 0 is the first eigen-

value of -Δ in H1
0(D) . By the inequality (3.1), we have

d
dt

(|u|2 + |v|2) ≤ c3 |D| + δ3 + (ca + cr) |ω| + (m1|ω(t)| − m2)
(|u|2 + |v|2) . (3:2)

Integrating (3.2) on the interval [s, t] (t ≥ s ≥ 0), we obtain that

∣∣u(t)∣∣2 + ∣∣v(t)∣∣2 ≤ ∣∣u(s)∣∣2 + ∣∣v(s)∣∣2 + (c3 |D| + δ3) (t − s) + (ca + cr)

t∫
s

∣∣ω(p)∣∣dp

+

t∫
s

(m1
∣∣ω(p)∣∣ − m2)

(∣∣u(p)∣∣2 + ∣∣v(p)∣∣2)dp.
(3:3)

Using the Gronwall’s Lemma,

∣∣u(t)∣∣2 + ∣∣v(t)∣∣2 ≤
(∣∣u(0)∣∣2 + ∣∣v(0)∣∣2) e(∫ t

0 (m1|ω(p)|−m2)dp
)

+

t∫
0

(
c3 |D| + δ3 + (ca + cr)

∣∣ω(s)∣∣)e(∫ t
s (m1|ω(p)|−m2)dp

)
ds.

(3:4)

for all t > 0. The proof of Lemma 3.1 is completed.

Lemma 3.2. Let
{(un, vn) = (un(t,ωn)(u0n, v

0
n), vn(t,ωn)(u0n, v

0
n), )} ⊂ (L2(0,T;H1

0(D))
⋂

Lp(D×(0,T)
⋂

C(0,∞; L2(D))×C(0,∞; L2(D))be an arbi-

trary sequence of solution of equation (1.1), where ωn ® ω0 in Ω, u0n → u0weakly in L2

× L2, and tn ® t0 > 0. Then,

(un(tn,ωn), vn(tn,ωn)(u0n, v
0
n) → (u(t0,ω0), v(t0,ω0)(u0, v0).

in L2 × L2 at least along some subsequence where

(u, v) = (u(t,ω0), v(t,ω0)(u0, v0) ∈ (L2(0,T;H1
0(D))

⋂
Lp(D×(0,T)

⋂
C(0,∞; L2(D))×C(0,∞; L2(D))is the solu-

tion of equation (1.3).

Proof. Let T > 0. It follows from (3.1) that the sequence {((un, vn))} is bounded in(
Lp(0,T, Lp(D))

⋂
L2(0,T,H1

0(D))
⋂

L∞(0,T, L2(D))
)× C(0,T, L2(D)). By the similar

argument of Proposition 1.1 that there exists a subsequence un(·,ωn)(u0n, v
0
n)) → (u(·) ,

v(⋅)) in L2(0, T, L2(D)) × L2(0, T, L2(D)), (un(t, ωn), vn(t,ωn))(u0n, v
0
n) → (u(t), v(t))

strongly in L2(D) × L2(D)) for almost all t Î (0, T ) and weakly in L2(D) × L2(D)) uni-

formly in t Î [0, T].
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Let

Ln(p) = max{2a1 + r, 2a2 + α} ∣∣ωn(p)
∣∣− min{δ, 2dλ1} = m1

∣∣ωn(p)
∣∣− m2,

L0(p) = max{2a1 + r, 2a2 + α} ∣∣ω0(p)
∣∣ − min{δ, 2dλ1} = m1

∣∣ω0(p)
∣∣ − m2,

and denote

Jn(t,ωn) =
(∣∣un(t)∣∣2 + ∣∣vn(t)∣∣2) − (c3 |D| + δ3) t − (

cα + cγ
) t∫
0

∣∣ωn(p)
∣∣dp

−
t∫

0

Ln(p)
(∣∣un(p)∣∣2 + ∣∣vn(p)∣∣2)dp,

J0(t,ω0) =
(∣∣u(t)∣∣2 + ∣∣v(t)∣∣2) − (c3 |D| + δ3) t − (

cα + cγ
) t∫
0

∣∣ω0(p)
∣∣dp

−
t∫

0

L0(p)
(∣∣u(p)∣∣2 + ∣∣v(p)∣∣2)dp.

It follows from (3.3) that

J(t,ω0) ≤ J(s,ω0), Jn(t,ωn) ≤ Jn(s,ωn)

for all t ≥ s, t, s Î [0, T ], and Jn(t, ω) ® J(t, ω0) for almost all t Î (0, T). It is easy to

check that Jn(t, ωn) ® J(t, ω0) uniformly on an arbitrary interval [a, b] ⊂ (0, T). The

convergence ωn ® ω0 implies that Ln(⋅) ® L0(⋅) in L1(0, t) and Ln(⋅), n ≥ 1 are

bounded in L∞(0, t). Then

t∫
0

Ln(p)
(∣∣un(p)∣∣2 + ∣∣vn(p)∣∣2)dp →

t∫
0

L0(p)
(∣∣u(p)∣∣2 + ∣∣vn(p)∣∣2)dp.

Hence,

lim inf
n→∞ Jn(tn,ωn) = J(t0,ω0)

≥ lim inf
n→∞

(|un|2 + |vn|2
) − (c3 |D| + δ3) t0 − (

cα + cγ
) t0∫
0

∣∣ω0(p)
∣∣dp

−
t0∫

0

L0(p)
(∣∣u(p)∣∣2 + ∣∣v(p)∣∣2)dp

for all tn ≥ t0 > 0.

Hence∣∣u(t0)∣∣ + ∣∣v(t0)∣∣ ≥ lim inf
n→∞

(∣∣un(tn)∣∣ + ∣∣vn(tn)∣∣) .
Since (un(tn), vn(tn)) ® (u(t0), v(t0)) weakly in L2(D) × L2(D). The converse inequality

also holds and therefore

lim inf
n→∞

(∣∣un(tn)∣∣ + ∣∣vn(tn)∣∣) ≤ (∣∣u(t0)∣∣ + ∣∣v(t0)∣∣) ≤ lim inf
n→∞

(∣∣un(tn)∣∣ + ∣∣vn(tn)∣∣) .
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Moreover, (un(tn), vn(tn)) converges strongly to (u(t0), v(t0)) in L2(D) × L2(D). The

proof of Lemma 3.2 is completed.

Lemma 3.3. Let Ω be a metric space and F be a Borel s -algebra. Assume that a

multivalued mapping G : R+ × Ω × X ® C(X) satisfies the following condition: if xn ®
x weakly in X as tn ® t0 > 0, ωn ® ω in Ω and yn Î G(tn, ωn)xn then yn ® y0 Î G(t0,

ω0)x0 in X for some subsequence. Then, assumption G1 holds for the mapping G.

Proof. The proof is similar to the argument of Lemma 4 in [10], and is omitted here.

Lemma 3.4. For (u0, v0) Î L2(D) × L2(D), there exists an unique solution (u, v) Î C

(0, ∞; L2(D) × L2(D)) of the equations (1.3) satisfying

u ∈ L2(0,T;H1
0(D))

⋂
Lp(D × (0,T)) . The mapping defined by

G(t,ω) : (u0, v0) → (u(t), v(t)) (3:5)

is a multivalued random dynamical system generated by equation (1.3).

Proof. By the same proof as that of Property 1.1 in [11] and the classical Galerkin

approximates, noting that k1(u)ω(t) and k2(v)ω(t) are right continuous with left limit

with respect to t, we can show that the equation (1.3) admits at least a solution (u(t,

ω, u0, v0), v(t, ω, u0, v0)) Î C(0, ∞; L2(D) × L2(D)) for every ω Î Ω. Moreover,

u ∈ L2(0,T;H1
0(D))

⋂
Lp(D × (0,T)) . Similar to the Property 4 in [6], it can be veri-

fied the family of mappings {G(t, ω)t≥0 generates a MRDS.

Lemma 3.5. Assume that (H1)-(H6) hold, and Levy noise ω(t) satisfies the following

conditions

(HY0) If for all � > 0, a > 0, there exists T = T (�) > 0 such that Lévy noise ω(t) satisfies

P

⎛
⎝ω(t) : sup

t≥T

1
t

0∫
−t

∣∣ω(p)∣∣dp − m2

m1
≤ −α

⎞
⎠ > 1 − ε,

(HY1) If for all � > 0, there exists a positive constant D > 0 such that Lévy noise ω(t)

satisfies

sup
t≥0

P

⎧⎨
⎩ω(t) :

0∫
−t

∣∣ω(s)∣∣ em1αsds ≤ D

⎫⎬
⎭ > 1 − ε.

Then, the MRDS G generated by equation (1.3) satisfies the condition G2.

Proof. It follows from Lemma 3.1 that there exist random variable t(ω) Î [T1, T2]

and initial value x0(ω) Î Br such that the solution of equation (1.3) reaches the super-

ium at t(ω) for all T2 >T1 > 0 and any ω Î Ω, that is,

sup
t∈[T1,T2]

∥∥G(t, θ−tω)Br
∥∥ =

∥∥(u(t(ω), θ−t(ω))ω), v(t(ω), θ−t(w))ω))(u0(ω), v0(ω)
∥∥ .

Notes that ω → supt∈[T1,T2]
∥∥G(t, θ−tω)Br

∥∥ is F-measurable, therefore, (u(t(ω), θ-t

(ω)ω)x0(ω), and v(t(ω), θ-t(ω))ω)) are also F-measurable.

Fixed � > 0, then for any arbitrary N > 0, T and for t Î [T, T + N], denote

L2 =
{
ω, : sup

∥∥G(t, θ−tω)Br
∥∥2 > R2

}
= {ω :

∥∥(u(t(ω), θ−t(ω)ω)x0(ω), v(t(ω), θ−t(ω))ω))
∥∥2 > R2}.
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Define

A1 =
{
ω : r2e

m1t(ω)
( 1
t(ω)

∫ 0
−t(ω) |ω(p)|dp−m2

m1

)
≥ 1

}

⊂

⎧⎪⎨
⎪⎩w :

⎛
⎜⎝ 1
t(ω)

0∫
−t(ω)

∣∣ω(p)∣∣dp − m2

m1

⎞
⎟⎠ ≥ 1

m1t(ω)
ln
(
1
r2

)⎫⎪⎬
⎪⎭ .

Choosing T = T (r) such that

1
m1t(ω)

ln
(
1
r2

)
> −α, (α > 0).

Then,

A1 ⊂

⎧⎪⎨
⎪⎩

1
t(ω)

0∫
−t(ω)

∣∣ω(p)∣∣dp − m2

m1
> −α

⎫⎪⎬
⎪⎭

⊂
⎧⎨
⎩ω : sup

t≥T

1
t

0∫
−t

∣∣ω(p)∣∣dp − m2

m1
> −α

⎫⎬
⎭ .

It follows from (HY0) that there exists a positive constant random variant T1 = T1(ω)

such that for t ≥ T1(�),

P

⎛
⎝ω sup

t≥T1

1
t

0∫
−t

∣∣ω(p)∣∣dp − m2

m1
≤ −α

⎞
⎠ > 1 − ε,

Thus, there exists a random set A2 ⊂ Ω such that P(A2) ≤ ε
4 , and

sup
t≥T1

1
t

0∫
−t

∣∣ω(p)∣∣dp − m2

m1
≤ −α.

for all ω Î Ω\A2.

Thus, there exists T2 = T2(�, r) ≥ T1 + T(r) such that

P(A1) <
ε

4

for all t(ω) Î [T2, T2 + N].

It follows from (3.1) that

LN ⊂
{
ω : r2em1t(ω)

( 1
t(ω)

∫ 0
−t(ω) |ω(p)dp−m2

m1

+

0∫
−t(ω)

em1s
(∫ 0

s
1
s ω(p)dp+

m2
m1

)
((c3 |D| + δ3 + (cr + ca)

∣∣ω(s)∣∣)ds > R2} .
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The definitions A1 and A2 imply that

LN ⊂
{
ω : r2em1t(ω)(

1
t(ω)

∫ 0
−t(ω) |ω(p)dp−m2

m1
) ≥ 1

}

⋃⎧⎪⎨
⎪⎩ω :

0∫
−t(ω)

e
m1s(

1
s
∫ 0
s |ω(p)|dp+m2

m1
)
((c3 |D| + δ3 + (cr + ca)

∣∣ω(s)∣∣)ds > R2 − 1)

⎫⎪⎬
⎪⎭

⊂ A1

⋃
A2

⋃⎧⎨
⎩ω :

0∫
−T1

((c3 |D| + δ3 + (cr + ca)
∣∣ω(s)∣∣)e{m1s(

1
s
∫ 0
s |ω(p)|dp+m2

m1
)
}
ds

+

0∫
−T2−N

((c3 |D| + δ3 + (cr + ca)
∣∣ω(s)∣∣)eαm1sds > R2 − 1

}

= A1

⋃
A2

⋃⎧⎨
⎩ω : fε(ω) +

0∫
−T2+N

|ω(s)em1αsds >
R2 − A

B

⎫⎬
⎭.

where A and B are some positive constants, and f� : ω ® R is a measurable and P

-almost everywhere bounded function. Hence there exists a real number R1 = R1(�)

and a random set A3 ⊂ Ω such that

fε(ω) > R1, P(A3) <
ε

4

for all ω Î A3. Therefore,

LN ⊂ A1

⋃
A2

⋃
A3

⋃⎧⎨
⎩ω :

0∫
−T−N

∣∣ω(s)∣∣em1αsds >
R2 − A

B
− R1(ε)

⎫⎬
⎭.

It follows from (HY1) that there exists: a positive constant D = D(�) such that

P

⎧⎨
⎩ω :

0∫
−t

∣∣ω(s)∣∣em1αsds > D

⎫⎬
⎭ <

ε

4
.

for all t > 0. Choose R = R(�) such that

R2 − A
B

− R1(ε) > D.

Then, for all � > 0, there exists R = R(�) > 0 for which, whatever Br is a ball with

radius r, there exists T = T (�, R, r) such that

P(LN) = P

{
ω : sup

t∈[T,T+N]

∥∥G(t, θ−tω)Br
∥∥2 > R2

}
< ε, ∀N ≥ 1.

Notice that LN ⊂ LN+1, and let L =
⋃N

i=1 L
N , then P (L) <�, and

{
ω : sup

t≥T

∥∥G(t, θ−tωBr
∥∥2 > R2

}
= L,

which implies that G2 holds. Thus, the proof of Lemma (3.5) is completed.
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Theorem 3.1. Assume that conditions (H1)-(H6) hold, and the Lévy noise satisfy the

(HY0)- (HY1). Then, the MRDS G generated by the systems (1.3) admits a random

attractors.

Proof. It follows from Lemma 3.4 that the equations (1.3) generates a MRDS G.

Lemma 3.3 and 3.5 imply that the MRDS G satisfies the conditions G1 and G2. Then,

the existence random attractor is established by theorem (2.1). Thus, the proof is

completed.

In the sequel, we are going to show the existence of random attractor for the equation

(1.3) with weaker restrictions on the functions k1(u) and k2(v) instead of the stronger

restrictions imposed on it, that is to say, k1(u) and k2(v) are assumed to be the functions∣∣k1(u)∣∣ ≤ a3|u|γ + b3,
∣∣k2(v)∣∣ ≤ a2 |v| + b2. (3:6)

for g <p - 1.

Lemma 3.6. Assume that (H1)-(H5) and (3.6) hold. Then there exists the some posi-

tive constants m2, a5 and b5 such that the solution (u(t), v(t)) of the equations (1.3)

satisfy the following estimates

∣∣u(t)∣∣2 + ∣∣v(t)∣∣2 ≤ (
∣∣u(0)∣∣2 + ∣∣v(0)∣∣2)e∫ t

0 (2a2+α)|ω(p)|−m2)dp

+

t∫
0

(
b5 + a5

∣∣ω(s)∣∣ p
p−r−1

)
e
∫ t
0 (2a2+α)|ω(p)|−m2)dpds.

Proof. By the Young inequality and (3.6), we have

2(k1(u)ω(t), u) ≤ 2a3 |ω| · ‖u‖r+1Lr+1 + 2b3 |ω|
∫
D

|u|dx ≤ a4|ω|
p

p−r−1 +
3
2
c1 ‖u‖pLp + b4.

Multiplying the first equation of (1.3) by u and the second one by v, and integrate

over D, we obtain

d
dt

(|u|2 + |v|2) + 2d‖u‖2 + δ|v|2

≤ c3 |D| + δ3 + b4 + a4|ω|
p

p−r−1 + (2a2 + α) |ω| · |v|2 + cα |ω|

≤ b5 + a5|ω|
p

p−r−1 + (2a2 + α) |ω| · |v|2

≤ b5 + a5|ω|
p

p−r−1 + (2a2 + α) |ω| · (|u|2 + |v|2).

Let m2 = min{δ, 2dl1}, where l1 > 0 is the first eigenvalue of -Δ in H1
0(D) . Then

d
dt

(|u|2 + |v|2) ≤ b5 + a5|ω|
p

p−r−1 + ((2a2 + α) |ω| − m2) · (|u|2 + |v|2). (3:7)

Integrating (3.7) on the interval [s, t](t ≥ s ≥ 0), we get

∣∣u(t)∣∣2 + ∣∣v(t)∣∣2 ≤ ∣∣u(s)∣∣2 + ∣∣v(s)∣∣2 + b5(t − s) + a5

t∫
s

∣∣ω(s)∣∣ p
p−r−1 ds

+

t∫
s

((2a2 + α)
∣∣ω(p)∣∣− m2) · (∣∣u(p)∣∣2 + ∣∣v(p)∣∣2)dp).

(3:8)
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Applying the Gronwall’s Lemma to (3.8) gives

∣∣u(t)∣∣2 + ∣∣v(t)∣∣2 ≤ (
∣∣u(0)∣∣2 + ∣∣v(0)∣∣2)e∫ t

0 (2a2+α)|ω(p)|−m2)dp

+

t∫
0

(
b5 + a5

∣∣ω(s)∣∣ p
p−r−1

)
e
∫ t
0 (2a2+α)|ω(p)|−m2)dpds.

(3:9)

for all t > 0. Thus, we complete the proof of Lemma 3.6.

Lemma 3.7. Assume that (H1)-(H5) and (3.6) hold, and Lévy noise ω(t) satisfies the

following conditions

(HY2) If for all � > 0, a > 0, there exists T = T (�) > 0 such that Levy noise ω(t) satis-

fies

P

⎛
⎝(ω(t) : sup

t≥T

1
t

0∫
−t

∣∣ω(p)∣∣dp − m2

2a2 + α
≤ −γ

⎞
⎠ > 1 − ε,

(HY3) If for all � > 0, there exists a positive constant D > 0 such that Levy noise ω(t)

satisfies

sup
t≥0

P

⎧⎨
⎩ω(t) :

0∫
−t

(
a5
∣∣ω(s)∣∣ p

p−r−1 + b5

)
eβ(2a2+α)s ≤ D

⎫⎬
⎭ > 1 − ε.

Then, the MRDS G generated by equation (1.3) satisfies the condition G2.

Proof. The proof is similar to the one of Lemma 3.5, and is omitted here.

Theorem 3.2. Assume that conditions (H1)-(H5) and (3.6) hold, and the Lévy noise

satisfy the (HY2)-(HY3). Then, the MRDS G generated by the systems (1.3) admits a

random attractors.

Proof. The proof is similar to the one of Theorem 3.1, and is omitted here.

Remark 3.1. From the proof of Theorem 3.1 and Theorem 3.2, the Theorem 3.1 and

Theorem 3.2 hold for more general càdlàg process.
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