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Abstract

In this paper, we introduce both explicit and implicit schemes for finding a common
element in the common fixed point set of a one-parameter nonexpansive semigroup
{T(s)|0 ≤ s <∞} and in the solution set of an equilibrium problems which is a solution
of a certain optimization problem related to a strongly positive bounded linear
operator. Strong convergence theorems are established in the framework of Hilbert
spaces. As an application, we consider the optimization problem of a k-strict
pseudocontraction mapping. The results presented improve and extend the
corresponding results of many others.
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1. Introduction
Let H be a real Hilbert space with inner product 〈·,·〉 and norm || · ||. Recall, a map-

ping T with domain D(T) and range R(T) in H is called nonexpansive iff for all x, y Î
D(T),

||Tx − Ty|| ≤ ||x − y||.

Let C be a closed convex subset of a Hilbert space H, a family ℑ = {T(s)| 0 ≤ s < ∞}

of mappings of C into itself is called a one-parameter nonexpansive semigroup on C iff

it satisfies the following conditions:

(a) T(s + t) = T(s)T(t) for all s, t ≥ 0 and T(0) = I;

(b) ||T(s)x - T(s)y|| ≤ ||x - y|| for all x, y Î C and s ≥ 0.

(c) the mapping T(·)x is continuous, for each x Î C.
We denote by F(ℑ) the set of common fixed points of {T(t): t ≥ 0}. That is, F(ℑ) = ∩0

≤ s < ∞ F(T(s)). It is clear that T(s)T(t) = T(s + t) = T(t)T(s) for s, t ≥ 0.

Recall that f is called to be weakly contractive [1] iff for all x, y Î D(T),

||f (x) − f (y)|| ≤ ||x − y|| − ϕ(||x − y||),
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for some �: [0, +∞) ® [0, +∞) is a continuous and strictly increasing function such

that � is positive on (0, +∞) and �(0) = 0. If �(t) = (1 - k)t, then f is called to be con-

tractive with the contractive coefficient k. If �(t) ≡ 0, then f is said to be nonexpansive.

Let C be a nonempty closed convex subset of H and F: C × C ® R be a bifunction,

where R is the set of real numbers. The equilibrium problem (for short, EP) is to find

x Î C such that for all y Î C,

F(x, y) ≥ 0, (1:1)

The set of solutions of (1.1) is denoted by EP(F). Given a mapping T: C ® H, let F(x,

y) = 〈Tx, y - x〉 for all x, y Î C. Then, x Î EP(F) if and only if x Î C is a solution of

the variational inequality 〈Tx, y - x〉 ≥ 0 for all y Î C. In addition, there are several

other problems, for example, the complementarity problem, fixed point problem and

optimization problem, which can also be written in the form of an EP. In other words,

the EP is an unifying model for several problems arising in physics, engineering,

science, optimization, economics, etc. In the last two decades, many papers have

appeared in the literature on the existence of solutions of EP; see, for example [2-5]

and references therein. Some solution methods have been proposed to solve the EP;

see, for example, [6-12] and references therein.

To study the equilibrium problems, we assume that the bifunction F: C × C ® R

satisfies the following conditions:

(A1) F(x, x) = 0 for all x Î C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim sup
t→0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x Î C, y a F(x, y) is convex and lower semi-continuous.

Recently, Takahashi and Takahashi [10] introduced the following iterative method

{
F(yn, u) + 1

rn
〈u − yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf (xn) + (1 − αn)Tyn n ≥ 1

for approximating a common element in the fixed point set of a single nonexpansive

mapping and in the solution set of the equilibrium problem. To be more precise, they

proved the following Theorem.

Theorem TT Let C be a nonempty closed convex subset of H. Let F be a bifunction

from C × C to R satisfying (A1)-(A4) and let T be a nonexpansive mapping of C into

H such that F (T) ∩ EP (F) ≠ ∅. Let f be a contraction of H into itself and let {xn} and

{yn} be sequences generated by x1 Î H and

{
F(yn, u) + 1

rn
〈u − yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf (xn) + (1 − αn)Tyn n ≥ 1

where {an} Î 0[1] and {rn} ⊂ (0, ∞) satisfy

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞,
∞∑
n=1

|αn+1 − αn| < ∞,
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lim infn®∞ rn > 0, and
∑∞

n=1 |rn+1 − rn| < ∞ . Then {xn} and {yn} converge strongly

to z Î F(T) ∩ EP (F), where z = P(T)∩EP(F) f(z).

Subsequently, many authors studied the problem of finding a common element in

the fixed point set of nonexpansive mappings, in the solution set of variational inequal-

ities and in the solution set of equilibrium problems, for instance see [10-20].

Iterative methods for nonexpansive mappings have recently been applied to solve

convex minimization problems; see, e.g., [21-26] and the references therein. Let A be a

strongly positive linear bounded operator (i.e., there is a constant γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄ ||x||2 , ∀x Î H), and T be a nonexpansive mapping on H. A typical problem

is to minimize a quadratic function over the set of the fixed points of a nonexpansive

mapping on a real Hilbert space H:

min
x∈F(T)

1
2

〈Ax, x〉 − 〈x, b〉 (1:2)

where F(T) is the fixed point set of the mapping T on H and b is a given point in H.

Starting with an arbitrary initial x0 Î H, define a sequence {xn} recursively by

xn+1 = (I − αnA)Txn + αnb n ≥ 0 (1:3)

It is proved [23] (see also [24]) that the sequence {xn} generated by (1.3) converges

strongly to the unique solution of the minimization problem (1.2) provided the

sequence {an} satisfies certain conditions.

In 2007, related to a certain optimization problem, Marino and Xu [27] introduced

the following viscosity approximation method for nonexpansive mappings. Let f be a

contraction on H. Starting with an arbitrary initial x0 Î H, define a sequence {xn}

recursively by

xn+1 = (I − αnA)Txn + αnγ f (xn), n ≥ 0 (1:4)

and proved that if the sequence {an} satisfies appropriate conditions, the sequence

{xn} generated by (1.4) converges strongly to the unique solution of the variational

inequality

〈(A − γ f )x∗, x − x∗〉 ≥ 0, x ∈ C,

which is the optimality condition for the minimization problem

min
x∈C

1
2

〈Ax, x〉 − h(x),

where h is a potential function for gf (that is, h’(x) = gf(x) for x Î H).

In 2009, Cho et al. [28] extended the result of Marino and Xu [27] to the class of k-

strictly pseudo-contractive mappings and proved the convergent theorem.

Motivated by the ongoing research and the above mentioned results, we introduce

both explicit and implicit schemes for finding a common element in the common

fixed point set of a one-parameter nonexpansive semigroup {T(s)|0 ≤ s <∞}, in the

solution set of an equilibrium problems, in the solution set of variational inequalities

in the framework of Hilbert spaces. The results presented in this paper improve and

extend the corresponding results in [9,10,14,15,27-30].

In order to prove our main results, we need the following lemmas.
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The following lemma can be found in [7].

Lemma 1.1 Let C be a nonempty closed convex subset of H and let F: C × C ® R

be a bifunction satisfying (A1)-(A4). Then, for any r >0 and x Î H, there exists z Î C

such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx = {z ∈ C : F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

for all z Î H. Then the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y Î H,

||Trx − Try||2 ≤ 〈Trx − Try, x − y〉;

(3)F(Tr) = EP(F);

(4) EP(F) is closed and convex.

Remark 1.1 The mapping Tr is also nonexpansive for all r >0.

Lemma 1.2[27] Assume A is a strongly positive linear bounded operator on a Hilbert

space H with coefficient γ̄ > 0 and 0 <r ≤ ||A||-1. Then ||I − ρA|| ≤ 1 − ργ̄ .

Lemma 1.3[31] Let C be a nonempty bounded closed convex subset of H and let ℑ =

{T(s): 0 ≤ s <∞} be a nonexpansive semigroup on C, then for any h ≥ 0,

lim
t→∞ sup

x∈C
||1
t

∫ t

0
T(s)xds − T(h)(

1
t

∫ t

0
T(s)xds)|| = 0.

Lemma 1.4 Let C be a nonempty bounded closed convex subset of a Hilbert space H

and ℑ = {T(t): 0 ≤ t <∞}be a nonexpansive semigroup on C. If {xn} is a sequence in C

satisfying the properties:

(i)xn ⇀ z;

(ii) lim supt®∞ lim supn®∞ ||T(t)xn - xn|| = 0,

where xn ⇀ z denote that {xn} converges weakly to z, then z Î F(ℑ).

Proof. This Lemma is the continuous version of Lemma 2.3 of Tan and Xu[32]. This

proof given in [32] is easily extended to the continuous case.

Lemma 1.5[33] Let C be a nonempty closed convex subset of a real Hilbert space H,

T be nonexpansive mapping from C into self. Then the mapping I - T is demiclosed at

zero, i.e.,

xn ⇀ x, ||xn − Txn|| → 0 implies x = Tx.

Lemma 1.6[22] Assume {an} is a sequence of nonnegative real numbers such that

an+1 = (1 − γn)an + δn, n ≥ 0.

where {gn} is a sequence in (0,1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞.

(ii) lim supn®∞ δn/gn ≤ 0 or
∑∞

n=1 |δn| < ∞ .

Then limn®∞ an = 0.
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Lemma 1.7[34] Let {ln} and {bn} be two nonnegative real number sequences and

{an} a positive real number sequence satisfying the conditions
∑∞

n=0 αn = ∞ and

limn→∞ βn
αn

= 0 or
∑∞

n=0 βn < ∞ . Let the recursive inequality

λn+1 ≤ λn − αnψ(λn) + βn, n = 0, 1, 2 · · · ,

be given, where ψ(l) is a continuous and strict increasing function for all l ≥ 0 with

ψ(0) = 0. Then {ln} converges to zero, as n ® ∞.

2. Implicit viscosity iterative algorithm
Theorem 2.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let F be

a bifunction from C × C into R satisfying (A1)-(A4). Let f be a weakly contractive map-

ping with a function � on H, A a strongly positive linear bounded operator with coeffi-

cient γ̄ > 0 on H, ℑ = {T(s): s ≥ 0} be a nonexpansive semigroup on C, respectively.

Assume that Ω:= F(ℑ)∩EP(F) ≠ ∅, {an}, {bn}⊂(0,1), {tn}⊂(0,∞) be real sequences satisfy-

ing the conditions

lim
n→∞ αn = lim

n→∞ βn = 0, lim
n→∞ tn = ∞.

then for any 0 < γ ≤ γ̄ and any r >0, there exists a unique sequence {xn} ⊂ H satis-

fying the following condition

⎧⎨
⎩
F(un, y) + 1

r 〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,
zn = (1 − βn) 1

tn

∫ tn
0 T(s)unds + βnun,

xn = (I − αnA)zn + αnγ f (xn), ∀n ≥ 1.
(2:1)

Furthermore, the sequence {xn} converges strongly to z* Î Ω which uniquely solves

the following variational inequality

〈(γ f − A)z∗, z − z∗〉 ≤ 0, for any z ∈ �. (2:2)

Proof. We divide the proof into six steps.

Step 1.

Since an ® 0 as n ® ∞, we may assume, with no loss of generality, that an < ||A||-1

for all n ≥ 1. Then, αn < 1
γ for all n ≥ 1.

First, we show that the sequence {xn} generated from (2.1) is well defined. For each n

≥ 1, define a mapping Sfn in H as follows

Sfn := (I − αnA)[(1 − βn)
1
tn

∫ tn

0
T(s)Trds + βnTr] + αnγ f .

Observe from Lemma 1.1 that Tr be a nonexpansive for each r >0, thus we have that

for any x, y Î C,

||Sfnx − Sfny||

≤ ||I − αnA||[(1 − βn)
1
tn

∫ tn

0
||T(s)Trx − T(s)Try||ds + βn||Trx − Try||]

+αnγ ||f (x) − f (y)||
≤ (1 − αnγ̄ )[(1 − βn)||x − y|| + βn||x − y||] + αnγ ||f (x) − f (y)||
≤ [1 − αn(γ̄ − γ )]||x − y|| − αnγ ϕ(||x − y||)
≤ ||x − y|| − ψ(||x − y||),
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where ψ(x - y) = ang�(||x - y||). This shows that Sfn is a weakly contractive mapping

with a function ψ on H for each n ≥ 1. Therefore, by Theorem 5 of [11], Sfn has a

unique fixed point (say) xn Î H. This means that Eq.(2.1) has a unique solution for

each n ≥ 1, namely,

xn = (I − αnA)[(1 − βn)
1
tn

∫ tn

0
T(s)Trxnds + βnTrxn] + αnγ f (xn)

= (I − αnA)[(1 − βn)
1
tn

∫ tn

0
T(s)unds + βnun] + αnγ f (xn),

where note from Lemma 1.1 that un can be re-written as un = Trxn.

Next, we show that {xn} is bounded. Indeed, for any z Î Ω, note that z = Trz. It fol-

lows from Lemma 1.1 that

||un − z|| = ||Trxn − z|| = ||Trxn − Trz|| ≤ ||xn − z||. (2:3)

Notice that

||zn − z|| ≤ (1 − βn)||un − z|| + βn||un − z||
= ||un − z|| ≤ ||xn − z||. (2:4)

It follows that

||xn − z||2 = 〈xn − z, xn − z〉
= 〈(I − αnA)(zn − z), xn − z〉 + αnγ 〈f (xn) − f (z), xn − z〉

+αn〈γ f (z) − Az, xn − z〉
≤ (1 − αnγ̄ )||xn − z||2 + αnγ ||xn − z||2 − αnγ ϕ(||xn − z||)||xn − z||

+αn〈γ f (z) − Az, xn − z〉
= [1 − αn(γ̄ − γ )]||xn − z||2 + αn〈γ f (z)− Az, xn − z〉 − αnγ ϕ(||xn − z||)||xn − z||
≤ ||xn − z||2 + αn〈γ f (z)− Az, xn − z〉 − αnγ ϕ(||xn − z||)||xn − z||.

(2:5)

Therefore,

ϕ(||xn − z||) ≤ 1
γ

||γ f (z) − Az||,

which implies that {�(||xn - z||)} is bounded. We obtain that {||xn - z||} is bounded

by the property of �. So {xn} is bounded and so are {un}, {zn}, {f(un)}, {Azn} from Eq.

(2.3) and Eq.(2.4). We may, without loss of generality, assume that there exists a

bounded set K ⊂ C such that xn, un, zn Î K, for each n ≥ 1.

Step 2. We claim that there exists a subsequence {nk} of {n} such that xnk ⇀ z∗ and

z* Î F(ℑ).

Indeed, for any z Î Ω, denote wn := 1
tn

∫ tn
0 T(s)unds , then ||wn-z|| ≤ ||un-z|| ≤ ||xn-

z||. From Eq.(2.1), the boundedness of {f(xn)}, {Azn}, {un}, {wn} and the conditions

limn®∞ an = limn®∞ bn = 0, we see that

||zn − wn|| = βn||un − wn|| → 0 (n → ∞) (2:6)

and

||xn − zn|| = αn||γ f (xn) − Azn|| → 0 (n → ∞). (2:7)
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In view of Eq.(2.6) and Eq.(2.7), we obtain that

||xn − wn|| → 0 (n → ∞). (2:8)

Let K1 = {ω ∈ K : ϕ (||ω − z||) ≤ 1
γ
||γ f (z) − Az||} , then K1 is a nonempty bounded

closed convex subset of H and T(s)-invariant. Since {xn} ⊂ K1 and K1 is bounded, there

exists r >0 such that K1 ⊂ Br, it follows from Lemma 1.3 that

lim sup
s→∞

lim sup
n→∞

||wn − T(s)wn|| = 0. (2:9)

By virtue of Eq.(2.8) and Eq.(2.9), we arrive at

lim sup
s→∞

lim sup
n→∞

||xn − T(s)xn|| = 0. (2:10)

On the other hand, since {xn} is bounded, we know that there exists a subsequence

{xnk} of {xn} such that xnk ⇀ z∗ . By Lemma 1.4 and Eq.(2.10), we arrive at z* Î F(ℑ).

In Eq.(2.5), interchange z* and z to obtain

ψ(||xnk − z∗||) ≤ 〈γ f (z∗) − Az∗, xnk − z∗〉,

where ψ(||xnk − z∗||) = ϕ(||xnk − z∗||)||xnk − z∗||. From xnk ⇀ z∗ , we get that

lim sup
k→∞

ψ(||xnk − z∗||) ≤ lim
n→∞〈γ f (z∗) − Az∗, xnk − z∗〉 = 0.

namely,

ψ(||xnk − z∗||) → 0 as k → ∞,

which implies that xnk → z∗ as k ® ∞ by the property of ψ, and thus znk → z∗.
Step 3. We shall show that limn®∞ ||un - xn|| = 0 and z* Î EP (F), where z* is

obtained in Step 2.

Since Tr is firmly nonexpansive, from Lemma 1.1(2), we see for any z Î Ω that

‖un − z‖2 = ‖Trxn − Trz‖2
≤ 〈Trxn − Trz, xn − z〉
= 〈un − z, xn − z〉
=
1
2
(‖un − z‖2 + ‖xn − z‖2 − ‖un − xn‖2),

from which it follows that

||un − z||2 ≤ ||xn − z||2 − ||un − xn||2. (2:11)

On the other hand, it follows from Eq.(2.1) and Eq.(2.11) that

‖xn − z‖2
≤ (1 − αnγ̄ )2‖zn − z‖2 + 2αn〈γ f (xn) − Az, xn − z〉
≤ (1 − αnγ̄ )2‖un − z‖2 + 2αnγ ‖xn − z‖2 + 2αn||γ f (z) − Az||||xn − z||
≤ (1 − αnγ̄ )2‖xn − z‖2 − (1 − αnγ̄ )2‖un − xn‖2 + 2αnγ ‖xn − z‖2

+2αn||γ f (z) − Az||||xn − z||.

(2:12)
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Moreover, we have from Eq.(2.12) that

(1 − αnγ̄ )2‖un − xn‖2
≤ (1 − αnγ̄ )2‖xn − z‖2 − ‖xn − z‖2 + 2αnγ ‖xn − z‖2

+2αn||γ f (z) − Az||||xn − z||
≤ 2αnγ ‖xn − z‖2 + 2αn||γ f (z) − Az||||xn − z||
≤ 4αnM,

(2:13)

where M is a constant such that M ≥ max{supn ≥ 1{g||xn - z||2}, supn ≥ 1{||gf(z) - Az||
||xn - z||}}. From the condition an ® 0(n ® ∞), we get from Eq.(2.13) that lim

supn®∞ ||un - xn|| = 0, which implies that as n ® ∞, ||un - xn|| ® 0. Because ||un -

xn|| = ||Trxn - xn|| ® 0(n ® ∞), we see from Lemma 1.5 and Lemma 1.1 that z* Î F

(Tr) = EP (F). Therefore, z* Î Ω.

Step 4. We claim that z* is the unique solution of the variational inequality (2.2).

Firstly, we show the uniqueness of the solution to the variational inequality (2.2) in

Ω. In fact, suppose p, q Î Ω satisfy Eq.(2.2), we see that

〈(A − γ f )p, p − q〉 ≤ 0, (2:14)

〈(A − γ f )q, q − p〉 ≤ 0. (2:15)

Adding these two inequalities (2.14) (2.15) yields

0 ≥ 〈A(p − q), p − q〉 − γ 〈f (p) − f (q), p − q〉
≥ γ̄

∥∥p − q
∥∥2 − γ

∥∥p − q
∥∥2 + γ ϕ(||p − q||)||p − q||

= (γ̄ − γ )
∥∥p − q

∥∥2 + γ ϕ(||p − q||)||p − q||,

thus

ϕ(||p − q||) ≤ γ − γ̄

γ
||p − q||.

From γ−γ̄

γ
≤ 0 , we get that

ϕ(||p − q||) ≤ 0.

By the property of �, we must have p = q and the uniqueness is proved.

Next we show that z* is a solution in Ω to the variational inequality (2.2).

In fact, since

xn = (I − αnA)(1 − βn)
1
tn

∫ tn

0
T(s)unds + (I − αnA)βnun + αnγ f (xn),

we derive that

Axn − γ f (xn)

= − 1
αn

(I − αnA)(1 − βn)(I − 1
tn

∫ tn

0
T(s)ds)un

+
1
αn

[(I − αnA)un − (I − αnA)xn].
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For any z Î Ω, it follows that

〈A(xn) − γ f (xn), un − z〉

= −(1 − βn)
αn

〈(I − αnA)(I − 1
tn

∫ tn

0
T(s)ds)un, un − z〉

+
1
αn

〈(I − αnA)(un − xn), un − z〉

= −1 − βn

αn
〈(I − 1

tn

∫ tn

0
T(s)ds)un − (I − 1

tn

∫ tn

0
T(s)ds)z, un − z〉

+(1 − βn)〈A(I − 1
tn

∫ tn

0
T(s)ds)un, un − z〉

+
1
αn

〈un − xn, un − z〉 + 〈Axn − Aun, un − z〉.

(2:16)

Now we consider the right side of Eq.(2.16). Observe from Eq.(2.1) that

〈un − xn, un − z〉 ≤ rF(un, z).

Note from z Î Ω ⊂ EP(F) that F (z, un) ≥ 0, then F(un, z) ≤ -F(z, un) ≤ 0, which

implies that

1
αn

〈un − xn, un − z〉 ≤ 0.

On the other hand, it is easily seen that I − 1
tn

∫ tn
0 T(s)ds is monotone, that is

〈(I − 1
tn

∫ tn

0
T(s)ds)un − (I − 1

tn

∫ tn

0
T(s)ds)z, un − z〉 ≥ 0.

Thus, we obtain from Eq.(2.16) that

〈(A(xn) − γ f (xn), un − z〉

≤ (1 − βn)〈A(I − 1
tn

∫ tn

0
T(s)ds)un, un − z〉 + 〈Axn − Aun, un − z〉. (2:17)

Also, we notice from || xn - un || ® 0 (n ® ∞) and xnk → z∗ ∈ � that

lim sup
k→∞

〈A(I − 1
tnk

∫ tnk

0
T(s)ds)unk , unk − z〉 = 0, (2:18)

and

lim sup
k→∞

〈A(xnk − unk), unk − z〉 = 0. (2:19)

Now replacing n in Eq.(2.17) with nk and taking limsup, we have from Eq.(2.18) and

Eq.(2.19) that

〈(A − γ f )z∗, z∗ − z〉 ≤ 0. (2:20)

for any z Î Ω. This is, z* Î Ω is unique solution of Eq.(2.2).

Step 5. We claim that

lim sup
n→∞

〈 1
tn

∫ tn

0
T(s)unds − z∗, γ f (z∗) − Az∗〉 ≤ 0. (2:21)
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To show Eq.(2.21), we may choose a subsequence {xni}of {xn} such that

lim sup
n→∞

〈 1
tn

∫ tn

0
T(s)unds − z∗, γ f (z∗) − Az∗〉

= lim
i→∞

〈 1
tni

∫ tni

0
T(s)unids − z∗, γ f (z∗) − Az∗〉.

(2:22)

Since {xni} is bounded, we can choose a subsequence {xnij } of {xni} converges weakly

to z.

We may, assume without loss of generality, that xni ⇀ z , then uni ⇀ z , note from

Step 2 and Step 3 that z Î Ω and thus 1
tni

∫ tni
0 T(s)unids ⇀ z . It follows from Eq.(2.22)

that

lim sup
n→∞

〈 1
tn

∫ tn

0
T(s)unds − z∗, γ f (z∗) − Az∗〉 = 〈z − z∗, γ f (z∗) − Az∗〉 ≤ 0.

So Eq.(2.21) holds, thanks to Eq.(2.20).

Step 6. We claim that xn ® z* as n ® ∞.

First, from Eq.(2.8) and Eq.(2.21) we conclude that

lim sup
n→∞

〈γ f (z∗) − Az∗, xn − z∗〉 ≤ 0. (2:23)

Now we compute ||xn - z*||2 and have the following estimates:

||xn − z∗||2
= ||(I − αnA)(zn − z∗) + αn(γ f (xn) − Az∗)||2
≤ (1 − αnγ̄ )2||zn − z∗||2 + 2αn〈γ f (xn) − Az∗, xn − z∗〉
≤ (1 − αnγ̄ )2||zn − z∗||2 + 2αnγ ||xn − z∗||2

−2αnγ ϕ(||xn − z∗||) + 2αn〈γ f (z∗) − Az∗, xn − z∗〉
≤ (1 − αnγ̄ )2||xn − z∗||2 + 2αnγ ||xn − z∗||2

+2αn〈γ f (z∗) − Az∗, xn − z∗〉 − 2αnγ ϕ(||xn − z∗||)
≤ (1 + α2

n γ̄
2)||xn − z∗||2 − 2αnγ ϕ(||xn − z∗||) + 2αn〈γ f (z∗) − Az∗, xn − z∗〉.

It follows that

ϕ(||xn − z∗||) ≤ γ̄ 2

2γ
αn||xn − z∗||2 + 1

γ
〈γ f (z∗) − Az∗, xn − z∗〉.

By virtue of the boundedness of {xn}, Eq.(2.23) and the condition an ® 0(n ® ∞), we

can conclude that limn®∞ �(||xn - z*||) = 0. By the property of �, we obtain that xn ®
z* Î Ω as n ® ∞. This completes the proof of Theorem 2.1.

From Theorem 2.1, we can derive the desired conclusion immediately for a single

nonexpansive mapping T.

Corollary 2.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let F

a bifunction from C × C ® R satisfying (A1)-(A4), f be a weakly contractive mapping

with a function � on H, A a strongly positive linear bounded operator with coefficient

γ̄ > 0 on H, and T be a nonexpansive mapping from C into itself, respectively.

Assume that Ω = F(T) ∩ EP (F) ≠ ∅, {an}, {bn} ⊂ (0, 1) are real sequences such that:
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limn®∞ an = 0, bn = o(an). Then for any 0 < γ ≤ γ̄ and any r >0, there exists a

unique {xn} ⊂ H such that

⎧⎪⎨
⎪⎩
F(un, y) +

1
r
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

zn = (1 − βn)Tun + βnun
xn = (I − αnA)zn + αnγ f (xn), ∀n ≥ 1.

Furthermore, the sequence {xn} converges strongly to z* Î Ω which solves the varia-

tional inequality (2.2).

Remark 2.1 Putting bn = 0, �(t) = (1 - k)t and un = xn in Theorem 2.1, we can

obtain Theorem 3.1 in [30].

Remark 2.2 The parameter g can be allowed to take the coefficient γ̄ in Theorem

2.1 and Corollary 2.1. Our results contain the ones in [23] and [27] as special cases.

3. Explicit viscosity iterative algorithm
Theorem 3.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let F a

bifunction from C × C ® R satisfying (A1)-(A4), f be a weakly contractive mapping

with a function � on H, A a strongly positive linear bounded operator with coefficient

γ̄ > 0 on H, and ℑ = {T(s): s ≥ 0} be a nonexpansive semigroup on C, respectively.

Assume that Ω = F(ℑ)∩EP(F) ≠ ∅, {an}, {bn} ⊂ (0, 1), {tn} ⊂ (0, ∞) are real sequences

satisfying the following restrictions:

(C1) limn®∞ an = 0,
∑∞

n=1 αn = ∞ ,
∑∞

n=0 |αn − αn−1| < ∞ ;

(C2) limn®∞ bn = 0,
∑∞

n=0 |βn − βn−1| < ∞ ;

(C3)
∑∞

n=0
1
tn

< ∞ ,
∑∞

n=0 | 1tn − 1
tn−1

| < ∞.

For any 0 < γ ≤ γ̄ and any r >0, let a sequence {yn} be iteratively generated from y1
Î C by:

⎧⎨
⎩
F(vn, y) + 1

r 〈y − vn, vn − yn〉 ≥ 0, ∀y ∈ C,
zn = (1 − βn) 1

tn

∫ tn
0 T(s)vnds + βnvn

yn+1 = (I − αnA)zn + αnγ f (yn), ∀n ≥ 1.
(3:1)

Then {yn} converges strongly to the unique solution in F to the inequality (2.2).

Proof. Firstly, we show that {yn} is bounded.

Since an ® 0 as n ® ∞, we may assume, with no loss of generality, that an < ||A||-1

for all n ≥ 1. Then, αn < 1
γ̄ for all n ≥ 1.

For any z Î Ω, note from Lemma 1.1 that vn can be re-written as vn = Tryn for each

n ≥ 1 and z = Trz. It follows from Lemma 1.1 that

||vn − z|| = ||Tryn − z|| = ||Tryn − Trz|| ≤ ||yn − z||.

Notice that

||zn − z|| ≤ (1 − βn) ||vn − z|| + βn||vn − z||
= ||vn − z|| ≤ ||yn − z||.
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From which it follows that

||yn+1 − z||
≤ ||I − αnA|| ||zn − z|| + αnγ ||f (

yn
) − f (z) || + αn||γ f (z) − Az||

≤ (1 − αnγ̄ ) ||zn − z|| + αnγ ||yn − z|| − αnγ ϕ
(||yn − z||) + αn||γ f (z) − Az||

≤ (1 − αnγ̄ ) ||yn − z|| + αnγ ||yn − z|| + αn||γ f (z) − Az||
= [1 − αn (γ̄ − γ )] ||yn − z|| + αn||γ f (z) − Az||.

By induction,

||yn+1 − z|| ≤ max{||y0 − z||, ||γ f (z) − Az||
γ̄ − γ

}, n ≥ 0.

and {yn} is bounded, which leads to the boundedness of {vn}, {zn}, {f(vn)}, {Azn}. We

may, without loss of generality, assume that there exists a bounded set K ⊂ C such

that yn, vn, zn Î K, for each n ≥ 1.

Using a similar method of proof as in the Step 2 of the proof of Theorem 2.1, we can

conclude that

||yn+1 − wn|| → 0 as n → ∞. (3:2)

and

||yn+1 − zn|| → 0 as n → ∞. (3:3)

Let K1 = {ω ∈ K : ||ω − z|| ≤ max{||y0 − z||, ||γ f (z)−Az||
γ̄ −γ

}} , then K1 is a nonempty

bounded closed convex subset of H and T (s)-invariant. Since {yn+1} ⊂ K1 and K1 is

bounded, there exists r >0 such that K1 ⊂ Br, it follows from Lemma 1.3 that

lim sup
s→∞

lim sup
n→∞

||ωn − T(s)wn|| = 0. (3:4)

By virtue of Eq.(3.2) and Eq.(3.4), we arrive at

lim sup
s→∞

lim sup
n→∞

||yn+1 − T(s)yn+1|| = 0. (3:5)

Next we shall prove that yn+1 - yn ® 0 as n ® ∞.

Note that

||yn+1 − yn||
≤ ||αnγ f

(
yn

) − ||αnγ f
(
yn−1

) || + αnγ f
(
yn−1

) − αn−1γ f
(
yn−1

) ||
+|| (I − αnA) zn − (I − αnA) zn−1|| + || (I − αnA) zn−1 − (I − αn−1A) zn−1||

≤ αnγ ||yn − yn−1|| − αnγ ϕ
(||yn − yn−1||

)
+ |αn − αn−1|γ || f (

yn−1
) ||

+ (1 − αnγ ) ||zn − zn−1|| + |αn−1 − αn| ||Azn−1||.

(3:6)

Also

||zn − zn−1||
≤ || (1 − βn)wn − (1 − βn)wn−1|| + || (1 − βn)wn−1 − (1 − βn−1)wn−1||

+||βnvn − βnvn−1|| + ||βnvn−1 − βn−1vn−1||
≤ (1 − βn) ||wn − wn−1|| + |βn−1 − βn| ——wn−1||

+βn||vn − vn−1|| + |βn − βn−1| ||vn−1||,

(3:7)
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and

||vn − vn−1|| = ||Tryn − Tryn−1|| ≤ ||yn − yn−1||. (3:8)

where wn := 1
tn

∫ tn
0 T(s)vnds . Now we compute ||wn - wn-1||,

||wn − wn−1||

≤ || 1
tn

∫ tn

0
T (s)vnds − 1

tn

∫ tn

0
T (s)vn−1ds|| + || 1

tn

∫ tn

0
T (s)vn−1ds

− 1
tn−1

∫ tn

0
T (s)vn−1ds|| + || 1

tn−1

∫ tn

0
T (s)vn−1ds − 1

tn−1

∫ tn−1

0
T (s)vn−1ds||

≤ ||vn − vn−1|| + | 1
tn

− 1
tn−1

| ||
∫ tn

0
T (s)vn−1ds|| + 1

tn−1
||

∫ tn−1

tn
T (s) vn−1ds||.

(3:9)

Substituting Eq.(3.7)-(3.9) into Eq.(3.6), we arrive at

||yn+1 − yn||
≤ ||yn − yn−1|| − αnγ ϕ

(||yn − yn−1||
)
+ |αn − αn−1|M

+| 1
tn

− 1
tn−1

|M +
1

tn−1
M + |βn−1 − βn|M,

for some positive constant M. Thanks to the conditions (C1) - (C3) and Lemma 1.7,

we conclude that

||yn+1 − yn|| → 0, as n → ∞. (3:10)

Now, we show

lim
n→∞ ||vn − yn|| = lim

n→∞ ||Tryn − yn|| = 0. (3:11)

Indeed, using a similar method of proof as in the Step 3 of the proof of Theorem 2.1,

we can obtain that

∥∥yn+1 − z
∥∥2

≤ (1 − αnγ̄ )2
∥∥yn − z

∥∥2 − (1 − αnγ̄ )2
∥∥vn − yn

∥∥2 + 2αnγ ||yn − z|| ||yn+1 − z||
+ 2αn||γ f (z) − Az|| ||yn+1 − z||,

from which it follows that

(1 − αnγ̄ )2
∥∥vn − yn

∥∥2
≤ (1 − αnγ̄ )2

∥∥yn − z
∥∥2 − ∥∥yn+1 − z

∥∥2 + 2αnγ ||yn − z|| ||yn+1 − z||
+ 2αn||γ f (z) − Az|| ||yn+1 − z||

≤ ∥∥yn − z
∥∥2 − ∥∥yn+1 − z

∥∥2 + 4αnM1

=
[||yn − z|| + ||yn+1 − z||] [||yn − z|| − ||yn+1 − z||] + 4αnM1

≤ M1||yn − yn+1|| + 4αnM1,

where M1 is an appropriate constant such that M1 = max{supn ≥ 1{g||yn - z|| ||yn+1 -

z||}, supn ≥ 1{||gf(z) - Az|| ||yn+1 - z||}, supn ≥ 1{||yn - z|| + ||yn+1 - z||}}. From the con-

dition an ® 0(n ® ∞) and Eq.(3.10), we get that lim supn®∞ ||vn - yn|| = 0, which

implies that the Eq.(3.11) holds.
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It follows from Theorem 2.1 that there is a unique solution z* Î Ω to the variational

inequality (2.2).

Next, we show that lim supn®∞ 〈gf(z*) - Az*, yn+1 - z*〉 ≤ 0

Indeed, we can take a subsequence {ynk+1} of {ynk} such that

lim sup
n→∞

〈γ f (
z∗

) − Az∗, yn+1 − z∗〉 = lim
n→∞〈γ f (

z∗
) − Az∗, ynk+1 − z∗〉

We may assume that ynk+1 ⇀ z since {yn+1} is bounded. From Eq.(3.5) and Lemma

1.4, we conclude z Î F (ℑ). Similarly, from Eq.(3.11) and Lemma 1.1 and Lemma 1.5,

we have z Î EP(F). Therefore, z Î Ω.

In view of the variational inequality (2.2), we conclude

lim sup
n→∞

〈γ f (
z∗

) − Az∗, yn+1 − z∗〉 = lim
n→∞〈γ f (

z∗
) − Az∗, ynk+1 − z∗〉

= 〈γ f (
z∗

) − Az∗, z − z∗〉 ≤ 0

From (3.4), we see that

lim sup
n→∞

〈γ f (
z∗

) − Az∗, zn − z∗〉 ≤ 0. (3:12)

Finally, we show that yn ® z*. As a matter of fact,

∥∥yn+1 − z∗
∥∥2

= ||(I − αnA)(zn − z∗) + αn(γ f (yn) − Az∗)||2

= ||(I − αnA)(zn − z∗)||2 + α2
n

∥∥γ f (yn) − Az∗
∥∥2

+2αn〈(I − αnA)(zn − z∗), γ f (yn) − Az∗〉
≤ (1 − αnγ̄ )2

∥∥zn − z∗
∥∥2 + α2

n

∥∥γ f (yn) − Az∗
∥∥2

+ 2αn〈zn − z∗, γ f
(
yn

) − Az∗〉
−2α2

n〈A(zn − z∗), γ f (yn) − Az∗〉
≤ (1 − αnγ̄ )2

∥∥yn − z∗
∥∥2

+ α2
n

∥∥γ f
(
yn

) − Az∗
∥∥2 + 2αnγ 〈zn − z∗, f

(
yn

) − f (z∗)〉
+2αn〈zn − z∗, γ f (z∗) − Az∗〉 − 2α2

n〉A(zn − z∗), γ f (yn) − Az∗〉
≤ [(1 − αnγ̄ )2 + 2αnγ ]

∥∥yn − z∗
∥∥2 + αn[2〈zn − z∗, γ f (z∗) − Az∗〉

+αn
∥∥γ f (yn) − Az∗

∥∥2 + 2αn||A(zn − z∗)|| ||γ f (yn) − Az∗||]
= [1 − 2αn(γ̄ − γ )]

∥∥yn − z∗
∥∥2 + αnAn,

(3:13)

where

An = 2〈zn − z∗, γ f (z∗) − Az∗〉 + αn

[∥∥γ f
(
yn

) − Az∗
∥∥2

+2||A(zn − z∗)|| ||γ f (
yn

) − Az∗|| + γ̄ 2
∥∥yn − z∗

∥∥2] .
Since {yn} is bounded, there must exist a constant M2 >0 such that

∥∥γ f
(
yn

) − Az∗
∥∥2 + 2||A(zn − z∗)|| ||γ f (

yn
) − Az∗|| + γ̄ 2

∥∥yn − z∗
∥∥2 ≤ M2.

It then follows from Eq.(3.13) that

∥∥yn+1 − z∗
∥∥2 ≤ [1 − 2αn (γ̄ − γ )]

∥∥yn − z∗
∥∥2 + αnBn, (3:14)
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where Bn = 2〈zn - z*, gf(z*) - Az*〉 + anM2. From the conditions (C1) - (C2), Eq.(3.12)

and Lemma 1.6, we obtain from Eq.(3.14) that yn ® z* in norm. This completes the

proof of Theorem 3.1.

From Theorem 3.1, we can derive the desired conclusion immediately for a nonex-

pansive mapping T.

Corollary 3.1 Let H be a Hilbert space, C be a nonempty closed convex subset of H,

F a bifunction from C × C ® R satisfying (A1)-(A4). Let f be a weakly contractive

mapping with a function � on H, and A a strongly positive linear bounded operator

with coefficient γ̄ > 0 on H, and T be a nonexpansive mapping from C into itself.

Assume that Ω = F(T) ∩ EP(F) ≠ ∅, for any 0 < γ ≤ γ̄ and any r >0, let y1 Î C, and

{yn} be a sequence generated in
⎧⎪⎨
⎪⎩
F

(
vn, y

)
+ 1

r 〈y − vn, vn − yn〉 ≥ 0, ∀y ∈ C,

zn = (1 − βn)Tvn + βnvn
yn+1 = (I − αnA) zn + αnγ f

(
yn

)
, ∀n ≥ 1.

where {an}, {bn} ⊂ (0, 1) are real sequences satisfying the conditions (C1) - (C2) in

Theorem 3.1. Then the sequence {yn} converges strongly to z* Î Ω which uniquely

solves the variational inequality (2.2).

Remark 3.1 Putting A = I, bn = 0 and �(t) = (1 - k)t in Corollary 3.1, we can easily

conclude Theorem TT [10].

Remark 3.2 Putting bn = 0, �(t) = (1 - k)t and un = xn in Theorem 3.1, we can

obtain Theorem 3.2 in [30].

4. Application
In this section, we shall consider another class of important nonlinear operator: k-strict

pseudocontractions.

Recall that a mapping S: C ® C is said to be a k-strict pseudocontraction if there

exists a constant k Î (0, 1) such that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I − S) x − (I − S) y

∥∥2
for all x, y Î C. Note that the class of k-strict pseudocontractions strictly includes

the class of nonexpansive mappings.

Corollary 4.1 Let C be a nonempty closed convex subset of a Hilbert space H, F be

a bifunction from C × C ® R satisfying (A1)-(A4). Let f be a weakly contractive map-

ping with a function � on H, A a strongly positive linear bounded operator with coeffi-

cient γ̄ > 0 on H, T: C ® H be a k-strictly pseudo-contractive mapping for some 0 ≤

k < 1, respectively. Assume that Ω = F(T) ∩ EP(F) ≠ ∅, for any 0 < γ ≤ γ̄ and any r

>0, let y1 Î C, and {yn} be a sequence generated in
⎧⎪⎨
⎪⎩
F

(
vn, y

)
+ 1

r 〈y − vn, vn − yn〉 ≥ 0, ∀y ∈ C,

zn = (1 − βn)PCSyn + βnyn
yn+1 = (I − αnA) zn + αnγ f

(
yn

)
, ∀n ≥ 1.

where S: C ® H is a mapping defined by Sx = kx + (1 - k)Tx and PC is the metric

projection of H onto C, {an}, {bn} ⊂ (0, 1) are real sequences satisfying the conditions
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(C1) - (C2) in Theorem 3.1. Then the sequence {yn} converges strongly to z* Î Ω

which uniquely solves the variational inequality (2.2).

Proof. From Lemma 2.3 in [35], we see that S: C ® H is a nonexpansive mapping

and F(T) = F(S). It follows from Lemma 2.2 [32] that, PC S: C ® C is a nonexpansive

mapping and F(PC S) = F(S) = F(T). Hence the result follows from Corollary 3.1.

Remark 4.1 Putting vn = yn and �(t) = (1 - k)t in Corollary 4.1, we can obtain Theo-

rem J in [29], Further, putting bn = 0, we can obtain Theorem CKQ in [28].

5. Numerical examples
Now, we give some real numerical examples in which the conditions satisfy the ones of

Theorems 3.1 and 2.1 and some numerical experiment results to explain the main

results Theorems 3.1 and 2.1 as follows:

Example 5.1. Let H = R and C = 0[1]. For each x Î C, we define f (x) = 1
4x

2, A(x) =

2x, T(x) = 1
2x

2 . Let αn = βn = 1
n ∈ [0, 1], n Î N. For each (x, y) Î H × H, we define F

(x, y) = x2 + y. Then {yn} is the sequence generated by

yn+1 =
1
2
(1 − 2

n
)(1 − 1

n
)y2n + (1 − 2

n
)
1
n
yn +

1
8n

y2n (5:1)

and yn ® y* = 0 as n ® ∞, where y* = 0 Î F(T) ∩ EP(F).

Proof. It is obvious that the bifunction F(x, y) satisfies the conditions (A1)-(A4) and

f (x) = 1
4x

2 is a weakly contractive mapping with a function ϕ(t) = 1
2 t on R,

T(x) = 1
2x

2 is a nonexpansive mapping on C and F(T) = {0}, A(x) = 2x is a strongly

positive linear bounded operator with coefficient γ̄ = 1 on R, and the bifunction F(x,

y) = x2 + y satisfies conditions (A1)-(A4) and EP(F) = {y: y ≥ 0}. αn = βn = 1
n ∈ [0, 1]

satisfy limn®∞ an = 0,
∑∞

n=0
αn = ∞ ,

∑∞
n=0

|αn − αn−1| < ∞, limn®∞ bn = 0,

∑∞
n=0

|βn − βn−1| < ∞ and F(T) ∩ EP(F) = {0}.

Hence, the conditions satisfy the ones of Theorem 3.1. Substituting all of the given

conditions to the scheme (3.1), we have (5.1). Following the proof of Theorem 3.1, we

easily obtain {yn} converges strongly to y* = 0 Î F(T) ∩ EP(F).

The proof is completed.

Example 5.2. Let C = 0[2], H, f, A, T, an, bn, F be as in Example 5.1., F(T) ∩ EP(F) =

{0, 2}. Then there exists a unique sequence {xn} ⊂ H satisfying the following equation

xn =
1
2
(1 − 2

n
)(1 − 1

n
)x2n + (1 − 2

n
)
1
n
xn +

1
8n

x2n (5:2)

Furthermore, xn ® x* = 2 as n ® ∞, where x* = 2 Î F(T) ∩ EP(F).

Proof. As in the proof of Example 5.1, the conditions satisfy the ones of Theorem

2.1. Substituting all of the given conditions to the scheme (2.1), we have (5.2), and if xn
≠ 0 for each n, (5.2) is equal to the following equation

xn =
1 − (1 − 2

n)
1
n

1
2(1 − 2

n)(1 − 1
n ) +

1
8n
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Following the proof of Theorem 2.1, we easily obtain {xn} converges strongly to x* =

2 Î F(T) ∩ EP(F). The proof is completed.

Next, we give the numerical experiment results using software Matlab 7.0 and get

Figures 1 and 2, which show that the iteration processes of the sequence {yn} as initial

point y(1) = 1, y(1) = 0.5 and the sequence {xn}, respectively. From the figures, we can

see that {yn} converges to 0 and {xn} converges to 2, and the more the iteration steps

are, the more fast the sequence {yn} and {xn} converges to 0 and 2, respectively.
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(a) y(1)=1,iteration steps n=20
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(b) y(1)=1,iteration steps n=50
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(c) y(1)=0.5,iteration steps n=20
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(d) y(1)=0.5,iteration steps n=50

Figure 1 The case of iteration sequence (5.1).
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(a) iteration steps n=50
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(b) iteration steps n=100

Figure 2 The case of iteration sequence (5.2).
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