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1 Introduction
Let n be a positive integer, and let ai, bi (i = 1, 2, ..., n) be real numbers such that

a21 − ∑n
i=2 a

2
i ≥ 0 or b21 − ∑n

i=2 b
2
i ≥ 0. Then Aczél’s inequality [1] can be stated as fol-

lows (
a21 −

n∑
i=2

a2i

)(
b21 −

n∑
i=2

b2i

)
≤

(
a1b1 −

n∑
i=2

aibi

)2

, (1)

with equality if and only if the sequences ai and bi are proportional.

The Aczél inequality (1) plays an important role in the theory of functional equations

in non-Euclidean geometry. During the past years, many authors have given consider-

able attention to this inequality, its generalizations and applications [2-11].

As an example, the Hölder-like generalization of the Aczél inequality (1), derived by

Popoviciu [12], takes

(
ap1 −

n∑
i=2

api

) 1
p
(
bq1 −

n∑
i=2

bqi

) 1
q

≤ a1b1 −
n∑
i=2

aibi, (2)

where n is a positive integer, and p, q, ai, bi (i = 1, 2, ..., n) are positive numbers such

that p−1 + q-1 = 1, ap1 − ∑n
i=2 a

p
i > 0 and bq1 − ∑n

i=2 b
q
i > 0.

One application of Aczél’s inequality is the following Bellman’s inequality [13]

(
ap1 −

n∑
i=2

api

) 1
p

+

(
bp1 −

n∑
i=2

bpi

) 1
p

≤
(
(a1 + b1)

p −
n∑
i=2

(ai + bi)
p

) 1
p

. (3)

Here n is a positive integer, and p ≥ 1, ai, bi (i = 1, 2, ..., n) are positive numbers

such that ap1 − ∑n
i=2 a

p
i > 0 and bp1 − ∑n

i=2 b
p
i > 0.
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In this paper, inspired by the functional generalizations of the Cauchy-Schwarz

inequality [14] and of the Hölder inequality [15,16], we will establish some functional

generalizations of the Aczél inequality and of the Bellman inequality. Refinements of

these inequalities will also be presented.

As we seen, the following theorem is very useful to give results related to power

sums and Aczél’s inequality.

Theorem 1.1 (see e.g. [9,17]). Let n be a positive integer, and xi (i = 1, 2, ..., n) be

positive numbers such that x1 − ∑n
i=2 xi > 0.If f : ℝ+ ® ℝ is a function such that f(x)/x

is increasing on ℝ+, then

f

(
x1 −

n∑
i=2

xi

)
≤ f (x1) −

n∑
i=2

f (xi). (4)

The inequality is reversed if f(x)/x is decreasing on ℝ+. The inequalities are strict if f

(x)/x is strictly increasing or decreasing on ℝ+.

Several mean value theorems for the related power sums of (4) have been established

in [9,18-20]. In this paper, we will also generalize two of them in the last section.

2 Aczél and Bellman’s inequalities
In order to establish the functional generalization of Aczél’s inequality, we need the

following lemma.

Lemma 2.1 (power means inequality, see [21]). Let n be a positive integer, p >0 and

let ai >0 (i = 1, 2, ..., n). Then

n∑
i=1

api ≤ n1−min{p,1}
(

n∑
i=1

ai

)p

. (5)

Theorem 2.1. Let n, m be positive integers, and let pj ≥ 1, xij (i = 1, 2, ..., n; j = 1, 2,

..., m) be positive numbers such that x1j −
∑n

i=2
xij > 0 for j = 1, 2, ..., m. If fj : ℝ

+ ® ℝ
+ is a function such that fj(x)/x is increasing on ℝ+. Then we have

m∏
j=1

fj

(
x1j −

n∑
i=2

xij

)
≤

m∏
j=1

[(
fj(x1j)

)pj − n∑
i=2

(
fj(xij)

)pj] 1
pj

≤ C
m∏
j=1

fj(x1j) −
n∑
i=2

m∏
j=1

fj(xij),

(6)

where C = n1−min{r,1}, r =
∑m

j=1 p
−1
j .

Proof. Applying Theorem 1.1 on each fj yields

m∏
j=1

fj

(
x1j −

n∑
i=2

xij

)
≤

m∏
j=1

(
fj(x1j) −

n∑
i=2

fj(xij)

)
.

Reusing Theorem 1.1 on xpj and replacing xij by fj (xij) in Theorem 1.1, we obtain

m∏
j=1

(
fj(x1j) −

n∑
i=2

fj(xij)

)
≤

m∏
j=1

[(
fj(x1j)

)pj − n∑
i=2

(
fj(xij)

)pj] 1
pj
,
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which completes the first inequality of (6). To proof the second inequality of (6), let

us denote

f̃j =

[(
fj(x1j)

)pj − n∑
i=2

(
fj(xij)

)pj]
1
pj
.

By using the power means inequality (5) and the well known Hölder inequality, we

have

m∏
j=1

f̃j +
n∑
i=2

m∏
j=1

fj(xij) ≤ n1−min{r,1}

⎛
⎜⎝ m∏

j=1

f̃

1
r
j +

n∑
i=2

m∏
j=1

(
fj(xij)

)1
r

⎞
⎟⎠

r

≤ n1−min{r,1}

⎛
⎜⎜⎜⎝

m∏
j=1

(
f̃
pj
j +

n∑
i=2

(
fj(xij)

)pj) 1
rpj

⎞
⎟⎟⎟⎠

r

= n1−min{r,1}
m∏
j=1

fj(x1j).

(7)

Rearranging the terms of (7) immediately leads to the second inequality of (6). This

completes the proof. □
Remark 2.1. From the proof we have that the second inequality of (6) still holds if(

fj(x1j)
)pj − ∑n

i=2
(fj(xij))

pj > 0for pj > 0, j = 1, 2, ..., m.

From Theorem 2.1, by taking fj(x) = x, we get

Corollary 2.1. Under the assumptions of Theorem 2.1, and letting fj(x) = x, we have

m∏
j=1

(
x1j −

n∑
i=2

xij

)
≤

m∏
j=1

(
x
pj
1j −

n∑
i=2

x
pj
ij

) 1
pj ≤ C

m∏
j=1

x1j −
n∑
i=2

m∏
j=1

xij.
(8)

The first inequality of (8) gives a lower bound of Aczél’s inequality. And the second

is a generalized Aczél inequality obtained in [22].

The following theorem is the functional generalization of Bellman’s inequality.

Theorem 2.2. Let n, m be positive integers, and let p ≥ 1, xij (i = 1, 2, ..., n; j = 1, 2,

..., m) be positive numbers such that x1j −
∑n

i=2
xij > 0for j = 1, 2, ..., m. If fj : ℝ

+ ® ℝ+

is a function such that fj (x)/x is increasing on ℝ+. Then we have

m∑
j=1

fj

(
x1j −

n∑
i=2

xij

)
≤

m∑
j=1

[(
fj(x1j)

)p −
n∑
i=2

(
fj(xij)

)p]1
p

≤
⎡
⎣

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p⎤
⎦
1
p
,

(9)
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Proof. The proof of the first inequality of (9) is similar to the proof of Theorem 2.1

and we omit it. The second inequality is an identity when p = 1. Hence we only need

to prove the second inequality of (9) for p >1 below.

From the assumptions and Theorem 1.1, we have

fj(x1j) −
n∑
i=2

fj(xij) > fj

(
x1j −

n∑
i=2

xij

)
> 0, j = 1, 2, . . . , m.

Applying the above inequality, the power means inequality (5) and the Minkowski

inequality (see [21]), we obtain

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p

≥

⎛
⎜⎜⎝

m∑
j=1

(
n∑
i=2

(
fj(xij)

)p)
1
p

⎞
⎟⎟⎠

p

≥
n∑
i=2

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p

.

we now deduce from Theorem 2.1 that

((
fl(x1l)

)p −
n∑
i=2

(
fl(xil)

)p)
1
p

⎡
⎣

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p⎤
⎦

1− 1
p

≤ fl(x1l)

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p−1

−
n∑
i=2

fl(xil)

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p−1

,

for l = 1, 2, ..., m. This leads to

m∑
l=1

⎡
⎢⎢⎢⎣

((
fl(x1l)

)p −
n∑
i=2

(
fl(xil)

)p)1
p

⎤
⎥⎥⎥⎦

⎡
⎣

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p⎤
⎦

1−1
p

≤
m∑
l=1

fl(x1l)

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p−1

−
n∑
i=2

(
m∑
l=1

fl(xil)

)⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p−1

=

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p

,

which yields immediately the desired inequality. This completes the proof. □
Taking fj(x) = x in Theorem 2.2, we obtain

Corollary 2.2. Under the assumptions of Theorem 2.2, and letting fj (x) = x, we have

m∑
j=1

(
x1j −

n∑
i=2

xij

)
≤

m∑
j=1

(
xp1j −

n∑
i=2

xpij

)1
p ≤

⎡
⎣

⎛
⎝ m∑

j=1

x1j

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

xij

⎞
⎠

p⎤
⎦
1
p
.

(10)

The first inequality of (10) gives a lower bound of Bellman’s inequality. And the sec-

ond is a generalized Bellman inequality obtained in [3,8].

Following the similar methods from [8,10], we will establish some refinements of

inequalities (6) and (9). Since the proofs are trivial by breaking the corresponding

sums in the following form
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x1j −
n∑
i=2

xij = x1j −
l∑

i=2

xij −
n∑

i=l+1

xij,

and reusing the corresponding theorems, we present these refinements below with-

out proofs.

Theorem 2.3. Under the assumptions of Theorem 2.1, for 2 ≤ l <n, we have

m∏
j=1

[
fj

(
x1j −

n∑
i=2

xij

)]
≤

m∏
j=1

⎡
⎣(

fj

(
x1j −

l∑
i=2

xij

))pj

−
n∑

i=l+1

(
fj(xij)

)pj⎤⎦
1
pj

≤
m∏
j=1

[(
fj(x1j)

)pj − n∑
i=2

(
fj(xij)

)pj] 1
pj

≤ C1

m∏
j=1

⎛
⎝(

fj(x1j)
)pj − l∑

i=2

(
fj(xij)

)pj⎞⎠
1
pj

−
n∑

i=l+1

m∏
j=1

fj(xij)

≤ C1C2

m∏
j=1

fj(x1j) −
n∑
i=2

m∏
j=1

fj(xij),

(11)

where C1 = (n − l + 1)1−min{r,1}, C2 = l1−min{r,1}. In particular r =
∑m

j=1 p
−1
j ≥ 1, we

have C1 = C2 = 1, hence

m∏
j=1

[(
fj(x1j)

)pj − n∑
i=2

(
fj(xij)

)pj] 1
pj ≤

m∏
j=1

⎛
⎝(

fj(x1j)
)pj − l∑

i=2

(
fj(xij)

)pj⎞⎠
1
pj

−
n∑

i=l+1

m∏
j=1

fj(xij)

≤
m∏
j=1

fj(x1j) −
n∑
i=2

m∏
j=1

fj(xij),

leading to a refinement of (6).

Remark 2.2. The third and fourth inequality of (11) still holds if(
fj(x1j)

)pj − ∑n

i=2

(
fj(xij)

)pj
> 0for pj > 0, j = 1, 2, ..., m.

Taking fj (x) = x in Theorem 2.3, we get

Corollary 2.3. Under the assumptions of Theorem 2.1 and letting fj (x) = x, for 2 ≤ l

<n, we have

m∏
j=1

(x1j −
n∑
i=2

xij) ≤
m∏
j=1

⎡
⎣(

x1j −
l∑

i=2

xij

)pj

−
n∑

i=l+1

x
pj
ij

⎤
⎦
1
pj

≤
m∏
j=1

(
x
pj
1j −

n∑
i=2

x
pj
ij

) 1
pj

≤ C1

m∏
j=1

(
x
pj
1j −

l∑
i=2

x
pj
ij

) 1
pj −

n∑
i=l+1

m∏
j=1

xij

≤ C1C2

m∏
j=1

x1j −
n∑
i=2

m∏
j=1

xij.

(12)
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In particular r =
∑m

j=1 p
−1
j ≥ 1, we have

m∏
j=1

(
x
pj
1j −

n∑
i=2

x
pj
ij

) 1
pj ≤

m∏
j=1

(
x
pj
1j −

l∑
i=2

x
pj
ij

) 1
pj −

n∑
i=l+1

m∏
j=1

xij ≤
m∏
j=1

x1j −
n∑
i=2

m∏
j=1

xij,
(13)

leading (12) to a refinement of (8).

Remark 2.3. The third and fourth inequality of (12) still holds for pj > 0 if

x
pj
1j −

∑n

i=2
x
pj
ij > 0, j = 1, 2, ..., m. The inequality (13) is also obtained in [8].

Theorem 2.4. Under the assumptions of Theorem 2.2, for 2 ≤ l <n, we have

m∑
j=1

fj

(
x1j −

n∑
i=2

xij

)
≤

m∑
j=1

⎡
⎣(

fj

(
x1j −

l∑
i=2

xij

))p

−
n∑

i=l+1

(fj(xij))p

⎤
⎦
1
p

≤
m∑
j=1

[(
fj(x1j)

)p −
n∑
i=2

(fj(xij))p
]1
p

≤

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

m∑
j=1

((
fj(x1j)

)p −
l∑

i=2

(
fj(xij)

)p)
1
p

⎞
⎟⎟⎟⎠

p

−
n∑

i=l+1

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p

⎤
⎥⎥⎥⎦

1
p

≤
⎡
⎣

⎛
⎝ m∑

j=1

fj(x1j)

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

fj(xij)

⎞
⎠

p⎤
⎦
1
p
,

(14)

Taking fj(x) = x in Theorem 2.4, we have the following.

Corollary 2.4. Under the assumptions of Theorem 2.2, and letting fj(x) = x, we have

m∑
j=1

(x1j −
n∑
i=2

xij) ≤
m∑
j=1

⎡
⎣(

x1j −
l∑

i=2

xij

)p

−
n∑

i=l+1

xpij

⎤
⎦
1
p

≤
m∑
j=1

(
xp1j −

n∑
i=2

xpij

)1
p

≤

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

m∑
j=1

(
xp1j −

l∑
i=2

xpij

)1
p

⎞
⎟⎟⎟⎠

p

−
n∑

i=l+1

⎛
⎝ m∑

j=1

xij

⎞
⎠

p

⎤
⎥⎥⎥⎦

1
p

≤
⎡
⎣

⎛
⎝ m∑

j=1

x1j

⎞
⎠

p

−
n∑
i=2

⎛
⎝ m∑

j=1

xij

⎞
⎠

p⎤
⎦
1
p
.

(15)

The third and fourth inequality (15) is also obtained in [8].
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3 Mean value theorem
As we seen, Theorem 1.1 is very useful to give results related to Aczél’s inequality. It is

also useful to give results related to power sums [9,17]. In this section, we first present

a generalized version of Theorem 1.1, then use it to establish our first generalized

mean value theorem related to power sums. We conclude this section with a mean

value theorem which generalize the recent result obtained by Pečarić and Rehman [18].

Lemma 3.1. Let n be a positive integer, and xi (i = 1, 2, ..., n) be positive numbers

such thatx1 − ∑n
i=2 xi > 0. If f : ℝ+ ® ℝ is a function such that f(x)/xp is increasing on

ℝ+. Then the inequality (4) holds for p ≥ 1, f ≥ 0 on ℝ+ or p ≤ 1, f ≤ 0 on ℝ+. If f(x)/xp

is decreasing on ℝ+, the inequality (4) is reversed for p ≥ 1, f ≤ 0 on ℝ+ or p ≤ 1, f ≥ 0

on ℝ+.

Remark 3.1. If p ≠ 1, f ≠ 0 or f(x)/x is strictly increasing or decreasing on ℝ+, then

strictly inequalities hold.

Proof. This Lemma is an easy corollary of Theorem 1.1, so we omit the proof. □
Theorem 3.1. Let p ≥ 2. Let (x1, x2, ..., xn) Î In, where I = [a, b] ⊆ (0, ∞) and

x1 − ∑n
i=2 xi ∈ I. If f : ℝ+ ® ℝ is a function such that f Î C1(I) and map ≤ f(a) ≤ Map,

where m, M are defined by (17) below. Then there exists ξ Î I such that

f (x1)−
n∑
i=2

f (xi)−f

(
x1 −

n∑
i=2

xi

)
=

ξ f ′(ξ) − (p − 1)f (ξ)
ξ p

[
xp1 −

n∑
i=2

xpi −
(
x1 −

n∑
i=2

xi

)p]
. (16)

Proof. Let

F(x) =
xf ′(x) − (p − 1)f (x)

xp
.

Since I is compact and f Î C1(I), there exist x̃, x̂ ∈ I such that

M := F(x̃) = max
x∈I

F(x), m := F(x̂) = min
x∈I

F(x). (17)

We define two auxiliary functions as follows

φ1(x) = Mxp − f (x), φ2(x) = f (x) − mxp.

It is easily deduced that(
φ1(x)
xp−1

)′
≥ 0,

(
φ2(x)
xp−1

)′
≥ 0,

hence the two functions φ1(x)
xp−1 and φ2(x)

xp−1 are all increasing on I. From the above

inequalities, we also have

φ
′
1(x) =

(
xp−1 φ1(x)

xp−1

)′
=
p − 1
x

φ1(x) + xp−1
(

φ1(x)
xp−1

)′
≥ p − 1

x
φ1(x),

and

φ
′
2(x) ≥ p − 1

x
φ2(x).

By the famous Grownwall inequality and j1(a) ≥ 0 and j2(a) ≥ 0 from the assump-

tion, we find
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φ1(x) ≥ 0, φ2(x) ≥ 0.

Now applying Lemma 3.1 on j1(x) and j2(x) respectively and rearranging the terms,

we have

f (x1) −
n∑
i=2

f (xi) − f

(
x1 −

n∑
i=2

xi

)
≤ M

[
xp1 −

n∑
i=2

xpi −
(
x1 −

n∑
i=2

xi

)p]
, (18)

f (x1) −
n∑
i=2

f (xi) − f

(
x1 −

n∑
i=2

xi

)
≥ m

[
xp1 −

n∑
i=2

xpi −
(
x1 −

n∑
i=2

xi

)p]
. (19)

Applying Lemma 1.1 on the function xp we obtain

xp1 −
n∑
i=2

xpi −
(
x1 −

n∑
i=2

xi

)p

> 0.

Combining (18) and (19) leads to

m ≤ f (x1) − ∑n
i=2 f (xi) − f (x1 − ∑n

i=2 xi)

xp1 − ∑n
i=2 x

p
i −

(
x1 − ∑n

i=2 xi
)p ≤ M. (20)

For our definition, F(x) is continuous on I and m ≤ F(x) ≤ M. Hence, there exists ξ Î
I such that

f (x1) − ∑n
i=2 f (xi) − f (x1 − ∑n

i=2 xi)

xp1 − ∑n
i=2 x

p
i − (x1−

∑n
i=2 xi)

p
=

ξ f ′(ξ) − (p − 1)f (ξ)
ξ p

, (21)

which immediately leads to (16). This completes the proof. □
We present the Cauchy type mean value theorem of Theorem 3.1 below without

proof for the proof is quite standard and coincides with the proof of Theorem 3.14 in

[9].

Theorem 3.2. Let p ≥ 2. Let (x1, x2, ..., xn) Î In, where I = [a, b] ⊆ (0, ∞) and

x1 − ∑n
i=2 xi ∈ I. If f, g : ℝ+ ® ℝ are functions such that f, g Î C1(I) and mf a

p ≤ f(a) ≤

Mfa
p, mga

p ≤ g(a) ≤ Mga
p, where mf, Mf and mg, Mg are defined by (17) with corre-

sponding function f and g. Then there exists ξ Î I such that[
f (x1) −

n∑
i=2

f (xi) − f

(
x1 −

n∑
i=2

xi

)]
[ξg′(ξ) − (p − 1)g(ξ)]

=

[
g(x1) −

n∑
i=2

g(xi) − g

(
x1 −

n∑
i=2

xi

)]
[ξ f ′(ξ) − (p − 1)f (ξ)].

(22)

Remark 3.2. If p = 2, the conditions mf ≤ f (a)
ap ≤ Mf , mg ≤ g(a)

ap ≤ Mgcould be

removed, then Theorem 3.1 and Theorem 3.2 reduce to Theorem 3.13 and Theorem

3.14 of [9], respectively.

We conclude this section with a generalization of the mean value theorem obtained

in [18], which is a special case of the following theorem with k = 1. As given in [18],

this theorem is also a generalization of Theorem 3.1 with p = 2.

Theorem 3.3. Let (x1, x2, ..., xn) Î In, where I is a compact interval, pi, qi (i = 1, 2, ...,

n) be non-negative numbers such that
∑n

i=1 pixi ∈ Iand
∑n

i=1 pixi ≥ xj, j = 1, 2, ..., n. If f
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Î Ck(I), then there exists ξ Î I such that

n∑
j=1

qjf

(
n∑
i=1

pixi

)
−

n∑
j=1

qjf (xj)

=
k−1∑
ν=1

n∑
j=1

qj
f (ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν

+
f (k)(ξ)
k!

n∑
j=1

qj

(
n∑
i=1

pixi − xj

)k

.

(23)

Proof. Since I is compact and f Î Ck(I), there exist x̃, x̂ ∈ I such that

M := f (k)(x̃) = max
x∈I

f (k)(x), m := f (k)(x̂) = min
x∈I

f (k)(x). (24)

We define 2n auxiliary functions as follows

φj(x) =
M
k!
(x − xj)k +

k−1∑
ν=0

f (ν)(xj)

ν!
(x − xj)ν − f (x),

and

ψj(x) = f (x) −
k−1∑
ν=0

f (ν)(xj)

ν!
(x − xj)ν − m

k!
(x − xj)k,

for j = 1, 2, ..., n. Then we have

φ
′
j(x) =

M
(k − 1)!

(x − xj)k−1 +
k−1∑
ν=1

f (ν)(xj)

(ν − 1)!
(x − xj)ν−1 − f ′(x). (25)

Expanding f ’(x) at xj by the Taylor theorem, (25) can be rewritten as

φ
′
j(x) =

M − f (k)(η)
(k − 1)!

(x − xj)k−1,

where h Î I. Obviously, φ
′
j(x) ≥ 0 for x ≥ xj, j = 1, 2, ..., n, which means jj(x) is

increasing on x ≥ xj. Similarly, we can deduce that ψj(x) is increasing on x ≥ xj, j = 1,

2, ..., n. Thus, from the assumption we obtain

φj

(
n∑
i=1

pixi

)
≥ φj(xj), ψj

(
n∑
i=1

pixi

)
≥ ψj(xj), j = 1, 2, . . . , n.

Rearranging the terms yield

f

(
n∑
i=1

pixi

)
− f (xj) −

k−1∑
ν=0

f (ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν

≤ M
k!

(
n∑
i=1

pixi − xj

)k

,

and

f

(
n∑
i=1

pixi

)
− f (xj) −

k−1∑
ν=0

f (ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν

≥ m
k!

(
n∑
i=1

pixi − xj

)k

,
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for j = 1, 2, ..., n. Hence,

n∑
j=1

qj

[
f

(
n∑
i=1

pixi

)
− f (xj) −

k−1∑
ν=0

f (ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν]
≤ M

k!

n∑
j=1

qj

(
n∑
i=1

pixi − xj

)k

, (26)

and

n∑
j=1

qj

[
f

(
n∑
i=1

pixi

)
− f (xj) −

k−1∑
ν=0

f (ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν]
≥ m

k!

n∑
j=1

qj

(
n∑
i=1

pixi − xj

)k

. (27)

For f Î Ck(I) and

m
k!

n∑
j=1

qj

(
n∑
i=1

pixi − xj

)k

≤ f (k)(x)
k!

n∑
j=1

qj

(
n∑
i=1

pixi − xj

)k

≤ M
k!

n∑
j=1

qj

(
n∑
i=1

pixi − xj

)k

,

combining (26) and (27) immediately leads to (23). This completes the proof. □
Similarly, we present the Cauchy type mean value theorem of Theorem 3.3 below

without proof. This theorem reduce to the Cauchy type mean value theorem of [18]

with k = 1.

Theorem 3.4. Let (x1, x2, ..., xn) Î In, where I is a compact interval, pi, qi (i = 1, 2, ...,

n) be non-negative numbers such that
∑n

i=1 pixi ∈ I and
∑n

i=1 pixi ≥ xj, j = 1, 2, ..., n. If f,

g Î Ck(I), then there exists ξ Î I such that⎡
⎣ n∑

j=1

qjf

(
n∑
i=1

pixi

)
−

n∑
j=1

qjf (xj) −
k−1∑
ν=1

n∑
j=1

qj
f (ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν
⎤
⎦ g(k)(ξ)

=

⎡
⎣ n∑

j=1

qjg

(
n∑
i=1

pixi

)
−

n∑
j=1

qjg(xj) −
k−1∑
ν=1

n∑
j=1

qj
g(ν)(xj)

ν!

(
n∑
i=1

pixi − xj

)ν
⎤
⎦ f (k)(ξ).

(28)
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