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Abstract

In this article, we answer the question: For p, ω Î ℝ with ω >0 and p(ω - 2) ≠ 0,
what are the greatest value r1 = r1(p, ω) and the least value r2 = r2(p, ω) such that
the double inequality Mr1 (a, b) < Hp,ω (a, b) < Mr2 (a, b) holds for all a, b >0 with a
≠ b? Here Hp,ω(a, b) and Mr(a, b) denote the generalized Heronian mean and rth
power mean of two positive numbers a and b, respectively.
2010 Mathematics Subject Classification: 26E60.
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1 Introduction
In the recent past, the bivariate means have been the subject of intensive research. In

particular, many remarkable inequalities can be found in the literature [1-26].

The power mean Mr(a, b) of order r of two positive numbers a and b is defined by

Mr(a, b) =

⎧⎨
⎩

(
ar+br
2

)1/r
, r �= 0,√

ab, r = 0.
(1:1)

It is well-known that Mr(a, b) is continuous and strictly increasing with respect to r

Î ℝ for fixed a, b >0 with a ≠ b. Let A(a, b) = (a + b)/2, G(a, b) =
√
ab , H(a, b) =

2ab/(a + b), I(a, b) = 1/e(bb/aa)1/(b-a) (b ≠ a), I(a, b) = a (b = a), and L(a, b) = (b-a)/

(log b-log a) (b ≠ a), L(a, b) = a (b = a) be the arithmetic, geometric, harmonic, iden-

tric, and logarithmic means of two positive numbers a and b, respectively. Then

min{a, b} ≤ H(a, b) = M−1(a, b) ≤ G(a, b) = M0(a, b)

≤ L(a, b) ≤ I(a, b) ≤ A(a, b) = M1(a, b) ≤ max{a, b} (1:2)

for all a, b >0, and each inequality becomes equality if and only if a = b.

The classical Heronian mean He(a, b) of two positive numbers a and b is defined by

([27], see also [28])

He(a, b) =
2
3
A(a, b) +

1
3
G(a, b) =

a +
√
ab + b
3

. (1:3)

In [27], Alzer and Janous established the following sharp double inequality (see also

[[28], p. 350]):
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Mlog 2/ log 3(a, b) < He(a, b) < M2/3(a, b)

for all a, b >0 with a ≠ b.

Mao [29] proved that

M1/3(a, b) <
1
3
A(a, b) +

2
3
G(a, b) < M1/2(a, b)

for all a, b >0 with a ≠ b, and M1/3(a, b) is the best possible lower power mean

bound for the sum 1
3A(a, b) +

2
3G(a, b) .

For any a Î (0, 1), Janous [30] found the greatest value p and the least value q such

that Mp(a, b) < aA(a, b) + (1 - a)G(a, b) < Mq(a, b) for all a, b >0 with a ≠ b.

The following sharp bounds for L, I, (LI)1/2 and (L + I)/2 in terms of power mean are

given in [10,21-25,31,32]:

M0(a, b) < L(a, b) < M1/3(a, b),

M2/3(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) <
√
L(a, b)I(a, b) < M1/2(a, b),

Mlog 2/(1+log 2)(a, b) <
1
2
[L(a, b) + I(a, b)] < M1/2(a, b)

for all a, b >0 with a ≠ b.

In [6,7] the authors established the following sharp inequalities:

M−1/3(a, b) <
2
3
G(a, b) +

1
3
H(a, b) < M0(a, b),

M−2/3(a, b) <
1
3
G(a, b) +

2
3
H(a, b) < M0(a, b),

M0(a, b) < Aα(a, b)L1−α(a, b) < M(1+2α)/3(a, b),

M0(a, b) < Gα(a, b)L1−α(a, b) < M(1−α)/3(a, b)

for all for all a, b >0 with a ≠ b and a Î (0, 1).

For ω ≥ 0 and p Î ℝ the generalized Heronian mean Hp,ω(a, b) of two positive num-

bers a and b was introduced in [33] as follows:

Hp,ω(a, b) =

{
[ a

p+ω(ab)p/2+bp

ω+2 ]
1/p

, p �= 0,√
ab, p = 0.

(1:4)

It is not difficult to verify that Hp,ω(a, b) is continuous with respect to p Î ℝ for

fixed a, b >0 and ω ≥ 0, strictly increasing with respect to p Î ℝ for fixed a, b >0

with a ≠ b and ω ≥ 0, strictly decreasing with respect to ω ≥ 0 for fixed a, b >0 with

a ≠ b and p >0 and strictly increasing with respect to ω ≥ 0 for fixed a, b >0 with a ≠

b and p <0.

From (1.1) and (1.3) together with (1.4) we clearly see that Hp,0(a, b) = Mp(a, b),

Hp,2(a, b) = Mp
2
(a, b) , H0,ω(a, b) = M0(a, b) and H1,1(a, b) = He(a, b) for all a, b >0

and ω ≥ 0.

The purpose of this article is to answer the question: For p, ω Î ℝ with ω >0 and p

(ω - 2) ≠ 0, what are the greatest value r1 = r1(p, ω) and the least value r2 = r2(p, ω)
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such that the double inequality Mr1 (a, b) < Hp,ω(a, b) < Mr2 (a, b) holds for all a, b >0

with a ≠ b?

2 Main result
In order to establish our main results we need the following Lemma 2.1.

Lemma 2.1. (see [30]). (ω + 2)2 >2ω+2 for ω Î (0, 2), and (ω + 2)2 <2ω+2 for ω Î (2,

+∞).

Theorem 2.1. For all a, b >0 with a ≠ b we have

M 2
ω+2 p

(a, b) < Hp,ω(a, b) < M log 2
log(ω+2) p

(a, b)

for (p, ω) Î {(p, ω): p >0, ω >2} ∪ {(p, ω): p <0, 0 < ω <2} and

M 2
ω+2 p

(a, b) > Hp,ω(a, b) > M log 2
log(ω+2) p

(a, b)

for (p, ω) Î {(p, ω): p >0, 0 <ω <2} ∪ {(p, ω): p <0, ω >2}, and the parameters 2
ω+2p

and log 2
log(ω+2)p are the best possible in either case.

Proof. Without loss of generality, we can assume that a > b and put t = a
b > 1 .

Firstly, we compare the value of M 2
ω+2 p

(a, b) with that of Hp,ω(a, b). From (1.1) and

(1.4) we have

log[M 2
ω+2 p

(a, b)] − log[Hp,ω(a, b)]

=
ω + 2
2p

log
1 + t

2
ω+2 p

2
− 1

p
log

1 + ωt
p
2 + tp

ω + 2
.

(2:1)

Let

f (t) =
ω + 2
2p

log
1 + t

2p
2+ω

2
− 1

p
log

1 + ωt
p
2 + tp

ω + 2
. (2:2)

Then simple computations lead to

f (1) = 0, (2:3)

f ′(t) =
t
2p

ω+2 g(t)

2t(1 + t
2p

ω+2 )(1 + ωt
p
2 + tp)

,

g(t) = −2t
ωp
ω+2 + ωt

p
2 − ωt

ω−2
2(ω+2) p + 2,

(2:4)

g(1) = 0, (2:5)

g′(t) = ωpt
(ω−2)p
2(ω+2) −1

h(t), (2:6)
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h(t) = − 2
ω + 2

t
p
2 +

1
2
t
2p

ω+2 − ω − 2
2(ω + 2)

,

h(1) = 0,

(2:7)

h′(t) =
p

ω + 2
t

2p
ω+2−1[1 − t

(ω−2)p
2(ω+2) ]. (2:8)

We divide the comparison into two cases.

Case 1. If (p, ω) Î {(p, ω): p >0, ω >2} ∪ {(p, ω): p <0, 0 < ω <2}, then from (2.8) we

clearly see that

h′(t) < 0 (2:9)

for t >1.

Therefore, M 2
ω+2 p

(a, b) < Hp,ω(a, b) follows from (2.1)-(2.7) and (2.9).

Case 2. If (p, ω) Î {(p, ω): p >0, 0 < ω <2} ∪ {(p, ω): p <0, ω >2}, then (2.8) leads to

h′(t) > 0 (2:10)

for t >1.

Therefore, M 2
ω+2 p

(a, b) > Hp,ω(a, b) follows from (2.1)-(2.7) and (2.10).

Secondly, we compare the value of M log 2
log(ω+2) p

(a, b) with that of Hp,ω(a, b). From

(1.1) and (1.4) we have

log[M log 2
log(ω+2) p

(a, b)] − log[Hp,ω(a, b)]

=
log(ω + 2)
p log 2

log
1 + t

log 2
log(ω+2) p

2
− 1

p
log

1 + ωt
p
2 + tp

ω + 2
.

(2:11)

Let

F(t) =
log(ω + 2)
p log 2

log
1 + t

log 2
log(ω+2) p

2
− 1

p
log

1 + ωt
p
2 + tp

ω + 2
. (2:12)

Then simple computations lead to

F(1) = lim
t→+∞ F(t) = 0, (2:13)

F′(t) =
t

log 2
log(ω+2) pG(t)

t(1 + t
log 2

log(ω+2) p)(1 + ωt
p
2 + tp)

, (2:14)

G(t) = −t
(1− log 2

log(ω+2) )p +
ω

2
t
p
2 − ω

2
t
1
2
(1− 2 log 2

log(ω+2) )p

+ 1, (2:15)

G(1) = 0, (2:16)
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G′(t) = pt
1
2 (1− 2 log 2

log(ω+2) )p−1
H(t), (2:17)

H(t) = (
log 2

log(ω + 2)
− 1)t

p
2 +

ω

4
t

log 2
log(ω+2) p − ω

4
(1 − 2 log 2

log(ω + 2)
), (2:18)

H(1) =
(ω + 2) log 2
2 log(ω + 2)

− 1, (2:19)

H′(t) =
log 2 − log(ω + 2)

2 log(ω + 2)
p[t

1
2 (1− 2 log 2

log(ω+2) )p − ω log 2
2(log(ω + 2) − log 2)

]

× t
log 2

log(ω+2) p−1
.

(2:20)

We divide the comparison into four cases.

Case A. If p >0 and ω >2, then from (2.15) and (2.18)-(2.20) together with Lemma

2.1 we clearly see that

lim
t→+∞G(t) = −∞, (2:21)

lim
t→+∞H(t) = −∞, (2:22)

H(1) > 0, (2:23)

and there exists a1 >1 such that

H′(t) > 0 (2:24)

for t Î [1, a1) and

H′(t) < 0 (2:25)

for t Î (a1, +∞).

From (2.24) and (2.25) we know that H(t) is strictly increasing in [1, a1] and strictly

decreasing in [a1, +∞). Then (2.22) and (2.23) together with the monotonicity of H(t)

imply that there exists a2 >1 such that H(t) >0 for t Î [1, a2) and H(t) <0 for t Î (a2,

+∞). It follows from (2.17) that G(t) is strictly increasing in [1, a2] and strictly decreas-

ing in [a2, +∞).

From (2.16) and (2.21) together with the monotonicity of G(t) we know that there

exists a3 >1 such that G(t) >0 for t Î (1, a3) and G(t) <0 for t Î (a3, +∞). Then (2.14)

leads to that F (t) is strictly increasing in [1, a3] and strictly decreasing in [a3, +∞).

Therefore, M log 2
log(ω+2)

(a, b) > Hp,ω(a, b) follows from (2.11)-(2.13) and the monotoni-

city of F (t).

Case B. If p >0 and 0 < ω <2, then (2.15) and (2.18)-(2.20) together with Lemma 2.1

lead to

lim
t→+∞G(t) = +∞, (2:26)
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lim
t→+∞H(t) = +∞, (2:27)

H(1) < 0, (2:28)

and there exists b1 >1 such that

H′(t) < 0 (2:29)

for t Î [1, b1) and

H′(t) > 0 (2:30)

for t Î (b1, +∞).

From (2.27)-(2.30) we clearly see that there exists b2 >1 such that H(t) <0 for t Î [1,

b2) and H(t) >0 for t Î (b2, +∞). Then (2.17) implies that G(t) is strictly decreasing in

[1, b2] and strictly increasing in [b2, +∞). It follows from (2.16) and (2.26) together

with the monotonicity of G(t) that there exists b3 >1 such that G(t) <0 for t Î (1, b3)

and G(t) >0 for t Î (b3, +∞). Then (2.14) leads to that F(t) is strictly decreasing in [1,

b3] and strictly increasing in [b3, +∞).

Therefore, M log 2
log(ω+2)

(a, b) < Hp,ω(a, b) follows from (2.11)-(2.13) and the monotoni-

city of F (t).

Case C. If p <0 and ω >2, then it follows from (2.15) and (2.18)-(2.20) together with

Lemma 2.1 that

lim
t→+∞G(t) = 1, (2:31)

lim
t→+∞H(t) =

ω

4
(

2 log 2
log(ω + 2)

− 1) < 0, (2:32)

H(1) > 0, (2:33)

H′(t) < 0 (2:34)

for t Î [1, +∞).

From (2.32)-(2.34) we clearly see that there exists c1 >1 such that H(t) >0 for t Î [1,

c1) and H(t) <0 for t Î (c1, +∞). Then (2.17) implies that G(t) is strictly decreasing in

[1, c1] and strictly increasing in [c1, +∞).

It follows from (2.16) and (2.31) together with the monotonicity of G(t) that there

exists c2 >1 such that G(t) <0 for t Î (1, c2) and G(t) >0 for t Î (c2, +∞). Then (2.14)

leads to that F (t) is strictly decreasing in [1, c2] and strictly increasing in [c2, +∞).

Therefore, M log 2
log(ω+2)

(a, b) < Hp,ω(a, b) follows from (2.11)-(2.13) and the monotoni-

city of F (t).

Case D. If p <0 and 0 < ω <2, then (2.15) and (2.18)-(2.20) together with Lemma 2.1

lead to

lim
t→+∞G(t) = −∞, (2:35)
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lim
t→+∞H(t) =

ω

4
(

2 log 2
log(ω + 2)

− 1) > 0, (2:36)

H(1) < 0, (2:37)

H′(t) > 0 (2:38)

for t >1.

From (2.17) and (2.36)-(2.38) we clearly see that there exists d1 >1 such that G(t) is

strictly increasing in [1, d1] and strictly decreasing in [d1, +∞). It follows from (2.14),

(2.16), (2.35) and the monotonicity of G(t) that there exists d2 >1 such that F (t) is

strictly increasing in [1, d2] and strictly decreasing in [d2, +∞).

Therefore, M log 2
log(ω+2)

(a, b) > Hp,ω(a, b) follows from (2.11)-(2.13) and the monotoni-

city of F(t).

Thirdly, we prove that the parameter 2
ω+2p is the best possible in either case.

For any p, r Î ℝ with pr ≠ 0, ω ≥ 0 and x >0, one has

log[Mr(1, 1 + x)] − log[Hp,ω(1, 1 + x)]

=
1
r
log

1 + (1 + x)r

2
− 1

p
log

1 + ω(1 + x)
p
2 + (1 + x)p

ω + 2
.

(2:39)

Let x ® 0, then the Taylor expansion leads to

1
r
log

1 + (1 + x)r

2
− 1

p
log

1 + ω(1 + x)
p
2 + (1 + x)p

ω + 2

=
(ω + 2)r − 2p

4(ω + 2)
x2 + o(x2).

(2:40)

If (p, ω) Î{(p, ω): p >0, ω >2} ∪ {(p, ω): p <0, 0 < ω <2}, then equations (2.39) and

(2.40) imply that for any r > 2
ω+2p there exists δ1 = δ1(r, p, ω) >0 such that Mr(1, 1 +

x) > Hp,ω(1, 1 + x) for x Î (0, δ1).

If (p, ω) {(p, ω): p >0, 0 < ω <2} ∪ {(p, ω): p <0, ω >2}, then from (2.39) and (2.40)

we know that for any r > 2
ω+2p there exists δ2 = δ2(r, p, ω) >0 such that Mr(1, 1 + x)

< Hp, ω(1, 1 + x) for x Î (0, δ2).

Finally, we prove that the parameter log 2
log(ω+2)p is the optimal parameter in either case.

For any p, r Î ℝ with pr >0, ω ≥ 0 and x >0 we have

lim
x→+∞[logMr(1, x) − logHp,ω(1, x)]

=
1
p
log(ω + 2) − 1

r
log 2.

(2:41)

If (p, ω) Î {(p, ω): p >0, ω >2} ∪ {(p, ω): p <0, 0 < ω <2}, then equation (2.41)

implies that for any r <
log 2

log(ω+2)p there exists X1 = X1(r, p, ω) >1 such that Mr(1, x) <

Hp, ω(1, x) for x Î (X1, +∞).
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If (p, ω) ω Î {(p, ω): p >0, 0 < ω <2} ∪ {(p, ω): p <0, ω >2}, then equation (2.41)

leads to that for any r >
log 2

log(ω+2)p there exists X2 = X2(r, p, ω) >1 such that Mr(1, x) >

Hp, ω(1, x) for x Î (X2, +∞).
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