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Abstract

In this article, we have obtained necessary and sufficient conditions in terms of
canonical structure F on a semi-invariant submanifold of an almost contact manifold
under which the submanifold reduced to semi-invariant warped product
submanifold. Moreover, we have proved an inequality for squared norm of second
fundamental form and finally, an estimate for the second fundamental form of a
semi-invariant warped product submanifold in a generalized Sasakian space form is
obtained, which extend the results of Chen, Al-Luhaibi et al., and Hesigawa and
Mihai in a more general setting.
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1 Introduction
Bishop and O’Neil [1] introduced the notion of warped product manifolds. These mani-

folds are generalization of Riemannian product manifolds and occur naturally, e.g., sur-

face of revolution is a warped product manifold. With regard to physical applications of

these manifolds, one may realize that space time around a massive star or a black hole

can be modeled on a warped product manifolds for instance and warped product mani-

folds are widely used in differential geometry, Physics and as well as in different

branches of Engineering. Due to wide applications of warped product submanifolds, this

becomes a fascinating and interesting topic for research, and many articles are available

in literature (c.f., [2-4]). CR-warped product was introduced by Chen [5]. He studied

warped products CR-submanifolds in the setting of Kaehler manifolds and showed that

there does not exist warped product CR-submanifolds of the form M⊥ ×f MT, therefore,

he considered warped product CR-submanifolds of the types MT ×f M⊥ and established

a relationship between the warping function f and the squared norm of the second fun-

damental form of the CR-warped product submanifolds in Kaehler manifolds [5]. In the

available literature, many geometers have studied warped products in the setting of

almost contact metric manifolds (c.f., [6-8]). Hesigawa and Mihai [9] obtained the

inequality for squared norm of the second fundamental form in term of the warping

function for contact CR-warped product in Sasakian manifolds. Recently Atceken [4]

studied contact CR-warped product submanifolds in Cosymplectic space-forms and

obtained an inequality for second fundamental form in terms of warping function. After

reviewing the literature, we realized that there is very few studies on the warped product
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submanifold for almsot contact manifolds so it will be worthwhile to study the warped

product submnifolds in the setting of almost contact metric manifold. Since generalized

Sasakian space forms include all the classes of almost contact metric manifold, so we

have obtained an inequality for squared norm of second fundamental form for semi-

invariant warped product submanifolds in the setting of generalized Sasakian space

form.

2 Preliminaries
Let M̄ be a (2n + 1)-dimensional C∞-differentiable manifold endowed with the almost

contact metric structure (j, ξ, h, g), where j is a tensor field of type (1, 1), ξ is a vector

field, h is a 1-form and g is a Riemannian metric on M̄ , all these tensor fields satisfy-

ing.

φ2X = −X + η(X)ξ , η(ξ) = 1, g(X, ξ) = η(X) (2:1)

g(φX,φY) = g(X,Y) − η(X)η(Y) (2:2)

φξ = 0, ηφ = 0, g(X,φY) = −g(φX,Y), (2:3)

for any X,Y ∈ TM̄ . Here, TM̄ is the standard notation for the tangent bundle of M̄ .

The two-form F denotes the fundamental two-form and is given by g(X, jY) = F(X, Y).

The manifold M̄ is said to be contact if F = dh.
Most of the geometric properties of a Riemannian manifold depend on the curvature

tensor R of a manifold. It is well known that the sectional curvatures of a manifold

determine curvature tensor completely. A Riemannian manifold with constant sectional

curvature c is known as real space form and its curvature tensor is given by

R(X,Y)Z = c{g(Y,Z)X − g(X,Z)Y}.

A Sasakian manifold with constant j-sectional curvatures is a Sasakian space form

and it has a specific form of its curvature tensor. Similar notion also holds for Ken-

motsu and Cosymplectic space form. In order to generalize the notion in a common

frame, Alegere et al. [10] introduced the notion of generalized Sasakian space form. In

this connection, a generalized Sasakian space form is defined as follows.

Given an almost contact metric manifold M̄(φ, ξ , η, g) , we say that M̄ is a general-

ized Sasakian space form if there exist three functions f1, f2, and f3 on M̄ such that,

the curvature tensor R is given by

R(X,Y)Z = f1{g(Y,Z)X − g(X,Z)Y}
+f2{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ}

+f3
{
η(X)η(Z)Y − η(Y)η(Z)X

+ g(X,Z)η(Y)ξ − g(Y,Z)η(X)ξ
}
.

(2:4)

Let M be a submanifold of an almost contact metric manifold M̄ . Then we denote

the induced metric on M by the same symbol g where as the induced connection on

M by ∇. With these notation, Gauss and Weingarten formulae are written as

∇̄XY = ∇XY + h(X,Y) (2:5)
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∇̄XN = −ANX + ∇⊥
X N, (2:6)

for each X, Y Î TM and N Î T⊥M, where ∇⊥ denotes the induced connection on the

normal bundle T⊥M. h and AN are the second fundamental form and the shape opera-

tor of the immersion of M into M̄ and they are related as

g(h(X,Y),N) = g(ANX,Y). (2:7)

For any X Î TM and N Î T⊥M, we write

φX = TX + FX (2:8)

φN = tN + fN, (2:9)

where TX and tN are the tangential components of jX and jN, respectively, where
as FX and fN are the normal components of jX and jN, respectively.
The covariant derivative of the tensors T, F, t, and f are defined as

(∇̄XT)Y = ∇XTY − T∇XY (2:10)

(∇̄XF)Y = ∇⊥
X FY − F∇XY (2:11)

(∇̄Xt)N = ∇XtN − t∇⊥
X N (2:12)

(∇̄Xf )N = ∇⊥
X fN − f∇⊥

X N. (2:13)

On the other hand, the covariant derivative of the second fundamental form h is

defined as

(∇̄Xh)(Y,Z) = ∇⊥h(Y,Z) − h(∇XY,Z) − h(Y,∇XZ), (2:14)

for any X, Y, Z Î TM. Let R̄ and R be the curvature tensors of the connections ∇̄
and ∇ on M̄ and M, respectively. Then the equations of Gauss and Coddazi are given

by

R̄(X,Y,Z,W) = R(X,Y,Z,W) − g(h(X,Z), h(Y,W))

+ g(h(X,W), h(Y,Z))
(2:15)

[R̄(X,Y)Z]⊥ = (∇̄Xh)(Y,Z) − (∇̄Yh)(X,Z). (2:16)

A submanifold M of M̄ is said to be semi-invariant submanifold if there exist on M,

a differentiable invariant distribution D such that its orthogonal complementary distri-

bution D⊥ is anti-invariant, i.e., jDx Î TxM and φD⊥
x ⊂ T⊥

x M for each x Î M. For a

semi-invariant submanifold of an almost contact metric manifold M̄ , we have

TM = D ⊕ D⊥ ⊕ 〈ξ〉. (2:17)

The structure vector field ξ is tangential to submanifold M, otherwise the submani-

fold is simply anti-invariant.
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T⊥M = φD⊥ ⊕ μ, (2:18)

where μ denotes the orthogonal complemantry distribution of jD⊥ and is an invar-

iant normal subbundle of T⊥M under j.
The orthogonal projection on TM of a semi-invariant submanifold M of an almost

contact metric manifold are denoted by P1 and P2, i.e., for any X Î TM we have

X = P1X + P2X + η(X)ξ , (2:19)

where P1X Î D, P2X Î D⊥ and h(X)ξ Î 〈ξ〉. It follows immediately that

(a)TP2 = 0; (b)FP1 = 0; (c)t(T⊥M) = D⊥; (d)f T⊥M ⊆ μ. (2:20)

Moreover, for any X, Y Î TM if we denote by PXY and QXY , the tangential and

normal parts of (∇̄Xφ)Y , then we have

(∇̄Xφ)Y = PXY +QXY (2:21)

and on using Equations (2.5)-(2.11), we obtain

PXY = (∇̄XT)Y − AFYX − th(X,Y) (2:22)

QXY = (∇̄XF)Y + h(X,TY) − fh(X,Y). (2:23)

Definition 2.1 A semi-invariant submanifold M of an almost contact metric mani-

fold is semi-invariant product if the distributions are involutive and their leaves are

totally geodesic in M.

Definition 2.2 Let (B, gB) and (F, gF) be two Riemannian manifolds with Riemannian

metric gB and gF, respectively, and f be a positive differentiable function on B. The

warped product of B and F is the Riemannian manifold (B × F, g), where

g = gB + f 2gF.

For a warped product manifold N1 ×f N2, we denote by D1 and D2 the distributions

defined by the vectors tangent to the leaves and fibers, respectively. In other words, D1

is obtained by the tangent vectors of N1 via the horizontal lift and D2 is obtained by

the tangent vectors of N2 via vertical lift. In case of semi-invariant warped product

submanifolds D1 and D2 are replaced by D and D⊥, respectively.

The warped product manifold (B × F, g) is denoted by B ×f F. If X is the tangent

vector field to M = B ×f F at (p, q) then

‖X‖2 = ‖dπ1X‖2 + f 2(p)‖dπ2X‖2.

Bishop and O’Neill [1] proved the following

Theorem 2.1 Let M = B×f F be warped product manifolds. If X, Y Î TB and V, W Î TF

then

(i) ∇XY Î TB

(ii) ∇XV = ∇VX =
(
Xf
f

)
V ,

(iii) ∇VW = −g(V,W)
f ∇f .
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∇f is the gradient of f and is defined as

g(∇f ,X) = Xf , (2:24)

for all X Î TM.

Corollary 2.1 On a warped product manifold M = N1 ×f N2, the following state-

ments hold

(i) N1 is totally geodesic in M

(ii) N2 is totally umbilical in M.

Moreover,

∇XZ = ∇ZX = (X ln f )Z (2:25)

and

nor(∇ZW) =
−g(Z,W)

f
∇f (2:26)

for any X Î D1 and Z, W Î D2, where nor(∇ZW) denotes the component of ∇ZW in

D1 and ∇f denotes the gradient of f.

3 Semi-invariant warped product submanifolds
Chen [11] obtained various conditions under which a CR-submanifolds reduces to a

CR-product. In particular, he proved that a CR-submanifold of a Kaehler manifold is a

CR-product if and only if ∇̄P = 0 . Since, warped products are the generalization of

Riemannian products by taking this point Khan et al. [8] proved a characterization of

CR-warped product of a Kaehler manifold in terms of P and F after that Al-Luhaibi et

al. [7] find charactraziation of CR-warped of nearly Kaehler manifolds in terms of

P and F. In this section, we have obtained necessary and sufficient condition in terms

of F, for which a semi-invariant submanifolds is a semi-invariant warped product sub-

manifold in the setting of almost contact metric manifolds.

Throughout, this section, we denote NT and N⊥ the invariant and anti-invariant sub-

manifolds, respectively, of an almost contact metric manifold M̄ . Warped product

semi-invariant and semi-invariant warped product submanifolds of an almost contact

metric manifold M̄ are represented by N⊥ ×f NT and NT ×f N⊥ and we take NT tangen-

tial to ξ.

In terms of canonical structure F, we have the following charectrization.

Theorem 3.1 A semi-invariant submanifold M with involutive distributions D ⊕ 〈ξ〉

and D⊥ of an almost contact metric manifold with QDD⊥ ∈ μ . Then M is a semi-

invariant warped product submanifold of M̄ if and only if

g((∇̄UF)V,φW) = − (P1Vμ)g(P2U,W) + g(QP2UP2V,φW)

+ η(U)g(QξP2V,φW) + η(V)g(QP2Uξ ,φW),
(3:1)

for each U, V Î TM and μ a C∞ function on M satisfying Zμ = 0 for each Z Î D⊥.

Proof. Let M be a semi-invariant warped product submanifold NT ×f N⊥, then, by

Equation (2.11), we have
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g((∇̄XF)Y,φW) = −g(∇XY,W),

for any X, Y Î D and W Î D⊥. As NT is totally geodesic in M, we get

g((∇̄XF)Y,φW) = 0. (3:2)

On other hand, for any X Î D, Z, W Î D⊥ by Equation (2.23)

g((∇̄XF)Z,φW) = g(QXZ,φW).

By the assumption that QDD⊥ ∈ μ , the above equation gives

g((∇̄XF)Z,φW) = 0. (3:3)

As ξ is tangential to NT, for any X Î D and Z, W Î D⊥, by Equations (2.11) and

(2.25) we have

g((∇̄ZF)X,φW) = −X ln fg(Z,W). (3:4)

Similarly, for any Z, W, W’ Î D⊥, by Equation (2.11) we have

g((∇̄ZF)W ′,φW) = g(QZW
′,φW). (3:5)

Moreover, for any X Î D, W Î D⊥ and ξ Î 〈ξ〉, by Equations (2.23) and (2.25), it is

easy to see that

g((∇̄ZF)ξ ,φW) = g(QZξ ,φW). (3:6)

g((∇̄ξF)Z,φW) = g(QξZ,φW). (3:7)

Since ξ is tangential to NT, then from Equations (2.11) and (2.25), we can prove the

following

g((∇̄ξF)X,φW) = 0. (3:8)

g((∇̄XF)ξ ,φW) = 0. (3:9)

g((∇̄ξF)ξ ,φW) = 0. (3:10)

For any U, V Î TM with the help of Equation (2.19), we have

g((∇̄UF)V,φW) =g((∇̄P1UF)P1V,φW) + g((∇̄P1UF)P2V,φW) + g((∇̄P2UF)P1V,φW)

+ g((∇̄P2UF)P2V,φW) + η(V)g((∇̄P1UF)ξ ,φW)

+ η(V)g((∇̄P2UF)ξ ,φW) + η(U)g((∇̄ξF)P1V,φW)

+ η(U)g((∇̄ξF)P2V,φW) + η(U)η(V)g((∇̄ξF)ξ ,φW).

In view of Equations (3.2)-(3.10), the above equation reduced to Equation (3.1).

Conversely, suppose that M be a semi-invariant submanifold, satisfying Equation

(3.1). Then for any X, Y Î D ⊕ 〈ξ〉 by Equation (3.1), we have

g((∇̄XF)Y,φW) = 0,
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therefore, by Equation (2.11) the above equation yields g(∇XY, W) = 0, this mean

leaves of D ⊕ 〈ξ〉 are totally geodesic in M.

Now, for any Z, W Î D⊥, by Equation (3.1), we get

g((∇̄ZF)X,φW) = −(Xμ)g(Z,W),

or

g(∇ZW,X) = −(Xμ)g(Z,W).

Let N⊥ be a leaf of D⊥. If ∇’ denotes the induced connection on N⊥ and h’ be the sec-

ond fundamental form of the immersion of N⊥ of M, then by Gauss formula

g(X,∇′
ZW + h′(Z,W)) = −(Xμ)g(Z,W)

or

g(X, h′(Z,W)) = −g(X,∇μ)g(Z,W)

or

h′(Z,W) = −∇μg(Z,W),

this shows that N⊥ is totally umbilical in M with mean curvature vector ∇μ. More-

over, as Wμ = 0 for all W Î D⊥ and the mean curvature is parallel on N⊥, this shows

that N⊥ is extrinsic sphere. Hence, by virtue of result of [12] which says that if the tan-

gent bundle of a Riemannian manifold M splits into an orthogonal sum TM = E0 ⊕ E1
of nontrivial vector subbundles such that E1 is spherical and its orthogonal comple-

ment E0 is auto parallel, then the, manifold M is locally isometric to a warped product

M0 ×f M1, we can say M is a locally semi-invariant product submanifold NT ×f N⊥,

where warping function f = eμ.

Let M = NT ×f N⊥ be a semi-invariant warped product submanifold of an almost

contact metric manifold M̄ .

In view of decomposition (2.18), we may write

h(U,V) = hφD⊥(U,V) + hμ(U,V), (3:11)

for each U, V Î TM, where hφD⊥(U,V) ∈ φD⊥ and hμ(U, V) Î μ.

If {e1, e2,..., en} be a local orthonormal frame of vector fields on M then we define

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

and for differentiable function f on M, the Laplacian Δf of f is defined as

�f =
n∑
j=1

{ej(ejf ) − ∇ejejf }. (3:12)

Now we have the following proposition

Proposition 3.1 Let M be a semi-invariant warped product submanofold NT ×f N⊥ of

an almost contact metric manifold of M̄ . Then
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(i) hφD⊥(φX,Z) = (X ln f )φZ + φPZφX

(ii) g(QZX,φW) = g(PZφX,W)

(iii) g
(
h(φX,Z,φh(X,Z)) =

∥∥hμ(X,Z)
∥∥2 − g(QXZ,φhμ(X,Z)) , for any X Î TNT

and Z, W Î TN⊥.

Proof. By Gauss formula

h(φX,Z) = (∇̄Zφ)X + φ∇ZX + φh(X,Z) − ∇ZφX,

using the decomposition (2.21) and Equation (2.25), we get

h(φX,Z) = PZX +QZX + (X ln f )φZ + φh(X,Z) − (φX ln f )Z.

Comparing tangential parts in above equation

PZX = (φX ln f )Z − φhφD⊥(X,Z),

taking inner product with W Î D⊥ on both side, we get

g(h(X,Z),φW) = −φX ln fg(Z,W) + g(PZX,W),

or equivalently

hφD⊥(X,Z) = (−φX ln f )φZ + φPZX, (3:13)

or

hφD⊥(φX,Z) = (X ln f )φZ + φPZφX,

which proves the part (i) of proposition.

Now, on comparing the normal parts

h(φX,Z) = QZX + X ln fφZ + φhμ(X,Z),

or

h(φX,Z) − φhμ(X,Z) = QZX + (X ln f )φZ, (3:14)

taking inner product with jW and using Equation (3.17), we get

g(QZX,φW) = g(PZφX,W).

Taking inner product with jh(X, Z) in Equation (3.14), we find

g(h(φX,Z),φh(X,Z)) =
∥∥hμ(X,Z)

∥∥2 − g(QXZ,φhμ(X,Z)),

which is the part (iii) of proposition.

For semi-invariant warped product submaniolds of an almost conatct metric mani-

fold, we have the following theorem

Theorem 3.2 Let M = NT ×f N⊥ be a semi-invariant warped product submanifold of

an almost contact manifold M̄ with PD⊥D ∈ D , then

(i) The squared norm of the second fundamental form satisfies

‖h‖2 ≥ 2q
∥∥∇ ln f

∥∥2 + ∥∥PD⊥D
∥∥2, (3:15)
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where ∇ ln f is the gradient of ln f and q is the dimension of anti-invariant

distribution.

(ii) If the equality sign in (3.15) holds identically, then NT is totally geodesic sub-

manifolds of M̄ , N⊥ is a totally umbilical submanifold of M̄ , M is minimal and

h(D ⊕ D⊥, ξ) = 0.

Proof. Let {X0 = ξ, X1, X2,..., Xp, Xp+1 = jX1,..., X2p = jXp} be a local orthonormal

frame of vector field on NT and {Z1, Z2,..., Zq} be a local orthonormal frame of vector

field on N⊥. Then by definition of squared norm of mean curvature vector

‖h‖2 =
2p∑
i,j=1

g(h(Xi,Xj), h(Xi,Xj)) +
2p∑
i=1

q∑
r=1

g(h(Xi,Zr), h(Xi,Zr))

+
q∑

r,s=1

g(h(Zr ,Zs), h(Zr ,Zs))

+
2p∑
i=1

g(h(Xi, ξ), h(Xi, ξ))

+
q∑

r=1

g(h(Zr , ξ), h(Zr , ξ)).

(3:16)

Thus,

‖h‖2 ≥
2p∑
i=1

q∑
r=1

g(h(Xi,Zr), h(Xi,Zr)).

On using part (i) of Proposition (3.1) with assumption PD⊥D ∈ D , then the above

inequality takes the form

‖h‖2 ≥
2p∑
i=1

q∑
r=1

((
φXi ln f

)2
g(Zr ,Zr) +

∥∥PZrXi
∥∥2.

Using
∑2p

i=1

∑q
r=1

∥∥PZrXi
∥∥2

=
∥∥PD⊥D

∥∥2 , the above inequality can be represented as

‖h‖2 ≥ 2q
∥∥∇ ln f

∥∥2 + ∥∥PD⊥D
∥∥2,

which proves the part (i) of the Theorem.

Finally, if equality holds identically then from Equation (3.16), h(D, D) = 0, h(D⊥, D⊥) = 0,

h(D, D⊥) ⊆ jD⊥, and h(D ⊕ D⊥, ξ) = 0. These observations proves the part (ii) of theorem.

4 Semi-invariant warped product submanifolds of a generalized Sasakian
space-form
Hesigawa and Mihai [9] obtained the inequality for squared norm of second funda-

mental form for contact CR-warped product submanifolds in the setting of Sasakian

space form. In the available literature, similar estimates are proved for squared norm

of second fundamental form in contact manifolds (c.f., [3,4]). Since generalized

Sasakian space form include the class of all almost contact metric manifold, so in this

section we will obtain an estimate for the squared norm of second fundamental form
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for semi-invariant warped product submani-folds in the setting of generalized Sasakian

space form.

Theorem 4.1 Let M = NT ×f N⊥ be a semi-invariant warped product submanifold of

a generalized Sasakian space form with PD⊥D ∈ D . Then we have

‖h‖2 ≥ 2q
{
f2p +

1
2

� ln f +
∥∥∇ ln f

∥∥2
}

Proof. For X Î D and Z Î D⊥, by formula (2.4) we have

R̄(X,φX,Z,φZ) = −2f2g(X,X)g(Z,Z). (4:1)

On the other hand by Coddazi equation

R̄(X,φX,Z,φZ) =g(∇⊥
X h(φX,Z),φZ) − g(h(∇φXX,Z),φZ)

− g(h(φX,∇XZ),φZ) − g(∇⊥
φXh(X,Z),φZ)

+ g
(
h(∇φXX,φZ) + g(h(X,∇φXZ),φZ).

(4:2)

Now,

g(∇⊥
X h(φX,Z),φZ) = Xg(h(φX,Z),φZ) − g(h(φX,Z), ∇̄XφZ). (4:3)

The first term in the right-hand side of Equation (4.3) on using Equation (2.25),

decomposition (2.25) and part (ii) of Proposition (3.1) becomes,

Xg(h(φX,Z),φZ) = Xg(X ln fφZ,φZ) + Xg(PZφX,Z).

In view of assumption PD⊥D ∈ D , the above equation gives

Xg(h(φX,Z),φZ) = (X(X ln f ) + 2(X ln f )2)g(Z,Z). (4:4)

Where as, the second term of Equation (4.3) with the help of Equations (2.5) and

(2.25) can be written as

g(h(φX,Z), ∇̄XφZ) =g(h(φX,Z),QXZ) + X ln fg(h(φX,Z),φZ)

+ g(h(φX,Z),φh(X,Z)).

By (i) and (ii) parts of Proposition 3.1, the above equation becomes

g(h(φX,Z), ∇̄XφZ) = g(h(φX,Z) − φh(X,Z),QXZ) + (X ln f )2‖Z‖2 + ∥∥hμ(X,Z)
∥∥2.

Applying Equation (3.14), (i) and (ii) parts of Proposition 3.1, we get

g(h(φX,Z), ∇̄XφZ) = (X ln f )2‖Z‖2 + ∥∥hμ(X,Z)
∥∥2 − ‖QXZ‖2. (4:5)

On substituting Equations (4.4) and (4.5) in Equation (4.3), we find

g(∇⊥
X h(φX,Z),φZ) =(X(X ln f ) + (X ln f )2)g(Z,Z)

+ ‖QXZ‖2 − ∥∥hμ(X,Z)
∥∥2. (4:6)

Similarly, we obtain

g(∇⊥
φXh(φX,Z),φZ) =(φX(φX ln f ) + (φX ln f )2)g(Z,Z)

+
∥∥QφXZ

∥∥2 − ∥∥hμ(X,Z)
∥∥2.

(4:7)
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By formula (2.25) and part (i) of Proposition 3.1, we have

g(h(φX,∇XZ),φZ) = (X ln f )2g(Z,Z) (4:8)

and

g(h(X,∇XZ),φZ) = −(φX ln f )2g(Z,Z). (4:9)

On using (i) and (ii) parts of Proposition 3.1 and the fact NT is totally geodesic, we

have

g(h(∇φXX,Z),φZ) = − (
φ∇φXX(ln f )g(Z,Z)

and

g(h(∇XφX,Z),φZ) = − (
φ∇XφX(ln f )g(Z,Z) .

The right-hand side of above equation, on making use of the fact that NT is totally

geodesic in M and the formula (2.25) reduced to -g(∇Zj∇XjX, Z), thus by using Gauss

formula, we find

g(h(∇XφX,Z),φZ) =((∇XX) ln f )g(Z,Z) + ((∇φXφX) ln f )g(Z,Z)

− (φ∇φXX ln f )g(Z,Z)
(4:10)

Let {X0 = ξ, X1, X2,..., Xp, Xp+1 = jX1,..., X2p = Xp} and {Z1, Z2,..., Zq} be a local ortho-

normal frame of vector fields on NT and N⊥, respectively. Choosing X, Z as basic

vector fields and substituting from Equations (4.3)-(4.10) into Equation (4.2), we obtain

R̄(Xi,φXi,Zr ,φZr) =Xi(Xi ln f )g(Zr ,Zr) + φXi(φXi ln f )g(Zr ,Zr)

− (
(∇XiXi) ln f + (∇φXiφXi) ln fg(Zr ,Zr) +

∥∥QXiZr
∥∥2

+
∥∥QφXiZr

∥∥2 − ∥∥hμ (Xi,Zr
∥∥2 − ∥∥hμ(φXi,Zr)

∥∥2.
Summing both side over i = 1, 2,..., p, r = 1, 2,..., q and making use of Equation (4.1),

we obtain

∥∥hμ(D,D⊥)
∥∥2 =

∥∥QDD
⊥∥∥2 + 2f2pq + q� ln f . (4:11)

Here we use

∥∥QDD
⊥∥∥2 =

2p∑
i=0

q∑
r=1

∥∥QXiZr
∥∥2,

∥∥hμ(D,D⊥)
∥∥2 =

2p∑
i=0

q∑
r=1

∥∥hμ(Xi,Zr)
∥∥2.

Finally, on the same line of the proof of Equation (3.15), we can prove

∥∥hφD⊥(D,D⊥)
∥∥2 = 2q

∥∥∇ ln f
∥∥2 +

∥∥PD⊥D
∥∥2. (4:12)

The result follows immideatly from Equations (4.11) and (4.12).

Al-Solamy and Khan Journal of Inequalities and Applications 2012, 2012:127
http://www.journalofinequalitiesandapplications.com/content/2012/1/127

Page 11 of 12



Acknowledgements
Authors are thankful to the referee for his valuable suggestion and comments. This work is supported by the
Research Grant number 0136-1432-S, Deanship of Scientific research, University of Tabuk, K.S.A.

Author details
1Department of Mathematics, King Abdulaziz University, P.O. Box 80015, Jeddah 21589, Kingdom of Saudi Arabia
2Department of Mathematics, University of Tabuk, Tabuk, Kingdom of Saudi Arabia

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 December 2011 Accepted: 7 June 2012 Published: 7 June 2012

References
1. Bishop, RL, O’Neill, B: Manifolds of negative curvature. Trans Am Math Soc. 145, 1–49 (1965)
2. Khan, KA, Khan, VA, Uddin, S: Warped product submanifolds of cosymplectic manifolds. Balkan J Geom Appl. 13, 55–65

(2008)
3. Arslan, K, Ezentas, R, Mihai, I, Murathan, C: Contact CR-warped product submani-folds in Kenmotsu space forms. J

Korean Math Soc. 42(5), 1101–1110 (2005)
4. Atceken, M: Contact CR-warped product submanifolds in cosymplectic space forms. Collect Math. 62, 17–26 (2011).

doi:10.1007/s13348-010-0002-z
5. Chen, BY: Geometry of warped product CR-submanifolds in Kaehler manifolds I. Monatsh Math. 133, 177–195 (2001).

doi:10.1007/s006050170019
6. Mihai, I: Contact CR-warped product submanifolds in Sasakian space forms. Geom Dedic. 109, 165–173 (2004).

doi:10.1007/s10711-004-5459-z
7. Al-Luhaibi, NS, Al-Solamy, FR, Khan, VA: CR-warped product submanifolds of nearly Kaehler manifolds. J Korean Math

Soc. 46(5), 979–995 (2009)
8. Khan, VA, Khan, KA, Siraj-Uddin, : CR-warped product submanifolds in a Kaehler manifold. Southeast Asian Bull Math. 33,

865–874 (2009)
9. Hasegawa, I, Mihai, I: Contact CR-warped product submanifolds in Sasakian manifolds. Geom Dedic. 102, 143–150

(2003)
10. Alegre, P, Blair, D, Carriazo, A: Generalized Sasakian-space-forms. Israel J Math. 14, 157–183 (2004)
11. Chen, BY: CR-submanifolds of a Kaehler manifold I. J Differ Geom. 16, 305–323 (1981)
12. Hiepko, S: Eine Inner Kenneichungder verzerrten Produkte. Math Ann. 241, 209–215 (1979). doi:10.1007/BF01421206

doi:10.1186/1029-242X-2012-127
Cite this article as: Al-Solamy and Khan: Semi-invariant warped product submanifolds of almost contact
manifolds. Journal of Inequalities and Applications 2012 2012:127.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Al-Solamy and Khan Journal of Inequalities and Applications 2012, 2012:127
http://www.journalofinequalitiesandapplications.com/content/2012/1/127

Page 12 of 12

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Semi-invariant warped product submanifolds
	4 Semi-invariant warped product submanifolds of a generalized Sasakian space-form
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

