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1. Introduction
Stochastic differential equations (SDEs) are well known to model problems from many

areas of science and engineering. For instance, in 2006, Henderson and Plaschko [1]

published the SDEs in Science and Engineering, in 2007, Mao [2] published the SDEs,

in 2010, Li and Fu [3] considered the stability analysis of stochastic functional differen-

tial equations with infinite delay and its application to recurrent neural networks.

In recent years, there is an increasing interest in stochastic functional differential

equations(SFDEs) with finite and infinite delay under less restrictive conditions than

Lipschitz condition. For instance, in 2007, Wei and Wang [4] discussed the existence

and uniqueness of the solution for stochastic functional differential equations with infi-

nite delay, in 2008, Mao et al. [5] discussed almost surely asymptotic stability of neu-

tral stochastic differential delay equations with Markovian switching, in 2008, Ren et

al. [6] considered the existence and uniqueness of the solutions to SFDEs with infinite

delay, and in 2009, Ren and Xia [7], discussed the existence and uniqueness of the

solution to neutral SFDEs with infinite delay. Furthermore, on this topic, one can see

Halidias [8], Henderson and Plaschko [1], Kim [9,10], Ren [11], Ren and Xia [7], Tani-

guchi [12] and references therein for details.

On the other hand, Mao [2] discussed d-dimensional stochastic functional differen-

tial equations with finite delay

dx(t) = f (xt, t)dt + g(xt , t)dB(t), t0 ≤ t ≤ T, (1:1)

where xt = {x(t + θ): -τ ≤ θ ≤ 0} could be considered as a C([-τ, 0]; Rd)-value stochas-

tic process. The initial value of (1.1) was proposed as follows:
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xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} is an Ft0 - measurable

C([−τ , 0];Rd) − value random variable such that E‖ξ‖2 < ∞.

Furthermore, Ren et al. [6] also considered the stochastic functional differential

equations with infinite delay at phase space BC((-∞, 0]; Rd) to be described below.

dx(t) = f (xt, t)dt + g(xt, t)dB(t), t0 ≤ t ≤ T, (1:2)

where xt = {X(t + θ): -∞ ≤ θ ≤ 0} could be considered as a BC((-∞, 0]; Rd)-value sto-

chastic process. The initial value of (1.2) was proposed as follows:

Xt0 = ξ = {ξ(θ) : −∞ ≤ θ ≤ 0} is an Ft0 - measurable

BC((−∞, 0];Rd) − value random variable such that ξ ∈ M2((−∞, 0];Rd).
(1:3)

Following this way, now we recall the existence and uniqueness of the solutions to

the Equation 1.2 with initial data (1.3) under the non-Lipschitz condition and the wea-

kened linear growth condition. In this paper, we will give some new proof of the exis-

tence and uniqueness of the solutions to ISDEs under an alternative way.

2. Preliminary
Let | · | denote Euclidean norm in Rn. If A is a vector or a matrix, its transpose is

denoted by AT; if A is a matrix, its trace norm is represented by |A| =
√
trace(ATA) . Let

t0 be a positive constant and (�,F ,P) , throughout this paper unless otherwise specified,

be a complete probability space with a filtration {Ft}t≥t0 satisfying the usual conditions

(i.e. it is right continuous and Ft0 contains all P-null sets). Assume that B(t) is a m-

dimensional Brownian motion defined on complete probability space, that is B(t) = (B1

(t), B2(t), ..., Bm(t))
T. Let BC((-∞, 0]; Rd) denote the family of bounded continuous Rd-

value functions � defined on (-∞, 0] with norm ||�|| = sup-∞ <θ≤0 |�(θ)|. We denote by

M2((−∞, 0];Rd) the family of all Ft0-measurable, ℝd-valued process ψ(t) = ψ(t, w), t Î

(-∞, 0], such that E
∫ 0

−∞

∣∣ψ(t)
∣∣2dt < ∞ . And let Lp([a, b];Rd) is the family of Rd-valued

Ft -adapted processes {f(t)}a≤t≤b such that
∫ b

a

∣∣f (t)∣∣pdt < ∞ .

With all the above preparation, consider a d-dimensional stochastic functional differ-

ential equations:

dx(t) = f (xt, t)dt + g(xt , t)dB(t), t0 ≤ t ≤ T, (2:1)

where xt = {x(t + θ): -∞ < θ ≤ 0} can be considered as a BC((-∞, 0]; Rd)-value sto-

chastic process, where

f : BC((−∞, 0];Rd) × [t0, T] → Rd,

g : BC((−∞, 0];Rd) × [t0, T] → Rd×m

be Borel measurable. Next, we give the initial value of (2.1) as follows:

xt0 = ξ = {ξ(θ) : −∞ < θ ≤ 0} is an Ft0 - measurable

BC((−∞, 0];Rd) - value random variable such that ξ ∈ M2((−∞, 0];Rd).
(2:2)
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To find out the solution, we give the definition of the solution of the Equation 2.1

with initial data (2.2).

Definition 2.1. [6]Rd-value stochastic process x(t) defined on -∞ < t ≤ T is called the

solution of (2.1) with initial data (2.2), if x(t) has the following properties:

(i) x(t) is continuous and {x(t)}t0≤t≤T is Ft -adapted;

(ii) {f (xt, t)} ∈ L1([t0,T];Rd) and {g(xt, t)} ∈ L2([t0,T];Rd×m
) ;

(iii) xt0 = ξ , for each t0 ≤ t ≤ T,

x(t) = ξ(0) +

t∫
t0

f (xs, s)ds +

t∫
t0

g(xs, s)dB(s) a.s. (2:3)

A solution x(t) is called as a unique if any other solution x̄(t) is indistinguishable

with x(t), that is

P{x(t) = x̄(t), for any − ∞ < t ≤ T} = 1.

□
The integral inequalities of Gronwall type have been applied in the theory of SDEs to

prove the results on existence, uniqueness, and stability etc. [10,13-16]. Naturally,

Gronwall’s inequality will play an important role in next section.

Lemma 2.1. (Gronwall’s inequality). Let u(t) and b(t) be non-negative continuous

functions for t ≥ a, and let

u(t) ≤ a +
t∫

α

b(s)u(s)ds, t ≥ α,

where a ≥ 0 is a constant. Then

u(t) ≤ a exp
( t∫

α

b(s)ds
)
, t ≥ α.

Lemma 2.2. (Bihari’s inequality). Let u and b be non-negative continuous functions

defined on R+. Let g(u) be a non-decreasing continuous function on R+ and g(u) >0 on

(0, ∞). If

u(t) ≤ k +
t∫
0
b(s)g(u(s))ds,

for t Î R+, where k ≥ 0 is a constant. Then for 0 ≤ t ≤ t1,

u(t) ≤ G−1

(
G(k) +

t∫
0
b(s)ds

)
,

where

G(r) =

r∫
r0

ds
g(s)

, r > 0, r0 > 0,

Cho et al. Journal of Inequalities and Applications 2012, 2012:126
http://www.journalofinequalitiesandapplications.com/content/2012/1/126

Page 3 of 11



and G-1 is the inverse function of G and t1 Î R+ is chosen so that

G(k) +

t∫
0

b(s)ds ∈ Dom(G−1),

for all t Î R+ lying in the interval 0 ≤ t ≤ t1.

The following two lemmas are known as the moment inequality for stochastic inte-

grals which will play an important role in next section.

Lemma 2.3. [2]. If p ≥ 2, g ∈ M2([0,T];Rd×m
) such that

E
T∫
0

∣∣g(s)∣∣pds < ∞,

then

E

∣∣∣∣∣∣
T∫

0

g(s)dB(s)

∣∣∣∣∣∣
p

≤
(
p(p − 1)

2

) p
2
T

p−2
2 E

T∫
0

∣∣g(s)∣∣p ds.
In particular, for p = 2, there is equality.

Lemma 2.4. [2]. If p ≥ 2, g ∈ M2([0,T];Rd×m
) such that

E

T∫
0

∣∣g(s)∣∣pds < ∞,

then

E

⎛
⎝ sup

0≤t≤T

∣∣∣∣∣∣
t∫

0

g(s)dB(s)

∣∣∣∣∣∣
p⎞
⎠ ≤

(
p3

2(p − 1)

) p
2
T

p−2
2 E

T∫
0

∣∣g(s)∣∣pds.

3. Existence and Uniqueness of the Solutions
In order to obtain the existence and uniqueness of the solutions to (2.1) with initial

data (2.2), we define x0t0 = ξ and x0(t) = ξ(0), for t0 ≤ t ≤ T. Let xnt0 = ξ , n = 1, 2, ... and

define the Picard sequence

xn(t) = ξ(0) +

t∫
t0

f (xn−1
s , s)ds +

t∫
t0

g(xn−1
s , s)dB(s), t0 ≤ t ≤ T.

Now we begin to establish the theory of the existence and uniqueness of the solu-

tion. We first show that the non-Lipschitz condition and the weakened linea growth

condition guarantee the existence and uniqueness.

Theorem 3.1. Assume that there exist a positive number K such that

(i) For any �, ψ Î BC((-∞, 0]; Rd) and t Î [t0, T], it follows that∣∣f (ϕ, t) − f (ψ , t)
∣∣2 ∨ ∣∣g(ϕ, t) − g(ψ , t)

∣∣2 ≤ κ(‖ϕ − ψ‖2), (3:1)

Cho et al. Journal of Inequalities and Applications 2012, 2012:126
http://www.journalofinequalitiesandapplications.com/content/2012/1/126

Page 4 of 11



where �(·) is a concave non-decreasing function from ℝ+ to ℝ+ such that �(0) = 0,

�(u) >0 for u >0 and
∫
0+ du/κ(u) = ∞ .

(ii) For any t Î [t0, T], it follows that f(0, t), g(0, t) Î L2 such that

∣∣f (0, t)∣∣2 ∨ ∣∣g(0, t)∣∣2 ≤ K. (3:2)

Then the initial value problem (2.1) has a solution x(t). Moreover,

x (t) ∈ M2((−∞,T];Rd) . We prepare a lemma to prove this theorem.

Lemma 3.2. Let the assumption (3.1) and (3.2) of Theorem 3.1 hold. If x(t) is a solu-

tion of equation (2.1) with initial data (2.2), then

E

(
sup

−∞<t≤T

∣∣x(t)∣∣2
)

≤ E‖ξ‖2 + c2e6b(T−t0+1)(T−t0),

where c2 = c1 + Eǁ ξ ǁ2, c1 = 3E ǁξ ǁ2 + 6(T - t0 + 1)(T - t0)[K + a]. In particular, x

(t) belong to M2((−∞,T];Rd) .

Proof. For each number n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T] : ||x(t)|| ≥ n}.

Obviously, as n ® ∞, τn ↑ T a.s. Let xn(t) = x(t ∧ τn), t Î (-∞, T]. Then, for t0 ≤ t ≤

T, xn(t) satisfy the following equation

xn(t) = ξ(0) +
t∫
t0

f
(
xns , s

))
I[t0,τn](s)ds +

t∫
t0

g(xns , s)I[t0,τn](s)dB(s).

Using the elementary inequality
(∑

xi
)p

≤ np−1
∑

xpi when p ≥ 1, we have

∣∣xn(t)∣∣2 ≤ 3
∣∣ξ(0)∣∣2 + 3

∣∣∣∣∣∣
t∫

t0

f (xns , s)I[t0,τn](s)ds

∣∣∣∣∣∣
2

+ 3

∣∣∣∣∣∣
t∫

t0

g(xns , s)I[t0,τn](s)dB(s)

∣∣∣∣∣∣
2

.

By the Hölder’s inequality and the moment inequality, we have

E
∣∣xn(t)∣∣2 ≤ 3

(
E‖ξ‖2 + (t − t0)E

t∫
t0

∣∣f (xns , s)∣∣2ds + E
t∫
t0

∣∣g(xns , s)∣∣2ds
)
.

Hence, by the condition (3.1) and (3.2) one can further show that

E
∣∣xn(t)∣∣2 ≤ 3E‖ξ‖2 + 6(t − t0 + 1)

(
E

t∫
t0

κ(
∥∥xns ∥∥2)ds + E

t∫
t0
Kds

)
.

Given that �(·) is concave and �(0) = 0, we can find a positive constants a and b

such that �(u) ≤ a + bu for u ≥ 0. So, we obtains that

E
(
sup
t0≤s≤t

∣∣xn(s)∣∣2) ≤ c1 + 6b(t − t0 + 1)

t∫
t0

E
∥∥xns ∥∥2ds,

where c1 = 3E||ξ||2 + 6(T - t0 + 1)(T - t0)[K + a]. Noting the fact that

sup−∞<s≤t

∣∣xn(s)∣∣2 ≤ ‖ξ‖2 + supt0≤s≤t

∣∣xn(s)∣∣2 , we obtain
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E
(

sup
−∞<s≤t

∣∣xn(s)∣∣2) ≤ c2 + 6b(t − t0 + 1)

t∫
t0

E
(

sup
−∞<r≤s

∣∣xn(r)∣∣2)ds,
where c2 = c1 + E||ξ||2. So, by the Gronwall inequality yields that

E
(

sup
−∞<s≤t

∣∣xn(s)∣∣2) ≤ c2 exp(6b(T − t0 + 1)(T − t0)).

Letting t = T, it then follows that

E

(
sup

−∞<s≤T

∣∣x(s ∧ τn)
∣∣2) ≤ E‖ξ‖2 + c2e6b(T−t0+1)(T−t0).

Thus

E
(

sup
−∞<s≤τn

∣∣x(s)∣∣2) ≤ E‖ξ‖2 + c2e6b(T−t0+1)(T−t0).

Consequently the required result follows by letting n ® ∞. □
Proof of Theorem 3.1. Let x(t) and x̄(t) be any tow solutions of (2.1). By Lemma 3.2,

x(t), x̄(t) ∈ M2((−∞, T];Rd) . Note that

x(t) − x̄(t) =

t∫
t0

[f (xs, s) − f (x̄s, s)]ds +

t∫
t0

[g(xs, s) − g(x̄s, s)]dB(s).

By the elementary inequality (u + v)2 ≤ 2(u2 + v2), one then gets

∣∣x(t) − x̄(t)
∣∣2 = 2

∣∣∣∣∣∣
t∫

t0

[f (xs, s) − f (x̄s, s)]ds

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
t∫

t0

[g(xs, s) − g(x̄s, s)]dB(s)

∣∣∣∣∣∣
2

.

By the Hölder’s inequality, the moment inequality, and (3.1) we have

E
(
sup
t0≤s≤t

∣∣x(s) − x̄(s)
∣∣2) ≤ 2(T − t0 + 1)E

t∫
t0

κ(‖xs − x̄s‖2)ds.

Since �(·) is concave, by the Jensen inequality, we have

Eκ(‖xs − x̄s‖2) ≤ κ(E‖xs − x̄s‖2).

Consequently, for any � >0,

E
(
sup
t0≤s≤t

∣∣x(s) − x̄(s)
∣∣2) ≤ ε + 2(T − t0 + 1)

t∫
t0

κ

[
E

(
sup
t0≤r≤s

∣∣x(r) − x̄(r)
∣∣2)]

ds.

By the Bihari inequality, one deduces that, for all sufficiently small � >0,

E
(
sup
t0≤s≤t

∣∣x(s) − x̄(s)
∣∣2) ≤ G−1[G(ε) + 2(T − t0 + 1)(T − t0)], (3:3)
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where

G(r) =

r∫
1

1
κ(u)

du

on r >0, and G-1(·) be the inverse function of G(·). By assumption
∫
0+

du
κ(u) = ∞ and

the definition of �(·), one sees that lim�↓0 G(�) = -∞ and then

lim
ε↓0

G−1[G(ε) + 2(T − t0 + 1)(T − t0)] = 0.

Therefore, by letting � ® 0 in (3.3), gives

E

(
sup

t0≤t≤T

∣∣x(t) − x̄(t)
∣∣2) = 0.

This implies that x(t) = x̄(t) for t0 ≤ t ≤ T, Therefore, for all -∞ <t ≤ T, x(t) = x̄(t) a.

s. The uniqueness has been proved.

Next to check the existence. Define x0t0 = ξ and x0(t) = ξ(0) for t0 ≤ t ≤ T. For each n

= 1, 2, ..., set xnt0 = ξ and define, by the Picard iterations,

xn(t) = ξ(0) +

t∫
t0

f (xn−1
s , s)ds +

t∫
t0

g(xn−1
s , s)dB(s) (3:4)

for t0 ≤ t ≤ T. Obviously, x0(t) ∈ M2([t0, T] : Rd). Moreover, it is easy to see that

xn(t) ∈ M2((−∞, T] : Rd) , in fact

∣∣xn(t)∣∣2 ≤ 3
∣∣ξ(0)∣∣2 + 3

∣∣∣∣∣∣
t∫

t0

f (xn−1
s , s)ds

∣∣∣∣∣∣
2

+ 3

∣∣∣∣∣∣
t∫

t0

g(xn−1
s , s)dB(s)

∣∣∣∣∣∣
2

.

Taking the expectation on both sides and using the Hölder inequality and moment

inequality, we have

E
∣∣xn(t)∣∣2
≤ 3E‖ξ‖2 + 3(t − t0)E

t∫
t0

∣∣f (xn−1
s , s)

∣∣2ds + 3E

∣∣∣∣∣∣
t∫

t0

g(xn−1
s , s)dB(s)

∣∣∣∣∣∣
2

≤ 3E‖ξ‖2 + 3(t − t0)E

t∫
t0

∣∣f (xn−1
s , s) − f (0, s) + f (0, s)

∣∣2ds

+3E

t∫
t0

∣∣g(xn−1
s , s) − g(0, s) + g(0, s)

∣∣2ds.
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Using the elementary inequality (u + v)2 ≤ 2u2 + 2v2, (3.1), and (3.2), we have

E
∣∣xn(t)∣∣2
≤ 3E‖ξ‖2 + 3(t − t0 + 1)E

t∫
t0

[
2κ(

∥∥xn−1
s

∥∥2) + 2K
]
ds

≤ 3E‖ξ‖2 + 6K(T − t0)(T − t0 + 1) + 6(T − t0 + 1)E

t∫
t0

κ(
∥∥xn−1

s

∥∥2)ds.
Given that �(·) is concave and �(0) = 0, we can find a positive constants a and b

such that �(u) ≤ a + bu for u ≥ 0. So, we have

E
∣∣xn(t)∣∣2 ≤ c1 + 6b(T − t0 + 1)

t∫
t0

E
∥∥xn−1

s

∥∥2ds,
where c1 = 3E||ξ||2 + 6(T - t0)(T - t0+ 1)[K + a]. It also follows from the inequality

that for any k ≥ 1,

max
1≤n≤k

E
∣∣xn(t)∣∣2 ≤ c1 + 6b(T − t0 + 1)

t∫
t0

max
1≤n≤k

E
∥∥xn−1(s)

∥∥2ds

≤ c1 + 6b(T − t0 + 1)

t∫
t0

(E‖ξ‖2 + max
1≤n≤k

E
∣∣xn(s)∣∣2)ds

≤ c2 + 6b(T − t0 + 1)

t∫
t0

max
1≤n≤k

E
∣∣xn(s)∣∣2ds,

where c2 = c1 = 6b(T - t0)(T - t0+ 1) E||ξ||2. The Gronwall inequality implies

max
1≤n≤k

E
∣∣xn(t)∣∣2 ≤ c2 exp(6b(T − t0)(T − t0 + 1)).

Since k is arbitrary, we must have

E
∣∣xn(t)∣∣2 ≤ c2 exp(6b(T − t0 + 1)(T − t0)) (3:5)

for all t0 ≤ t ≤ T, n ≥ 1.

Next, we that the sequence {xn(t)} is Cauchy sequence. For all n ≥ 0 and t0 ≤ t ≤ T,

we have

xn(t) − xm(t)

=

t∫
t0

[f (xn−1
s , s) − f (xm−1

s , s)]ds +

t∫
t0

[g(xn−1
s , s) − g(xm−1

s , s)]dB(s).

Next, using an elementary inequality (u + v)2 ≤ 1
α
u2 + 1

1−α
v2 and the condition (H3),

we derive that
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∣∣xn(t) − xm(t)
∣∣2

≤ 1
α

∣∣∣∣∣∣
t∫

t0

[f (xn−1
s , s) − f (xm−1

s , s)]ds

∣∣∣∣∣∣
2

+
1

1 − α

∣∣∣∣∣∣
t∫

t0

[g(xn−1
s , s) − g(xm−1

s , s)]dB(s)

∣∣∣∣∣∣
2

.

On the other hand, by Hölder’s inequality, Lemma (2.4), and the condition, one can

show that

E
(
sup
t0<s≤t

∣∣xn(s) − xm(s)
∣∣2) ≤ β

t∫
t0

κ

(
E

(
sup
t0≤u≤s

∣∣xn−1(u) − xm−1(u)
∣∣2))

ds, (3:6)

where b = (T - t0)/a + 4/(1 - a). Let

Z(t) = lim
n,m→∞ sup E

(
sup
t0≤s≤t

∣∣xn(s) − xm(s)
∣∣2) .

From (3.6), for any � >0, we get

Z(t) ≤ ε + β

t∫
t0

κ(Z(s))ds.

By the Bihari inequality, one deduces that, for all sufficiently small � >0,

Z(t) ≤ G−1[G(ε) + β(T − t0)],

where

G(r) =

r∫
1

1
κ(u)

du

on r >0, and G-1(·) be the inverse function of G(·). By assumption, we get Z(t) = 0.

This shows the sequence {xn(t), n ≥ 0} is a Cauchy sequence in L2. Hence, as n ® ∞,

xn(t) - x(t), that is E |xn(t) - x(t)|2 ® 0. Letting n ® ∞ in (3.5) then yields that

E
(
sup
t0≤s≤t

∣∣x(s)∣∣2) ≤ c2 exp(6b(T − t0 + 1)(T − t0))

for all t0 ≤ t ≤ T. Therefore, x (t) ∈ M2((−∞,T];Rd) . It remains to show that x(t)

satisfies Equation 2.3. Note that

E

∣∣∣∣∣∣
t∫

t0

(f (xns , s) − f (xs, s))ds

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
t∫

t0

(g(xns , s) − g(xs, s))dB(s)

∣∣∣∣∣∣
2

≤ (t − t0)E

t∫
t0

∣∣(f (xns , s) − f (xs, s))
∣∣2ds + E

t∫
t0

∣∣(g(xns , s) − g(xs, s))
∣∣2ds

≤ (t − t0 + 1)

T∫
t0

κ(E( sup
t0≤u≤s

∣∣xn(u) − x(u)
∣∣2))ds.
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Noting that sequence xn(t) is uniformly converge on (-∞, T ], it means that

E
(

sup
t0≤u≤s

∣∣xn(u) − x(u)
∣∣2) → 0

as n ® ∞, further

κ

(
E

(
sup
t0≤u≤s

∣∣xn(u) − x(u)
∣∣2))

→ 0

as n ® ∞. Hence, taking limits on both sides in the Picard sequence, we obtain that

x(t) = x0 +

t∫
t0

f (xs, s)ds+

t∫
t0

g(xs, s)dB(s)

on t0 ≤ t ≤ T. The above expression demonstrates that x(t) is the solution of (2.3).

So, the existence of theorem is complete.

Remark 3.1. In the proof of Theorem 3.1, the solution is constructed by the succes-

sive approximation. It shows that how to get the approximate solution of (2.1) and

how to construct Picard sequence xn(t). For SFDEs, we know that a weakened linear

growth condition imposed on Theorem 3.1 is rigorous for our discussion. In papers

[6,7], the proofs of the assertions are based on some function inequalities. Recall that

the procedures has become more and more complicated in those proofs. For this rea-

son, although analogous problem is studied here, the proof of the assertion in the The-

orem is completely different with respect to the ones from [7]. Moreover, our new

proof in this paper is completed by Bihari’s inequality and more simple than that

reported in [7].
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