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1. Introduction
The stability problem of functional equations originated from a question of Ulam [1]

concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative

answer to the question of Ulam for Banach spaces. Rassias [3] considered the stability

problem with unbounded Cauchy differences. The stability problems of several func-

tional equations have extensively been investigated by a number of authors and there

are many interesting results concerning this problem (see [4-18]).

In 2003, Cǎdariu and Radu applied the fixed point method and they could present a

short and simple proof (different from the “direct method“, initiated by Hyers in 1941)

for the generalized Hyers-Ulam stability of Jensen functional equation.

In this article, by using the fixed point method, we prove that, if there exists an

approximately Lie bracket f : A × A ® A on Banach spaces A, then there exists a Lie

bracket T : A × A ® A which is near to f. Moreover, under some conditions on f, the

Banach space A has a Lie algebra structure with Lie bracket T.

We recall a Lie algebra consists of a (finite dimensional) vector space A over a field

F and a multiplication in A (usually, the product of x, y Î A is denoted by [x, y] and

called a Lie bracket or commutator) with the following two properties:

(1) Anti-commutativity: [x, x] = 0 for any x Î A;

(2) Jacobi identity: [z, [x, y]] = [[z, x], y] + [x, [z, y]] for any x, y, z Î A.

For more details about Lie algebras, the readers are referred to [19-22]. Throughout

this article, we assume that n0 Î N is a positive integer,

T1 := {z ∈ C : |z| = 1}, T1
1
no

:= {eiθ : 0 ≤ θ ≤ 2π

n0
}.

It is easy to see that T1 = T1
1
1
. Moreover, we suppose that A is a complex Banach

space. For any mapping f : A × A ® A, we define
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Dμf (x, y, z, t) : = 4μf
(
x + y
2

,
z + t
2

)
+ 4μf

(
x − y
2

,
z + t
2

)

+ 4μf
(
x + y
2

+
z − t
2

)
+ 4μf

(
x − y
2

,
z − t
2

)

− 4f (μx, z)

for all μ ∈ T1
1
no

and x, y, z, t Î A.

2. Main results
We need the following theorem to prove the main result of this article.

Theorem 2.1. (The alternative of fixed point theorem [23,24]) Suppose that (Ω, d) is

a complete generalized metric space and T : Ω ® Ω is a strictly contractive mapping

with Lipschitz constant L. Then, for any x Î Ω, either d(Tmx, Tm+1x) = ∞ for all m ≥ 0

or there exists a natural number m0 such that

(1) d(T mx, T m+1x) < 1 for all m ≥ m0;

(2) the sequence {Tmx} is convergent to a fixed point y* of T;

(3) y* is the unique fixed point of T in the set � = {y ∈ � : d(Tm0x, y) < ∞ ;

(4) d(y, y∗) ≤ 1
1−L d(y,Ty)for all y Î Λ.

Now, we give our main results by using. Theorem 2.1.

Theorem 2.2. Let f : A × A ® A be a continuous mapping and let j : A4 = A × A ×

A × A ® [0, ∞) be a mapping such that

||Dμf (x, y, z, t)|| ≤ φ(x, y, z, t), (2:1)

lim
n→∞

∥∥4−nf (2nz, 2nf (x, y)) − f (4−nf (2nz, 2nx), y) − f (x, 4−nf (2nz, 2ny))
∥∥

≤ φ(x, y, 0, 0),
(2:2)

lim
n→∞4−nf (2nx, 2nx) = 0 (2:3)

for all μ ∈ T1
1
no
and x, y, z, t Î A. If there exists L <1 such that

φ(x, y, z, t) ≤ 4Lφ( x2 ,
y
2 ,

z
2 ,

t
2)for all x, y, z, t Î A, then there exists a unique bilinear

mapping T : A × A ® A such that

∥∥f (x, z) − T(x, z)
∥∥ ≤ L

1 − L
φ(x, 0, z, 0) (2:4)

for all x, z Î M. Moreover, for any sequence {am} in A, if

lim
m→∞ lim

n→∞ 4−nf (2nx, 2nam) = lim
n→∞ lim

m→∞ 4−nf (2nx, 2nam) (2:5)

for all x Î A, then A is a Lie algebra with Lie bracket [x, y] = T (x, y) for all x, y Î
A.

Proof. Putting μ = 1 and y = t = 0 in (2.1), we get

∥∥∥4f ( x
2
,
z
2
) − f (x, z)

∥∥∥ ≤ φ(x, 0, z, 0)
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for all x, z Î A and so
∥∥∥∥14 f (2x, 2z) − f (x, z)

∥∥∥∥ ≤ 1
4

φ(2x, 0, 2z, 0) ≤ Lφ(x, 0, z, 0) (2:6)

for all x, z Î A. Consider the set X : = {g : g : A × A ® A} and introduce the general-

ized metric on X by:

d(h, g) := inf{C ∈ R+ : ||g(x, z) − h(x, z)|| ≤ Cφ(x, 0, z, 0) for all x, z ∈ A}.

It is easy to show that (X, d) is a complete generalized metric space. Now, we define

the mapping J : X ® X by

J(h) (x, z) =
1
4
h(2x, 2z)

for all x, z Î A. For any g, h Î X, we have

d(g, h) < C ⇒ ∥∥g(x, z) − h(x, z)
∥∥ ≤ Cφ(x, 0, z, 0)

⇒
∥∥∥∥14g(2x, 2z) − 1

4
h(2x, 2z)

∥∥∥∥ ≤ 1
4
Cφ(2x, 0, 2z, 0)

⇒
∥∥∥∥14g(2x, 2z) − 1

4
h(2x, 2z)

∥∥∥∥ ≤ LCφ(x, 0, z, 0)

⇒ d(J(g), J(h)) ≤ LC

for all x, z Î A, which means that

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h Î X. It follows from (2.6) that

d(f , J(f )) ≤ L.

From Theorem 2.1, it follows that J has a unique fixed point in the set X1:= {I Î X: d

(f, T) < ∞}. Let T be the fixed point of J. Then we have limn®∞d(J
n (f), T) = 0 and

lim
n→∞

1
4n

f (2nx, 2nz) = T(x, z) (2:7)

for all x, z Î A. By the inequality d(f, J(f)) ≤ L and J(T) = T, we have

d(f , T) ≤ d(f , J(f )) + d(J(f ), J(T)) ≤ L + Ld(f , T)

and so

d(f , T) ≤ L
1 − L

.

This implies the inequality (2.4). From φ(x, y, z, t) ≤ 4Lφ
(
x
2
,
y
2
,
z
2
,
t
2

)
, we have

lim
j→∞

4−jφ(2jx, 2jy, 2jz, 2jt) = 0 (2:8)
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for all x, y, z Î A. Thus it follows from (2.1), (2.7) and (2.8) that
∥∥∥∥4T

(
x + y
2

,
z + t
2

)
+ 4T

(
x − y
2

,
z + t
2

)

−4T
(
x + y
2

,
z − t
2

)
+ 4T

(
x − y
2

,
z − t
2

)
− 4T(x, z)

∥∥∥∥
= lim

n→∞
1
4n

∥∥∥∥4f
(
2nx + 2ny

2
,
2nz + 2nt

2

)
+ 4f

(
2nx − 2ny

2
− 2nz + 2nt

2

)

−4f
(
2nx + 2ny

2
,
2nz − 2nt

2

)
− 4f

(
2nx − 2ny

2
,
2nz − 2nt

2

)
− 4f (2nx, 2nz)

∥∥∥∥
≤ lim

n→∞
1
4n

φ(2nx, 2ny, 2nz, 2nt) = 0

for all x, y, z Î M and so

T
(
x + y
2

,
z + t
2

)
+ T

(
x − y
2

,
z + t
2

)
− T

(
x + y
2

,
z − t
2

)
+ T

(
x − y
2

,
z − t
2

)

= T(x, z)

for all x, y, z, t Î A. This shows that

T(x + y, z + t) = T(x, z) + T(y, z) + T(x, t) + T(y, t)

for all x, y, z, t Î A. Hence, T is Cauchy additive with respect to the first and second

variables. By putting y : = x and t : = z in (2.1), we have
∥∥4μf (x, z) − 4f (μx, z)

∥∥ ≤ φ(x, x, z, z)
∥∥ (2:9)

for all x, z Î A. and μ ∈ T1
1
no

and so

∥∥4μT(x, z) − 4T(μx, z)
∥∥ = lim

n→∞
1
4n

∥∥4μf (2nx, 2nz) − 4f (2nμx, 2nz)

≤ lim
n→∞

1
4n

φ(2nx, 2nx, 2nz, 2nz) = 0

for all x, z Î A and μ ∈ T1
1
no
, that is,

T(μx, z) = μT(x, z) (2:10)

for all x, z Î A.

If l belongs to T1 , then there exists θ Î [0, 2π] such that l = eiθ. If we set λ1 = e
iθ
no ,

then l1 belongs to
T1
1
no

. By using (2.10), we have

T(λx, z) = T(λn0
1 x, z) = λ

n0
1 T(x, z) = λT(x, z)

for all x, z Î M.
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If l belongs to nT1 = {nz : z ∈ T1} for some n Î N, then, by (2.9), we have

T(λx, z) = T(nλ1x, z) = T(λ1(nx), z)

= λ1T(nx, z)

= λ1nT(x, z)

= λT(x, z)

for all x, z Î A. Let s Î (0, ∞). Then, by Archimedean property of ℂ, there exists a

positive real number n such that the point (s, 0) Î ℝ2 lies in the interior of circle with

center at origin and radius n in ℝ2. Putting s1 := s +
√
n2 − s2i and

s2 := t − √
n2 − s2i , we have s =

s1 + s2
2

and s1, s2 ∈ nT1 . Thus, by (2.9), we have

T(sx, z) = T
( s1 + s2

2
x, z

)
= T

(
s1
x
2
, z

)
+ T

(
s2
x
2
, z

)

= s1T
( x
2
, z

)
+ s2T(

x
2
, z)

= 4
( s1 + s2

2

)
T

( x
2
,
z
2

)

= sT(x, z)

for all x, z Î s. Moreover, there exists θ Î [0, 2π] such that l = ǀlǀ eiθ.
Therefore, we have

T(λx, z) = T(|λ| eiθx, z) = |λ| T(eiθx, z) = |λ| eiθT(x, z) = λT(x, z) (2:11)

for all x, z Î A and so T : A × A ®A is homogeneous with respect to the first vari-

able. It follows from (2.9) and (2.11) that T is ℂ-Linear with respect to the first

variable.

Moreover, by (2.3), T (x, x) = 0 for all x Î A, whence

0 = T(x + y, x + y) = T(x, x) + T(x, y) + T(y, x) + T(y, y) = T(x, y) + T(y, x)

for all x, y Î A and so

T(x, y) = −T(y, x)

for all x, y Î A, that is, T is skew symmetric. Let z Î A and define a mapping ad(z):

A ®A by

ad(z)(x) = T(z, x)

for all x Î A. It is clear that ad(z) is a linear and continuous mapping at zero. In fact,

if {am} is a sequence in A such that limn®∞am= 0, then, by (2.5), we have

lim
m→∞ ad(z) (am) = lim

m→∞ lim
n→∞ 4−nf (2nz, 2nam)

= lim
n→∞ lim

m→∞ 4−nf (2nz, 2nam)

= lim
n→∞ 4−nf (2nz, 0) = ad(z) (0) = 0.

Thus, for all z Î A, ad(z) is continuous at zero and so ad(z) is a continuous and lin-

ear mapping. Substituting x with 2mx and y with 2my in (2.2) and multiplying by 4-m

both sides of the inequality, we have
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lim
n→∞ 4−m

∥∥4−nf (2nz, 2nf (2mx, 2my)) − f (4−nf (2nz, 2n+mx), 2my)

−f (2mx, 4−nf (2nz, 2n+my))
∥∥

≤ 4−mφ(2mx, 2my, 0, 0)

for all x, y, z Î A and m Î N. Since f is continuous, we have

4−m
∥∥ad(z) (f (2mx, 2my)) − f (ad(z) (2mx), 2my) − f (2mx, ad(z)2my)

∥∥
≤ 4−mφ(2mx, 2my, 0, 0)

for all x, y, z Î A. Since, for all z Î A, ad(z) is a linear and continuous mapping, we

get

ad(z)T(x, y) − T(ad(z)(x), y) − T(x, ad(z)(y)) = 0

for all x, y, z Î A. Since T is skew symmetric, it is easy to show that T is satisfies in

the Jacobi identity condition. Thus T is a Lie bracket satisfies in (2.4) and (A, T) is a

Lie algebra.

To prove the uniqueness property of T, let Q : A × A ®A be another bilinear map-

ping satisfying (2.7). Then we have

∥∥T(x, z) − Q(x, z)
∥∥ = lim

n→∞

∥∥∥∥ f (2
nx, 2nz)
4n

− Q(2nx, 2nz)
4n

∥∥∥∥
≤ lim

n→∞
1
4n

(
L

1 − L

)
φ (2nx, 0, 2nz, 0) = 0

for all x, z Î A. This means that T = Q. This completes the proof. □
Corollary 2.3. Let p Î (0, 1) and θ Î [0, ∞) be real numbers. Suppose that f : A × A

®A is a mapping such that

∥∥Dμf (x, y, z, t)
∥∥ ≤ θ

(
‖x‖p + ∥∥y∥∥p + ‖z‖p + ‖t‖p

)
,

lim
n→∞

∥∥4−nf (2nz, 2nf (x, y)) − f (4−nf (2nz, 2nx), y) − f (x, 4−nf (2nz, 2ny))
∥∥

≤ θ(||x||p + ||y||p),

lim
n→∞ 4−nf (2nx, 2nx) = 0

for all μ ∈ T1
1
no
and x, y, z, t Î A. Then there exists a unique bilinear mapping T : A

× A ®A such that

|f (x, z) − T(x, z)|| ≤ 4pθ
4 − 4p

(||x||p + ||z||p)

for all x, z Î A. Moreover, for any sequence {am} in A, if

lim
m→∞ lim

n→∞ 4−nf (2nx, 2nam) = lim
n→∞ lim

m→∞ 4−nf (2nx, 2nam)

for all x Î A, then A is a Lie algebra with Lie bracket [x, y] = T(x, y) for all x, y Î A.

Proof. It follows from Theorem 2.2 by putting j(x, y, z): = θ(ǁ x ǁ p +ǁ y ǁ p +ǁ z ǁ p

+ǁ t ǁ p) for all x, y, z , Î M and L = 4p -1. □
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Finally, we prove the superstability of Lie brackets as follows:

Corollary 2.4. Let p ∈
(
0,

1
4

)
and θ Î [0, ∞) be real numbers. Suppose that f: A × A

®A is a mapping such that

||Dμf (x, y, z, t)|| ≤ θ(||x||p ||y||p ||z||p ||t||p),

lim
n→∞ ||4−nf (2nz, 2nf (x, y)) − f (4−nf (2nz, 2nx), y) − f (x, 4−nf (2nz, 2ny))||
≤ θ(||x||p ||y||p),

lim
n→∞ 4−nf (2nx, 2nx) = 0

for all μ ∈ T1
1
no
and x, y, z, t Î A. Moreover, for any sequence {am} in A, if

lim
m→∞ lim

n→∞4−nf (2nx, 2nam) = lim
n→∞ lim

m→∞ 4−nf (2nx, 2nam)

for all x Î A, then A is a Lie algebra with Lie bracket [x, y] = f(x, y) for all x, y Î A.

Proof. Putting j(x, y, z, t): = θ(ǁxǁp ǁyǁp ǁzǁp ǁtǁp) for all x, y, z Î M and L =
1
2
in

Theorem 2.2, the conclusion follows. □
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