Approximate lie brackets: a fixed point approach

Madjid Eshaghi Gordji ${ }^{1 *}$, Maryam Ramezani ${ }^{1}$, Yeol JE Cho ${ }^{2^{*}}$ and Hamid Baghani ${ }^{2}$

* Correspondence: madjid eshaghi@gmail.com; yjcho@gnu.ac. kr
${ }^{1}$ Center of excellence in nonlinear analysis and applications, Department of mathematics, Semnan university, P.O. Box 35195363, Semnan, Iran
${ }^{2}$ Department of mathematics education and the rins, Gyeongsang national university, Chinju 660-701, Korea Full list of author information is available at the end of the article

Abstract

The aim of this article is to investigate the stability and superstability of Lie brackets on Banach spaces by using fixed point methods.

2010 Mathematics Subject Classification: 46L06; 39B82; $39 B 52$.
Keywords: generalized Hyers-Ulam stability, fixed point, superstability, Lie algebra, skew-symmetry, Jacobi identity.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. Rassias [3] considered the stability problem with unbounded Cauchy differences. The stability problems of several functional equations have extensively been investigated by a number of authors and there are many interesting results concerning this problem (see [4-18]).
In 2003, Cǎdariu and Radu applied the fixed point method and they could present a short and simple proof (different from the "direct method", initiated by Hyers in 1941) for the generalized Hyers-Ulam stability of Jensen functional equation.

In this article, by using the fixed point method, we prove that, if there exists an approximately Lie bracket $f: A \times A \rightarrow A$ on Banach spaces A, then there exists a Lie bracket $T: A \times A \rightarrow A$ which is near to f. Moreover, under some conditions on f, the Banach space A has a Lie algebra structure with Lie bracket T.
We recall a Lie algebra consists of a (finite dimensional) vector space A over a field \mathbb{F} and a multiplication in A (usually, the product of $x, y \in A$ is denoted by $[x, y]$ and called a Lie bracket or commutator) with the following two properties:
(1) Anti-commutativity: $[x, x]=0$ for any $x \in A$;
(2) Jacobi identity: $[z,[x, y]]=[[z, x], y]+[x,[z, y]]$ for any $x, y, z \in A$.

For more details about Lie algebras, the readers are referred to [19-22]. Throughout this article, we assume that $n_{0} \in \mathbb{N}$ is a positive integer,

$$
\mathbb{T}^{1}:=\{z \in \mathbb{C}:|z|=1\}, \quad \mathbb{T}_{\frac{1}{n_{o}}}^{1}:=\left\{e^{i \theta}: 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right\} .
$$

It is easy to see that $\mathbb{T}^{1}=\mathbb{T}_{\frac{1}{1}}^{1}$. Moreover, we suppose that A is a complex Banach space. For any mapping $f: A \times A \rightarrow A$, we define

$$
\begin{aligned}
D_{\mu} f(x, y, z, t): & =4 \mu f\left(\frac{x+y}{2}, \frac{z+t}{2}\right)+4 \mu f\left(\frac{x-y}{2}, \frac{z+t}{2}\right) \\
& +4 \mu f\left(\frac{x+y}{2}+\frac{z-t}{2}\right)+4 \mu f\left(\frac{x-y}{2}, \frac{z-t}{2}\right) \\
& -4 f(\mu x, z)
\end{aligned}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $x, y, z, t \in A$.

2. Main results

We need the following theorem to prove the main result of this article.
Theorem 2.1. (The alternative of fixed point theorem [23,24]) Suppose that (Ω, d) is a complete generalized metric space and $T: \Omega \rightarrow \Omega$ is a strictly contractive mapping with Lipschitz constant L. Then, for any $x \in \Omega$, either $d\left(T^{m} x, T^{m+1} x\right)=\infty$ for all $m \geq 0$ or there exists a natural number m_{0} such that
(1) $d\left(T^{m} x, T^{m+1} x\right)<1$ for all $m \geq m_{0}$;
(2) the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
(3) y^{*} is the unique fixed point of T in the set $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right.$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.

Now, we give our main results by using. Theorem 2.1.
Theorem 2.2. Let $f: A \times A \rightarrow A$ be a continuous mapping and let φ : $A^{4}=A \times A \times$ $A \times A \rightarrow[0, \infty)$ be a mapping such that

$$
\begin{align*}
& \left\|D_{\mu} f(x, y, z, t)\right\| \leq \phi(x, y, z, t) \tag{2.1}\\
& \lim _{n \rightarrow \infty}\left\|4^{-n} f\left(2^{n} z, 2^{n} f(x, y)\right)-f\left(4^{-n} f\left(2^{n} z, 2^{n} x\right), y\right)-f\left(x, 4^{-n} f\left(2^{n} z, 2^{n} y\right)\right)\right\| \tag{2.2}\\
& \leq \phi(x, y, 0,0)
\end{align*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} x\right)=0 \tag{2.3}
\end{equation*}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $x, y, z, t \in$. If there exists $L<1$ such that
$\phi(x, y, z, t) \leq 4 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{t}{2}\right)$ for all $x, y, z, t \in A$, then there exists a unique bilinear mapping $T: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-T(x, z)\| \leq \frac{L}{1-L} \phi(x, 0, z, 0) \tag{2.4}
\end{equation*}
$$

for all $x, z \in M$. Moreover, for any sequence $\left\{a_{m}\right\}$ in A, if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} a_{m}\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} a_{m}\right) \tag{2.5}
\end{equation*}
$$

for all $x \in A$, then A is a Lie algebra with Lie bracket $[x, y]=T(x, y)$ for all $x, y \in$ A.

Proof. Putting $\mu=1$ and $y=t=0$ in (2.1), we get

$$
\left\|4 f\left(\frac{x}{2}, \frac{z}{2}\right)-f(x, z)\right\| \leq \phi(x, 0, z, 0)
$$

for all $x, z \in A$ and so

$$
\begin{equation*}
\left\|\frac{1}{4} f(2 x, 2 z)-f(x, z)\right\| \leq \frac{1}{4} \phi(2 x, 0,2 z, 0) \leq L \phi(x, 0, z, 0) \tag{2.6}
\end{equation*}
$$

for all $x, z \in A$. Consider the set $X:=\{g: g: A \times A \rightarrow A\}$ and introduce the generalized metric on X by:

$$
d(h, g):=\inf \left\{C \in \mathbb{R}^{+}:\|g(x, z)-h(x, z)\| \leq C \phi(x, 0, z, 0) \text { for all } x, z \in A\right\}
$$

It is easy to show that (X, d) is a complete generalized metric space. Now, we define the mapping $J: X \rightarrow X$ by

$$
J(h)(x, z)=\frac{1}{4} h(2 x, 2 z)
$$

for all $x, z \in A$. For any $g, h \in X$, we have

$$
\begin{aligned}
d(g, h)<C & \Rightarrow\|g(x, z)-h(x, z)\| \leq C \phi(x, 0, z, 0) \\
& \Rightarrow\left\|\frac{1}{4} g(2 x, 2 z)-\frac{1}{4} h(2 x, 2 z)\right\| \leq \frac{1}{4} C \phi(2 x, 0,2 z, 0) \\
& \Rightarrow\left\|\frac{1}{4} g(2 x, 2 z)-\frac{1}{4} h(2 x, 2 z)\right\| \leq L C \phi(x, 0, z, 0) \\
& \Rightarrow d(J(g), J(h)) \leq L C
\end{aligned}
$$

for all $x, z \in A$, which means that

$$
d(J(g), J(h)) \leq \operatorname{Ld}(g, h)
$$

for all $g, h \in X$. It follows from (2.6) that

$$
d(f, J(f)) \leq L
$$

From Theorem 2.1, it follows that J has a unique fixed point in the set $X_{1}:=\{I \in X: d$ $(f, T)<\infty\}$. Let T be the fixed point of J. Then we have $\lim _{n \rightarrow \infty} d\left(J^{n}(f), T\right)=0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)=T(x, z) \tag{2.7}
\end{equation*}
$$

for all $x, z \in A$. By the inequality $d(f, J(f)) \leq L$ and $J(T)=T$, we have

$$
d(f, T) \leq d(f, J(f))+d(J(f), J(T)) \leq L+L d(f, T)
$$

and so

$$
d(f, T) \leq \frac{L}{1-L}
$$

This implies the inequality (2.4). From $\phi(x, y, z, t) \leq 4 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{t}{2}\right)$, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} 4^{-j} \phi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} t\right)=0 \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in A$. Thus it follows from (2.1), (2.7) and (2.8) that

$$
\begin{aligned}
& \| 4 T\left(\frac{x+y}{2}, \frac{z+t}{2}\right)+4 T\left(\frac{x-y}{2}, \frac{z+t}{2}\right) \\
& \quad-4 T\left(\frac{x+y}{2}, \frac{z-t}{2}\right)+4 T\left(\frac{x-y}{2}, \frac{z-t}{2}\right)-4 T(x, z) \| \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \| 4 f\left(\frac{2^{n} x+2^{n} y}{2}, \frac{2^{n} z+2^{n} t}{2}\right)+4 f\left(\frac{2^{n} x-2^{n} y}{2}-\frac{2^{n} z+2^{n} t}{2}\right) \\
& -4 f\left(\frac{2^{n} x+2^{n} y}{2}, \frac{2^{n} z-2^{n} t}{2}\right)-4 f\left(\frac{2^{n} x-2^{n} y}{2}, \frac{2^{n} z-2^{n} t}{2}\right)-4 f\left(2^{n} x, 2^{n} z\right) \| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \phi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} t\right)=0
\end{aligned}
$$

for all $x, y, z \in M$ and so

$$
\begin{aligned}
& T\left(\frac{x+y}{2}, \frac{z+t}{2}\right)+T\left(\frac{x-y}{2}, \frac{z+t}{2}\right)-T\left(\frac{x+y}{2}, \frac{z-t}{2}\right)+T\left(\frac{x-y}{2}, \frac{z-t}{2}\right) \\
& =T(x, z)
\end{aligned}
$$

for all $x, y, z, t \in A$. This shows that

$$
T(x+y, z+t)=T(x, z)+T(y, z)+T(x, t)+T(y, t)
$$

for all $x, y, z, t \in A$. Hence, T is Cauchy additive with respect to the first and second variables. By putting $y:=x$ and $t:=z$ in (2.1), we have

$$
\begin{equation*}
\|4 \mu f(x, z)-4 f(\mu x, z)\| \leq \phi(x, x, z, z) \| \tag{2.9}
\end{equation*}
$$

for all $x, z \in A$. and $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$ and so

$$
\begin{aligned}
\|4 \mu T(x, z)-4 T(\mu x, z)\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \| 4 \mu f\left(2^{n} x, 2^{n} z\right)-4 f\left(2^{n} \mu x, 2^{n} z\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \phi\left(2^{n} x, 2^{n} x, 2^{n} z, 2^{n} z\right)=0
\end{aligned}
$$

for all $x, z \in A$ and $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$, that is,

$$
\begin{equation*}
T(\mu x, z)=\mu T(x, z) \tag{2.10}
\end{equation*}
$$

for all $x, z \in A$.
If λ belongs to \mathbb{T}^{1}, then there exists $\theta \in[0,2 \pi]$ such that $\lambda=e^{i \theta}$. If we set $\lambda_{1}=e^{\frac{i \theta}{n_{o}}}$, then λ_{1} belongs to $\mathbb{T}^{1} \frac{1}{n_{o}}$. By using (2.10), we have

$$
T(\lambda x, z)=T\left(\lambda_{1}^{n_{0}} x, z\right)=\lambda_{1}^{n_{0}} T(x, z)=\lambda T(x, z)
$$

for all $x, z \in M$.

If λ belongs to $n \mathbb{V}^{1}=\left\{n z: z \in \mathbb{T}^{1}\right\}$ for some $n \in \mathbb{N}$, then, by (2.9), we have

$$
\begin{aligned}
T(\lambda x, z)=T\left(n \lambda_{1} x, z\right) & =T\left(\lambda_{1}(n x), z\right) \\
& =\lambda_{1} T(n x, z) \\
& =\lambda_{1} n T(x, z) \\
& =\lambda T(x, z)
\end{aligned}
$$

for all $x, z \in A$. Let $s \in(0, \infty)$. Then, by Archimedean property of \mathbb{C}, there exists a positive real number n such that the point $(s, 0) \in \mathbb{R}^{2}$ lies in the interior of circle with center at origin and radius n in \mathbb{R}^{2}. Putting $s_{1}:=s+\sqrt{n^{2}-s^{2}} i$ and $s_{2}:=t-\sqrt{n^{2}-s^{2}} i$, we have $s=\frac{s_{1}+s_{2}}{2}$ and $s_{1}, s_{2} \in n \mathbb{T}^{1}$. Thus, by (2.9), we have

$$
\begin{aligned}
T(s x, z)=T\left(\frac{s_{1}+s_{2}}{2} x, z\right) & =T\left(s_{1} \frac{x}{2}, z\right)+T\left(s_{2} \frac{x}{2}, z\right) \\
& =s_{1} T\left(\frac{x}{2}, z\right)+s_{2} T\left(\frac{x}{2}, z\right) \\
& =4\left(\frac{s_{1}+s_{2}}{2}\right) T\left(\frac{x}{2}, \frac{z}{2}\right) \\
& =s T(x, z)
\end{aligned}
$$

for all $x, z \in s$. Moreover, there exists $\theta \in[0,2 \pi]$ such that $\lambda=|\lambda| e^{i \theta}$.
Therefore, we have

$$
\begin{equation*}
T(\lambda x, z)=T\left(|\lambda| e^{i \theta} x, z\right)=|\lambda| T\left(e^{i \theta} x, z\right)=|\lambda| e^{i \theta} T(x, z)=\lambda T(x, z) \tag{2.11}
\end{equation*}
$$

for all $x, z \in A$ and so $T: A \times A \rightarrow A$ is homogeneous with respect to the first variable. It follows from (2.9) and (2.11) that T is \mathbb{C}-Linear with respect to the first variable.

Moreover, by (2.3), $T(x, x)=0$ for all $x \in A$, whence

$$
0=T(x+y, x+y)=T(x, x)+T(x, y)+T(y, x)+T(y, y)=T(x, y)+T(y, x)
$$

for all $x, y \in A$ and so

$$
T(x, y)=-T(y, x)
$$

for all $x, y \in A$, that is, T is skew symmetric. Let $z \in A$ and define a mapping $\operatorname{ad}(z)$: $A \rightarrow A$ by

$$
\operatorname{ad}(z)(x)=T(z, x)
$$

for all $x \in A$. It is clear that $a d(z)$ is a linear and continuous mapping at zero. In fact, if $\left\{a_{m}\right\}$ is a sequence in A such that $\lim _{n \rightarrow \infty} a_{m}=0$, then, by (2.5), we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \operatorname{ad}(z)\left(a_{m}\right) & =\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} z, 2^{n} a_{m}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} 4^{-n} f\left(2^{n} z, 2^{n} a_{m}\right) \\
& =\lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} z, 0\right)=\operatorname{ad}(z)(0)=0
\end{aligned}
$$

Thus, for all $z \in A, \operatorname{ad}(z)$ is continuous at zero and so $\operatorname{ad}(z)$ is a continuous and linear mapping. Substituting x with $2^{m} x$ and y with $2^{m} y$ in (2.2) and multiplying by 4^{-m} both sides of the inequality, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} 4^{-m} \| & 4^{-n} f\left(2^{n} z, 2^{n} f\left(2^{m} x, 2^{m} y\right)\right)-f\left(4^{-n} f\left(2^{n} z, 2^{n+m} x\right), 2^{m} y\right) \\
& \quad-f\left(2^{m} x, 4^{-n} f\left(2^{n} z, 2^{n+m} y\right)\right) \| \\
\leq & 4^{-m} \phi\left(2^{m} x, 2^{m} y, 0,0\right)
\end{aligned}
$$

for all $x, y, z \in A$ and $m \in \mathbb{N}$. Since f is continuous, we have

$$
\begin{aligned}
& 4^{-m}\left\|a d(z)\left(f\left(2^{m} x, 2^{m} y\right)\right)-f\left(\operatorname{ad}(z)\left(2^{m} x\right), 2^{m} y\right)-f\left(2^{m} x, \operatorname{ad}(z) 2^{m} y\right)\right\| \\
& \quad \leq 4^{-m} \phi\left(2^{m} x, 2^{m} y, 0,0\right)
\end{aligned}
$$

for all $x, y, z \in A$. Since, for all $z \in A, \operatorname{ad}(z)$ is a linear and continuous mapping, we get

$$
\operatorname{ad}(z) T(x, y)-T(\operatorname{ad}(z)(x), y)-T(x, \operatorname{ad}(z)(y))=0
$$

for all $x, y, z \in A$. Since T is skew symmetric, it is easy to show that T is satisfies in the Jacobi identity condition. Thus T is a Lie bracket satisfies in (2.4) and (A, T) is a Lie algebra.
To prove the uniqueness property of T, let $Q: A \times A \rightarrow A$ be another bilinear mapping satisfying (2.7). Then we have

$$
\begin{aligned}
\|T(x, z)-Q(x, z)\| & =\lim _{n \rightarrow \infty}\left\|\frac{f\left(2^{n} x, 2^{n} z\right)}{4^{n}}-\frac{Q\left(2^{n} x, 2^{n} z\right)}{4^{n}}\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left(\frac{L}{1-L}\right) \phi\left(2^{n} x, 0,2^{n} z, 0\right)=0
\end{aligned}
$$

for all $x, z \in A$. This means that $T=Q$. This completes the proof. \square
Corollary 2.3. Let $p \in(0,1)$ and $\theta \in[0, \infty)$ be real numbers. Suppose that $f: A \times A$ $\rightarrow A$ is a mapping such that

$$
\begin{aligned}
& \left\|D_{\mu} f(x, y, z, t)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|t\|^{p}\right) \\
& \lim _{n \rightarrow \infty}\left\|4^{-n} f\left(2^{n} z, 2^{n} f(x, y)\right)-f\left(4^{-n} f\left(2^{n} z, 2^{n} x\right), y\right)-f\left(x, 4^{-n} f\left(2^{n} z, 2^{n} y\right)\right)\right\| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
& \lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} x\right)=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$ and $x, y, z, t \in A$. Then there exists a unique bilinear mapping $T: A$ $\times A \rightarrow A$ such that

$$
\mid f(x, z)-T(x, z) \| \leq \frac{4^{p} \theta}{4-4^{p}}\left(\left.\left\|\left.x\right|^{p}+\right\| z\right|^{p}\right)
$$

for all $x, z \in A$. Moreover, for any sequence $\left\{a_{m}\right\}$ in A, if

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} a_{m}\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} a_{m}\right)
$$

for all $x \in A$, then A is a Lie algebra with Lie bracket $[x, y]=T(x, y)$ for all $x, y \in A$. Proof. It follows from Theorem 2.2 by putting $\varphi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right.$ $+\|t\|^{p}$) for all $x, y, z, \in M$ and $L=4^{p-1}$.

Finally, we prove the superstability of Lie brackets as follows:
Corollary 2.4. Let $p \in\left(0, \frac{1}{4}\right)$ and $\theta \in[0, \infty)$ be real numbers. Suppose that $f: A \times A$ $\rightarrow A$ is a mapping such that

$$
\begin{aligned}
& \left\|D_{\mu} f(x, y, z, t)\right\| \leq \theta\left(\|x\|^{p}\|y\|^{p}\|z\|^{p}\|t\|^{p}\right) \\
& \lim _{n \rightarrow \infty}\left\|4^{-n} f\left(2^{n} z, 2^{n} f(x, y)\right)-f\left(4^{-n} f\left(2^{n} z, 2^{n} x\right), y\right)-f\left(x, 4^{-n} f\left(2^{n} z, 2^{n} y\right)\right)\right\| \\
& \leq \theta\left(\|x\|^{p}\|y\|^{p}\right)
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} x\right)=0
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}^{1}$ and $x, y, z, t \in A$. Moreover, for any sequence $\left\{a_{m}\right\}$ in A, if

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} a_{m}\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} 4^{-n} f\left(2^{n} x, 2^{n} a_{m}\right)
$$

for all $x \in A$, then A is a Lie algebra with Lie bracket $[x, y]=f(x, y)$ for all $x, y \in A$.
Proof. Putting $\varphi(x, y, z, t):=\theta\left(\|x\|^{p}\|y\|^{p}\|z\|^{p}\|t\|^{p}\right)$ for all $x, y, z \in M$ and $L=\frac{1}{2}$ in
Theorem 2.2, the conclusion follows.

Acknowledgements

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

Author details

${ }^{1}$ Center of excellence in nonlinear analysis and applications, Department of mathematics, Semnan university, P.O. Box 35195-363, Semnan, Iran ${ }^{2}$ Department of mathematics education and the rins, Gyeongsang national university, Chinju 660-701, Korea

Authors' contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 10 March 2012 Accepted: 7 June 2012 Published: 7 June 2012

References

1. Ulam, SM: Problems in Modern Mathematics, Chapter VI. Wiley, New York (1940). Science Ed
2. Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222-224 (1941). doi:10.1073/ pnas.27.4.222
3. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc. 72, 297-300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
4. Agarwal, RP, Cho, YJ, Saadati, R, Wang, S: Nonlinear L-fuzzy stability of cubic functional equations. J Inequal Appl. 2012, 77 (2012). doi:10.1186/1029-242X-2012-77
5. Baktash, E, Cho, YJ, Jalili, M, Saadati, R, Vaezpour, SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J Inequal Appl2008, 11. Article ID 902187
6. Brzdek, J, Popa, D, Xu, B: Hyers-Ulam stability for linear equations of higher orders. Acta Math Hungar. 120, 1-8 (2008). doi:10.1007/s 10474-007-7069-3
7. Brzdek, J: On stability of a family of functional equations. Acta Math Hungar. 128, 139-149 (2010). doi:10.1007/s10474-010-9169-8
8. Brzdek, J: On approximately microperiodic mappings. Acta Math Hungar. 117, 179-186 (2007). doi:10.1007/s10474-007-6087-5
9. Cǎdariu, L, Radu, V: The fixed points method for the stability of some functional equations. Carpathian J Math. 23, 63-72 (2007)
10. Cho, YJ, Eshaghi Gordji, M, Zolfaghari, S: Solutions and stability of generalized mixed type QC functional equations in random normed spaces. J Inequal Appl 2010, 16 (2010). Article ID 403101
11. Cho, YJ, Park, C, Rassias, ThM, Saadati, R: Inner product spaces and functional equations. J Comput Anal Appl. 13, 296-304 (2011)
12. Cho, YJ, Kang, Jl, Saadati, R: Fixed points and stability of additive functional equations on the Banach algebras. J Comput Anal Appl. 14, 1103-1111 (2012)
13. Cho, YJ, Kang, SM, Sadaati, R: Nonlinear random stability via fixed-point method. J Appl Math2012, 44. Article ID 902931
14. Cho, YJ, Park, C, Saadati, R: Functional inequalities in non-Archimedean in Banach spaces. Appl Math Lett. 60, 1994-2002 (2010)
15. Cho, YJ, Saadati, R: Lattice non-Archimedean random stability of ACQ functional equation. Advan in Diff Equat. 2011, 31 (2011). doi:10.1186/1687-1847-2011-31
16. Cho, YJ, Saadati, R, Vahidi, J: Approximation of homomorphisms and derivations on non-Archimedean Lie C*-algebras via fixed point method. Discrete Dynamics in Nature and Society 2012, 9 (2012). Article ID 373904
17. Eshaghi Gordji, M, Khodaei, H: Stability of Functional Equations. LAP Lambert Academic Publishing, Saarbrucken (2010)
18. Khodaei, H, Rassias, ThM: Approximately generalized additive functions in several variables. Internat J Nonlinear Anal Appl. 1, 22-41 (2010)
19. Bourbaki, N: Lie Groups and Lie Algebras-Chapters 1-3. Springer, New York (1989). ISBN 3-540-64242-0
20. Erdmann, K, Wildon, M: Introduction to Lie Algebras, 1st edn.Springer, New York (2006). ISBN 1-84628-040-0
21. Humphreys, JE: In Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York (1978). ISBN 0-387-90053-5
22. Varadarajan, VS: Lie Groups, Lie Algebras, and Their Representations, 1st edn.Springer, New York (2004). ISBN 0-387-90969-9
23. Margolis, B, Diaz, JB: A fixed point theorem of the alternative for contractions on the generalized complete metric space. Bull Am Math Soc. 126, 305-309 (1968)
24. Radu, V: The fixed point alternative and the stability of functional equations. Fixed Point Theory. 4, 91-96 (2003)
doi:10.1186/1029-242X-2012-125
Cite this article as: Gordji et al.: Approximate lie brackets: a fixed point approach. Journal of Inequalities and Applications 2012 2012:125.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

