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Abstract

We find the greatest value a and least value b in (1/2,1) such that the double
inequality

S(αa + (1− α)b,αb + (1− α)a) < T(a, b) < S(βa + (1 − β)b,βb + (1− β)a)

holds for all a,b > 0 with a ≠ b. Here, T(a, b) = (a-b)/[2 arctan((a-b)/(a + b))] and S(a,
b) = [(a2 + b2)/2]1/2 are the Seiffert mean and root mean square of a and b,
respectively.
2010 Mathematics Subject Classification: 26E60.
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1 Introduction
For a,b > 0 with a ≠ b the Seiffert mean T(a, b) and root mean square S(a, b) are

defined by

T(a, b) =
a − b

2 arctan
(
a − b
a + b

)
(1:1)

and

S(a, b) =

√
a2 + b2

2
, (1:2)

respectively. Recently, both mean values have been the subject of intensive research.

In particular, many remarkable inequalities and properties for T and S can be found in

the literature [1-14].

Let A(a, b) = (a + b)/2,G(a, b) =
√
ab, and Mp(a, b) = ((ap+bp)/2)1/p (p ≠ 0) and

M0(a, b) =
√
ab be the arithmetic, geometric, and pth power means of two positive

numbers a and b, respectively. Then it is well known that

G(a, b) = M0(a, b) < A(a, b) = M1(a, b) < T(a, b) < S(a, b) = M2(a, b)

for all a, b > 0 with a ≠ b.

Seiffert [1] proved that inequalities

A(a, b) < T(a, b) < S(a, b)
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hold for all a, b > 0 with a ≠ b.

Chu et al. [5] found the greatest value p1 and least value p2 such that the double

inequality Hp1(a,b) <T(a,b) <Hp2(a,b) holds for all a,b > 0 with a ≠ b, where Hp(a, b) =

((ap + (ab)p/2+bp)/3)1/p (p ≠ 0) and H0(a, b) =
√
ab is the pth power-type Heron mean

of a and b.

In [6], Wang et al. answered the question: What are the best possible parameters l
and μ such that the double inequality Ll(a,b) <T(a,b) <Lμ(a,b) holds for all a,b > 0

with a ≠ b? where Lr(a,b) = (ar+1 + br+1)/(ar + br) is the rth Lehmer mean of a and b.

Chu et al. [7] proved that inequalities

pT(a, b) + (1 − p)G(a, b) < A(a, b) < qT(a, b) + (1 − q)G(a, b)

hold for all a,b > 0 with a ≠ b if and only if p ≤ 3/5 and q ≥ π/4.

Hou and Chu [9] gave the best possible parameters a and b such that the double

inequality

αS(a, b) + (1 − α)H(a, b) < T(a, b) < βS(a, b) + (1 − β)H(a, b)

holds for all a, b > 0 with a ≠ b.

For fixed a, b > 0 with a ≠ b, let x Î [1/2,1] and

f (x) = S(xa + (1 − x)b, xb + (1 − x)a).

Then it is not difficult to verify that f(x) is continuous and strictly increasing in [1/

2,1]. Note that f(1/2) = A(a,b) <T(a,b) and f(1) = S(a, b) >T(a, b). Therefore, it is nat-

ural to ask what are the greatest value a and least value b in (1/2,1) such that the dou-

ble inequality

S(αa + (1 − α)b,αb + (1 − α)a) < T(a, b) < S(βa + (1 − β)b,βb + (1 − β)a)

holds for all a, b > 0 with a ≠ b. The main purpose of this article is to answer these

questions. Our main result is the following Theorem 1.1.

Theorem 1.1. If a, b Î (1/2,1), then the double inequality

S(αa + (1 − α)b,αb + (1 − α)a) < T(a, b) < S(βa + (1 − β)b,βb + (1 − β)a) (1:3)

holds for all a,b >0 with a ≠ b if and only if α ≤ (1 +
√
16/π2 − 1)/2 and

β ≥ (3 +
√
6)/6.

2 Proof of Theorem 1.1

Proof of Theorem 1.1. Let λ = (1 +
√
16/π2 − 1)/2 and μ = (3 +

√
6)/6.

We first proof that inequalities

T(a, b) > S(λa + (1 − λ)b,λb + (1 − λ)a) (2:1)

and

T(a, b) < S(μa + (1 − μ)b,μb + (1 − μ)a) (2:2)

hold for all a, b > 0 with a ≠ b.

From (1.1) and (1.2), we clearly see that both T(a, b) and S(a, b) are symmetric and

homogenous of degree 1. Without loss of generality we assume that a >b. Let t = a/b

> 1 and p Î (1/2,1), then from (1.1) and (1.2) one has
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S(pa + (1 − p)b, pb + (1 − p)a) − T(a, b)

= b

√
[pt + (1 − p)]2 + [(1 − p)t + p]2

2 arctan
(
t − 1
t + 1

)

×

⎧⎪⎨
⎪⎩

√
2 arctan(

t − 1
t + 1

) − t − 1√
[pt + (1 − p)]2 + [(1 − p)t + p]2

⎫⎪⎬
⎪⎭ .

(2:3)

Let

f (t) =
√
2 arctan

(
t − 1
t + 1

)
− t − 1√

[pt + (1 − p)]2 + [(1 − p)t + p]2
, (2:4)

then simple computations lead to

f (1) = 0, (2:5)

lim
t→+∞ f (t) =

√
2π

4
− 1√

p2 + (1 − p)2
, (2:6)

f ′(t) =
f1(t)

{[pt + (1 − p)]2 + [(1 − p)t + p]2}
3
2 (t2 + 1)

,
(2:7)

where

f1(t) =
√
2{[pt + (1 − p)]2 + [(1 − p)t + p]2}

3
2 − (t + 1)(t2 + 1).

(2:8)

Note that

{
√
2{[pt + (1 − p)]2 + [(1 − p)t + p]2}

3
2 }2 − [(t + 1)(t2 + 1)]2

= (t − 1)2g1(t),

(2:9)

where

g1(t) = (16p6 − 48p5 + 72p4 − 64p3 + 36p2 − 12p + 1)t4 − 16p2

(4p2 − 4p + 3)(p − 1)2t3 + 2(48p6 − 144p5 + 168p4 − 96p3 + 36p2 − 12p + 1)

×t2 − 16p2(4p2 − 4p + 3)(p − 1)2t + 16p6 − 48p5 + 72p4 − 64p3 + 36p2

−12p + 1,

(2:10)

g1(1) = 4(12p2 − 12p + 1). (2:11)

Let g2(t) = g′
1(t)/4, g3(t) = g′

2(t), g4(t) = g′
3(t)/6. Then simple computations lead to

g2(t) = (16p6 − 48p5 + 72p4 − 64p3 + 36p2 − 12p + 1)t3 − 12p2

(4p2 − 4p + 3)(p − 1)2t2 + (48p6 − 144p5 + 168p4 − 96p3 + 36p2 − 12p + 1)

t − 4p2(4p2 − 4p + 3)(p − 1)2,

(2:12)
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g2(1) = 4(6p2 − 12p + 1), (2:13)

g3(t) = 3(16p6 − 48p5 + 72p4 − 64p3 + 36p2 − 12p + 1)t2 − 24p2(4p2 − 4p + 3)

(p − 1)2t + 48p6 − 144p5 + 168p4 − 96p3 + 36p2 − 12p + 1,
(2:14)

g3(1) = 4(6p4 − 12p3 + 18p2 − 12p + 1), (2:15)

g4(t) = (16p6 − 48p5 + 72p4 − 64p3 + 36p2 − 12p + 1)t

−4p2(4p2 − 4p + 3)(p − 1)2,
(2:16)

g4(1) = 12p4 − 24p3 + 24p2 − 12p + 1. (2:17)

We divide the proof into two cases.

Case 1. p = λ = (1 +
√
16/π2 − 1)/2. Then equations (2.6), (2.11), (2.13), (2.15), and

(2.17) lead to

lim
t→+∞ f (t) = 0, (2:18)

g1(1) = −4(5π2 − 48)
π2

< 0, (2:19)

g2(1) = −2(5π2 − 48)
π2

< 0, (2:20)

g3(1) = −2(7π4 − 48π2 − 192)
π4

< 0, (2:21)

g4(1) = −2(π4 − 96)
π4

< 0. (2:22)

Note that

16p6 − 48p5 + 72p4 − 64p3 + 36p2 − 12p + 1 =
1024 − π6

π6
> 0. (2:23)

From (2.10), (2.12), (2.14), (2.16), and (2.23) we clearly see that

lim
t→+∞ g1(t) = +∞ (2:24)

lim
t→+∞ g2(t) = +∞ (2:25)

lim
t→+∞ g3(t) = +∞ (2:26)

lim
t→+∞ g4(t) = +∞ (2:27)

From equation (2.16) and inequality (2.23) we clearly see that g4(t) is strictly increas-

ing in [1, + ∞), then inequality (2.22) and equation (2.27) lead to the conclusion that

there exists t0 > 1 such that g4(t) < 0 for t Î (1,t0) and g4(t) > 0 for t Î (t0,+∞). Hence,

g3(t) is strictly decreasing in [1, t0] and strictly increasing in [t0, +∞).
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It follows from (2.21) and (2.26) together with the piecewise monotonicity of g3(t)

that there exists t1 >t0 > 1 such that g2(t) is strictly decreasing in [1,t1] and strictly

increasing in [t1,+∞).

From (2.20) and (2.25) together with the piecewise monotonicity of g2(t) we conclude

that there exists t2 >t1 > 1 such that g1(t) is strictly decreasing in [1,t2] and strictly

increasing in [t2,+∞).

Equations (2.7)-(2.9), (2.19), and (2.24) together with the piecewise monotonicity of

g1(t) imply that there exists t3 >t2 > 1 such that f(t) is strictly decreasing in [1,t3] and

strictly increasing in [t3, +∞).

Therefore, inequality (2.1) follows from equations (2.3)-(2.5) and (2.18) together with

the piecewise monotonicity of f(t).

Case 2. p = μ = (3 +
√
6)/6. Then equation (2.10) becomes

g1(t) =
(17t2 + 2t + 17)

108
(t − 1)2 > 0 (2:28)

for t > 1.

Equations (2.7)-(2.10) and inequality (2.28) lead to the conclusion that f(t) is strictly

increasing in [1, +∞).

Therefore, inequality (2.2) follows from equations (2.3)-(2.5) and the monotonicity of

f(t).

From the monotonicity of f(x) = S(xa + (1 - x)b, xb + (1- x)a) in [1/2,1] and inequal-

ities (2.1) and (2.2) we know that inequality (1.3) holds for all

α ≤ (1 +
√
16/π2 − 1)/2,β ≥ (3 +

√
6)/6 and a, b > 0 with a ≠ b.

Next, we prove that λ = (1 +
√
16/π2 − 1)/2 is the best possible parameter in (1/2,1)

such that inequality (2.1) holds for all a, b > 0 with a ≠ b.

For any 1 > p > λ = (1 +
√
16/π2 − 1)/2, from (2.6) one has

lim
t→+∞ f (t) =

π

2
− 1

p2 + (1 − p)2
> 0. (2:29)

Equations (2.3) and (2.4) together with inequality (2.29) imply that for any

1 > p > λ = (1 +
√
16/π2 − 1)/2 there exists T0 = T0(p) > 1 such that

S(pa + (1 − p)b, pb + (1 − p)a) > T(a, b)

for a/b Î (T0, + ∞).

Finally, we prove that μ = (3 +
√
6)/6 is the best possible parameter in (1/2,1) such

that inequality (2.2) holds for all a, b > 0 with a ≠ b.

For any 1/2 < p < μ = (3 +
√
6)/6, from (2.11) one has

g1(1) = 4(12p2 − 12p + 1) < 0. (2:30)

From inequality (2.30) and the continuity of g1(t) we know that there exists δ = δ(p)

> 0 such that

g1(t) < 0 (2:31)

fort Î (1,1 + δ).
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Equations (2.3)-(2.5) and (2.7)-(2.10) together with inequality (2.31) imply that for

any 1/2 < p < μ = (3 +
√
6)/6 there exists δ = δ(p) > 0 such that

T(a, b) > S(pa + (1 − p)b, pb + (1 − p)a)

for a/b Î (1,1 + δ).
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