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1. Introduction and preliminaries
The following question posed by Ulam [1] in 1940: “When is it true that a mapping
which approximately satisfies a functional equation £ must be somehow close to an
exact solution of £ ?”. Hyers [2] proved the problem for the Cauchy functional equa-
tion. In 1978, Rassias [3] proved the following theorem.

Theorem 1.1. Let f: E — E’ be a mapping from a normed vector space E into a
Banach space E’ subject to the inequality

IfGe+y) = F@) —FO)| < eClixl® + Jy]") (1.1)

for all x, y € E, where ¢ and p are constants with ¢ > 0 and p < 1. Then there exists a
unique additive mapping T: E — E’ such that

Hﬂ@—ﬂmnsz?ymw (1.2)

for all x € E. If p < O then inequality (1.1) holds for all x, y = 0, and (1.2) for x = 0.
Also, if the function t o f(tx) from R into E’ is continuous in real t for each xe E, then
T is R-linear.

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by
Rassias. In 1994, a generalization of the Rassias’ theorem was obtained by Gévruta as
follows [5].

Stability of the Jensen functional equation, 2f (*;') = f(x) + f(y), where fis a map-

ping between linear spaces, has been investigated by several mathematicians (see [6,7]).
During the last decades several stability problems of functional equations have been
investigated by a number of mathematicians. See [8-17] and references therein for
more detailed information.
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Let A, B be two Banach algebras. A C-linear mapping d: A — B is called a general-
ized Jordan derivation if there exists a Jordan derivation (in the usual sense) 0: A — X
such that d(a®) = ad(a) + d(a)a for all a € A.

Generalized derivations and generalized Jordan derivations first appeared in the con-
text of operator algebras [18]. Later, these were introduced in the framework of pure
algebra [19,20].

Recently, Badora [21] proved the stability of ring derivations (see also [22,23]). More
recently, Eshaghi Gordji and Ghobadipour [24] investigated the stability of generalized
Jordan derivations on Banach algebras.

Let Ay,..., A, be normed algebras over the complex field C and let B be a Banach
algebra over C. A mapping dj, : A1 x Ay x --- x A, — B is called a k-th partial deri-
vation if

de(x1, -, yYap+pby, ..., xp) = yde(xr, oo, Ap oo, Xp)+pde(x1, oo bro oo, Xn)
and there exists a mapping f, : A, — B such that
dk(xl, ey akbk, ey xn) =fk(ak)dk(x1, ey bk, N xn)+dk(x1, ey ARy ooe ey xn)fk(bk)

for all ay, by € Aj, and x; € Ai(i #k) and all  u e C.

Chu et al. [25] established the Hyers-Ulam stability of partial derivations.

Definition 1.2. Let A;,..., A, be normed algebras over the complex field C and let
X be a Banach module over Ay,..., A,_; and A,. Then

(i) A mapping di : A; x Ay x --- x A, — X is called a k-th partial Jordan deriva-
tion of Jensen type if

yar + y by
2dy, <x1,..., ) l,.‘.,xn) =ydr(x1, ..., Ar oo Xp)tyde(x1, oo, broo, Xn)

and
dr(x1, ..., a,f, covs Xn) = apdr(x1, oo, ap oo, X)) +dr(X1, o, oo, Xp)ag

for all a, b, € A, and x; € A;(i #k) and all ye C.
(ii) A mapping &, : A} x Ay x --- x A, —> X is called a k-th partial generalized Jor-
dan derivation of Jensen type if

yar +yb
26 (xl,..., ) ,...,xn) =y8(x1, «ovs Ay oovs Xn)+YSR(X1, o) by ool, Xn)

and there exists a k-th partial Jordan derivation dj, : A; x A, x --- x A, — X such
that

Se(xr, ooy ap, oo, xn) = Sk(xr, on @ e, Xn)a ¥ ardi(x1, oo, ap ., Xn)

for all ay, b, € A, and x; € Ai(i #k) and all ye C.

We now introduce one of fundamental results of fixed point theory. For the proof,
refer to [26,27]. For an extensive theory of fixed point theorems and other nonlinear
methods, the reader is referred to the book of Hyers et al. [28].

Let X be a set. A function d: X x X — [0, =] is called a generalized metric on X if
and only if 4 satisfies:
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(GM,) d(x, y) = 0 if and only if x = y;
(GM,) d(x, y) = d(y, x) for all x, y € X;
(GM3) d(x, z) < d(x, y) + d(y, z) for all v, y, z€ X.

Note that the distinction between the generalized metric and the usual metric is that
the range of the former is permitted to include the infinity.

Let (X, d) be a generalized metric space. An operator T: X — X satisfies a Lipschitz
condition with Lipschitz constant L if there exists a constant L > 0 such that

d(Tx, Ty) < Ld(x, y)

for all w, y € X. If the Lipschitz constant L is less than 1, then the operator T is
called a strictly contractive operator.

We recall the following theorem by Diaz and Margolis [26].

Theorem 1.3. Suppose that we are given a complete generalized metric space (Q, d)
and a strictly contractive function T: Q0 — Q with Lipschitz constant L. Then for each
given x € Q, either

d(T"x, T™'x) = 0o forallm > 0,
or other exists a natural number mg such that
*d(T"x, T"" %) <o for all m = my;

* the sequence {T"x} is convergent to a fixed point y* of T;
*xy* is the unique fixed point of T in

A={yeQ:d(T™x, y) < oo};

*d(y, y*) < 1iLd(y, Ty) forallye A .

The equation (&) is called superstable if every approximate solution of (¢) is an exact
solution.

We use the fixed point method to investigate the Hyers-Ulam stability and the
superstability of partial generalized Jordan derivations of Jensen type.

2. Main results
For ny € N, we define

T, :={ei0050§2n}
ny

ho
1
and we denote Fi by T1. Also, we suppose that A;,..., A, are normed algebras
over the complex field C and X' is a Banach module over A;,..., 4,—1 and A,. We

denote that 0y, Oy are zero elements of A, X, respectively.
Theorem 2.1. Let T Fpe: Ay x - x Ay, — Xbe mappings with

Aay, + Ab)
HZSk <x1 ,,,,, R xn) = ASk(X1, oo s Xn) = ASE(RL e bl o )| < r(ar i), Assume that
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there exist functions Wy : A — [0, 00), @ : A} — [0, 00)satisfying

Ady + Ab
stk (xl ..... e x) Sk, s e Xn) = RS e b, x) | < e Be), (2.1)
max{ |Fe(x1, ..., ap, oot xn) — @Fe(xn oo @ ooy Xn) — Fe(Xn oo d o Xe)a]|
[ TeCers v ags oo %) = TeCxrs o @ <o Xn)ax — aFe(xy, <o) @ ooos xn) |} (2.2)
< Wy (ar)

for Sy € {Fi, Ty} and for all reT! nl and all ay, b, € Ay, xi € Ai(i k). If there

0
exists a constant 0 <L < 1 such that é(ag, by) < 2Lo(27 ay, 271by), Yilaw) < 2LYx(27ay)
for all ay, by, € Ay, then there exist a unique partial Jordan derivation of Jensen type
with respect to k-th variable dj, : Ay x Ay x -+ x A, — Xand a unique partial gener-

alized Jordan derivation of Jensen type with respect to k-th variable (related to dy)
Dp: A x Ay x --- x A, — X such that

max{HFk(xl, X2, oevy Xn) — dr(x1, X2, ..., xn)H , HTk(xl, X2, «v., Xn) — Dr(x1, x2, ..., x,,)“}

L
< Xy, O
_I_ka(k )

forall xi e Ai(i=1,2, ..., n).
Proof. 1t follows from (2.1) that

Aay + Aby,
28k<x1,..., 5 peer Xy ) = ASk(x1, <o) Al ooy Xn) — ASE(x1, o Dy ools Xp)

(2.3)
< @r(ar, br),
for Sy €{F;, T} and for all * € T =(heC:Al =1} and all ay, b, € Ay,

Nno
X € .Al(l #k)
In the inequality (2.3), put Sg = Fi, by = 0, L = 1 and replace a; with 2x;. Then we

obtain

[Fe(xt, oo o ooos %) = 27 (o1, oy 2% oy xn) | <27 k(200 0) < Loo(xi, 0)  (2.4)

for all xje Ai(i=1,2, ..., n). Put Q:={Gy|Gr: A1 x Ay x --- x A, = X} and
define d: Q x QO — [0, «] by

d(Hp, Gi) :=infle € R*; ||Gr(x1, o) X «vs %) — He(X1, o) X0 o0 %)
< a@p(xr, O)Vxie Ai(i=1,2, ..., n)}

It is easy to show that (Q, d) is a complete generalized metric space. We define the
mapping J: QO — Q by

J(He)(x1, -ov0 Xty vt Xn) =271Hk(x1, coir 2Ry oae, Xp)

for all x; € Ai(i=1,2, ..., n). Let Gy, Hr e Q and let o € (0, ) be arbitrary with
d(Gy, Hy) < o. From the definition of d, we have

[Gr(xr, -vs X oo x0) = Hi(x1, o) X <oy %n) | < agu(xe, 0)
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for all x; € Ai(i=1,2, ..., n). Hence we have

[0G) (1, - oos X ooy %) — UHR) (X1, -s X oy X)) |
=271 Grl(xr, oovs 220 oo, Xn) — Hi(x1, ooy 220 oo, X))
< 27 'agi(2x, 0) < aLgy(xp, 0)
forall x; € A;(i=1,2, ..., n). So
d(J(Gr), J(Hy)) < Ld(Gy, Hy)
for all G, He Q. It follows from (2.4) that

d(Fr, J(Fi)) < L.

By Theorem 1.3, J has a unique fixed point in the set Q, := { Hye Q; d(F}, Hy) < o°}.
Let dy be the fixed point of /. dy is the unique mapping which satisfies

dr(X1, coes 250, ooy X)) = 2dp(X1, o) Xy oo e o) Xn)
for all x; € Ai(i=1,2, ..., n), and there exists & € (0, =) such that
lde(xt, oo X o) %) = Fre(x1, oy Xi ooy Xn)|| < (s 0)

forall x; € Ai(i=1,2, ..., n).
On the other hand, we have lim,,,_,.. d(J’"(Fy), di) = 0. It follows that

lim 27" Fp(xy, ..y 2™, oo, Xn) =di(X1, -oo) Xy oo es Xn)

m— 00

for all x; € Ai(i=1,2, ..., n). It follows from that d(Fy, d) < 1iLd(Fk, J(Fr)) that

L
d(Fy, di) < .
(Fr, di) < _L
This means that

L
HFk(xl, X2, ooy Xn) —dp(x1, X2, ..., xn)” < 1_L<pk(xk, 0)

for all x; € A;j(i=1,2, ..., n). By the inequality ¢x(ajp bi) < 2Lop(2  ay, 27'by), we

conclude that

lim 27"(2"ay, 2™by) = 0

m— 00

for all ay, b, € Ag. In the inequality (2.3), replacing a;, by by 2" ay, 2™b;, respectively,
we obtain that

A2May, + A2™by,
2Fk X1rewns 5

—Fp(x1, ..., 2™bp, ..., xn) ” < 27"g(2™ay, 2™by).

27"!

,...,x,,)—Fk(xl, v 2%ag, oo, Xn)

Passing the limit 71 — oo, we obtain

ray + Aby

2dk(x1,..., 2

..,xn) =Mp(x1, ooo) Gy oony Xn)+Adp(x1, oo DR oo, Xn)
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for all ay, by, € A, and all re Tlnl . Now, we show that dj is C-linear with respect

to k-th variable. First suppose that A belongs to 7%. Then A = ¢’ for some 0 < 0 < 27.
Tl

i0
We set  _ e;,(,. Then A, belongs to © 1 and
No
Avayp + Aiby
2dy, (xl,..., ) pees Xy ) = Adr(X1, ooy A oo Xn)¥Aadr(X1, oo b o Xn)

for all ay, by, € Ay,. It is easy to show that d; is additive with respect to k-th variable.
Moreover, if 2 belongs to nT" = {nz z € T'} then by additivity of d; on k-th variable,

we have
de(X1, oo Mgy ooy Xn) = Adp(X1, oo, AR oees Xn)

for all a, € A;. If £ € (0, =), then by Archimedean property of C, there exists an n €
N such that the point (¢, 0) lies in the interior of circle with center at origin and radius

n Let f; =t++/n2 —t2i e nT! and ¢, = t — /n2 — 2i € nT!. We have t = “;tz. Then

t1+t2 t1+t2
dk(xl,...,tak,...,xn)=dk(x1,..., ’ ak,...,xn)= ) dr(x1, oo/ Are <oy Xn)

for all g, € A;. Let A € C. Then A = |Ale?t and so
di(x1, .. A oo, %) = IMeMd(xy, o, Ak ., Xn) = Adk(X1, .., A ., X)

for all g;, € Aj,. It follows that d is C-linear with respect to k-th variable.
By the same reasoning as above, we can show that the limit

Di(x1, «oo) Xy --es Xg) = lm 27" Tp(xq, ..., 2™20, ..., Xn)
m—0o0
exists for all x; € 4i(i=1,2, ..., n) and that Dy is C-linear with respect to k-th

variable.
By te inequality Wi(ay) < 2LY¥ (2 ay), we conclude that

lim 27"W,(2"a,) = 0
m—o0

for all a, € A;.

Now, by (2.2), we have

|Fe(x1, o0 ap, o) xn) — agFr(x1, ..y @i ooy xn) = Fe(x1, ..o, are oo xa)ag
< Wi(ar)

for all a, € Ay, xi € Ai(i #k). Replacing a; by 2”a; in the above inequality, we
obtain that

|Ee(x1, .., 22™ag, ..., xp) = 2" @eFi(x1, .. 2™ap, ..., xn)
—Fp(x1, ..., 2™ay, ..., xn)2’"akH < U (2"az).

Then we have

||2_2'"Fk(x1, e, szai, ceey Xn) = 27" apFr(x1, .., 2™ag, .., Xy)

—Fp(x1, ..., 2"ay, ..., x,,)z"”ak” < 2_2m‘lfk(2m(lk)
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for all a;, € Aj,. Passing m — oo, we obtain
2
dr(x1, .., ap oo Xn) = adr (X1, oo, A oo Xp) +de(X1, o, AR oo, Xn)ak

for all a, € A, and all x; € A;(i # k). This shows that dy is a partial Jordan deriva-

tion. We have to show that Dy is a partial generalized Jordan derivation related to dj.
By (2.2), we have

ITe(x1, .. ap, oo x0) —@Te(xr, ooy @i ooy Xn) = Fr(xt, ooy i ooy xn)aie|
< \pk(ak)

for all a;, € A, xi € Ai(i # k). Replacing a; by 2" a; in the last inequality, we get

||Tk(x1, ey 22'”a,3, v Xn) = 2" T (1, .., 2™ag, ..., Xn)
—Fk(xl, o 2May, L., xn)z'"ak” < \Ilk(zmak)

for all a;, € A, xi € Ai(i #k). Then we have

||2_2'"Tk(x1, e 22mai, v X)) = 27" T (1, <.y 2™ag, .., Xn)

—Fe(x1, oo 2™ap, ..., x0)27 M| < 2720 (2" ay)
for all a, € Ay, xi € Ai(i # k). Passing m — o, we obtain that
Dp(x1, ..., ap, ..., X)) = aDp(x1, .., @ ooy Xn) +dr(X1, oo, Ar oo, Xn)ak

for all a, € A;, and all x; € A;(i # k). Hence Dy is a partial generalized Jordan deri-
vation related to dj.

Corollary 2.2. Let p € (0, 1) and 6 € [0, «) be real numbers. Let
Tp Fr: Al x - x A, = Xbe mappings such that
Tr(x1, --.) Oy oovy Xy) = Fr(x1, «-., O, ..., xn) = Oxand that

Aay + Ab
H28k<xl,..., k2 k,...,x,,)—ASk(xl,...,ak,...,xn)—ASk(xl,...,bk,...,x,,)

< @r(ar, br),

Inax{”Fk(xl, el ai, cooy Xn) —akFr(x1, oo An ooy X)) — (X1, oo, G oo, Xu)arl| s
||Tk(x1, e, ai, coir Xn) = Tr(x1, o) A .oy Xn)ar — apFr(x1, .., ap ..., xn)”}
< 0(llall”)

for Sk € {Fy Ty} and for all reT! nl and all ay, by € Ay, xi € Ai(i #k). Then there
0

exist a unique partial Jordan derivation of Jensen type with respect to k-th variable
dp: Ay x Ay x -+ x Ay —> Xand a unique partial generalized Jordan derivation of
Jensen  type  with  respect to  k-th  variable (related to dj)
Dyp: Al x Ay x - x A, — X such that

max {|Fe(x1, x2, .. xn) — di(xr %2, oo %) |, | Telxn, %2, <o) %n) = Di(x1, x2, .., x|}

< 7 ol
X
S _op k

Sforall xie Ai(i=1,2, ..., n).

Proof. 1t follows from Theorem 2.1 by putting Wi(ax) = O(||axl||?), drlaw br) = O] axr
[I” + ||bl|P) and L = 22", O
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Theorem 2.3. Let Ty Fp: Ay x -+ x A, — Xbe mappings with
Tr(x1, -..) Ok oovy X)) =F(x1, -..) Oy ..., Xn) = Ox. Assume that there exist func-

tions Wy, : Ay — [0, 00), @ : AL — [0, 00)satisfying

Aay + Aby,
ZSk(xl,.A., ) yeeerXn ) = ASk(x1, oo, Ane ooy Xn) — ASK(X1, -oes bRy oo, Xn)

’

< or(ar, br),

max{ |Fp(x1, ..., ap, ..., %u) — @eFe(xr, oo @ ooy X)) — Fe(x1, o) @ oy Xp)ag

[Texr, ooy ags ooy %) = Te(®1, <oy @ ooy Xn)ak — axFe(x1, <oy Gy ooy %)}
< W(ar)

for Sy € {Fy, Tx}; and for all reT! nl and all ay, by € Ay, xi € Ai(i # k). If there
0

exists a constant 0 <L < 1 such that ¢(ap br) < 27 Low(2ay, 2by), Pi(an) < 2 LY (2ay)
for all ay, by, € Ay, then there exist a unique partial Jordan derivation of Jensen type
with respect to k-th variable dj, : A1 x Ay x --- x A, — X and a unique partial gener-
alized Jordan derivation of Jensen type with respect to k-th variable (related to dy)
Dy: A x Ay x -+ x A, = X such that

max{”Fk(xl, X2, ooy Xn) —dr(x1, x2, ..., xn)

Te(x1, %2, - s %) — Di(x1, X2, ..., %)}

@r(2xr, 0)

L
<
—2-2L

forall x; € Ai(i=1,2, ..., n).

Proof. The proof is similar to the proof of Theorem 2.1. O

Corollary 2.4. Let p € (1, ) and 6 € [0, «) be real numbers. Let
Ty, Fp: Ay x -+ x A, = Xbe mappings such that

Aay, + Aby,
H2Sk<x1,.‘., ) yeerXn ) = ASk(X1, ooy R ooty Xn) — ASK(X1, oo bR oels X)

and
< O(laell” + 1lbel1P),

Ady, + Aby
”28k<x1,..., ) peer Xy | = ASE(X1, oo, s ooy X)) — ASR(x1, o) DRy oels Xn)

< O(llaell” + 1bell”),

max{||Fk(x1, aﬁ, coer Xp) —akBu(x1, oo an oo Xn) — Fr(%1, oo Ay oo, Xn)ar|
[ TeCxr, -ovv ags ooes xn) = TeCrrs s Qo ooy Xn)ar — arFr(xr, <oy ap ooy x|}
< 0(llal”)

for Sy € {Fi, Ti} and for all reT! nl and all ay, b, € Ay, xi € Ai(i k). Then there
0

exist a unique partial Jordan derivation of Jensen type with respect to k-th variable
dp: Ay x Ay x -+ x Ay, — Xand a unique partial generalized Jordan derivation of
Jensen  type  with  respect to  k-th  variable (related to dj)
Dp: A x Ay x -+ x A, — X such that

’

max{”Fk(xl, X2, ooy Xn) —dr(x1, x2, ..., xn)

Tk(xl, X2, «vus xn) —Dk(xl, X2, oeuy xn)“}

0
< P
<l

forall x; € Ai(i=1,2, ..., n).
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Proof. 1t follows from Theorem 2.3 by putting Wy (a)=0(||a||?), dx (@w bi) = O(||ax|
P4 ||bi||P) and L = 2" for each ay, by, € Ay O

Moreover, we have the following result for the superstability of partial generalized
Jordan derivations of Jensen type.

Corollary 2.5. Let pe (O, é)and 0 e [0, o) be real numbers. Let
T F: Al x - x A, = X be mappings such that
Tr(x1, -..) Oy oovy Xy) =Fr(x1, --., O, ..., x) =0x and

Ady + Aby
HZSk<x1,..., ) yeeorXn ) = ASk(X1, oo, A ooy Xn) — ASE(X1, o) DR ool Xn)

< e(llak”p”bk”p),

max{||Fk(x1, a,f, cooy Xn) —akFr(x1, oo Ar ooy X)) — Fr(X1, oo, an oo, Xa)ag

1Te(er, -0 age o) ) = Tk, «ovs G v )@l — @eFi(x1, ooy @ oo )}
< 0(llal”)

for Sy € {Fi Tijand for all A€ Trlnl and all ay, by, € Ay, xi € Ai(i #k). Then Fy is a
0

partial Jordan derivation of Jensen type with respect to k-th variable and Ty is a partial
generalized Jordan derivation of Jensen type with respect to k-th variable (related to Fy).

Proof. 1t follows from Theorem 2.1 by putting Wy (a)=0(||a||?), dx (aw bi) = O(||ax|
Py ||be||F), and L = 2%, 0
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