
RESEARCH Open Access

A new iterative scheme with nonexpansive
mappings for equilibrium problems
Anh PN1* and Thanh DD2

* Correspondence: anhpn@ptit.edu.
vn
1Department of Scientific
Fundamentals, Posts and
Telecommunications Institute of
Technology, Hanoi, Vietnam
Full list of author information is
available at the end of the article

Abstract

In this paper, we suggest a new iteration scheme for finding a common of the
solution set of monotone, Lipschitz-type continuous equilibrium problems and the
set of fixed points of a nonexpansive mapping. The scheme is based on both hybrid
method and extragradient-type method. We obtain a strong convergence theorem
for the sequences generated by these processes in a real Hilbert space. Based on this
result, we also get some new and interesting results. The results in this paper
generalize, extend, and improve some well-known results in the literature.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·,·〉 and norm || · ||. Let C be a none-

mpty closed convex subset of a real Hilbert space H. A mapping S : C ® C is a

contraction with a constant δ Î (0, 1), if

||S(x) − S(y)|| ≤ δ||x − y||, ∀x, y ∈ C.

If δ = 1, then S is called nonexpansive on C. Fix(S) is denoted by the set of fixed

points of S. Let f : C × C → R be a bifunction such that f(x, x) = 0 for all x Î C. We

consider the equilibrium problem in the sense of Blum and Oettli (see [1]) which is

presented as follows:

Find x∗ ∈ C such that f (x∗, y) ≥ 0 for all y ∈ C. EP(f , C)

The set of solutions of EP(f, C) is denoted by Sol(f, C). The bifunction f is called

strongly monotone on C with ß > 0, if

f (x, y) + f (y, x) ≤ −β||x − y||2, ∀x, y ∈ C;

monotone on C, if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

pseudomonotone on C, if

f (x, y) ≥ 0 implies f (y, x) ≤ 0, ∀x, y ∈ C;
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Lipschitz-type continuous on C with constants c1 >0 and c2 >0 (see [2]), if

f (x, y) + f (y, z) ≥ f (x, z) − c1||x − y||2 − c2||y − z||2, ∀x, y, z ∈ C.

It is well-known that Problem EP(f, C) includes, as particular cases, the optimization

problem, the variational inequality problem, the Nash equilibrium problem in noncoo-

perative games, the fixed point problem, the nonlinear complementarity problem and

the vector minimization problem (see [2-6]).

In recent years, the problem to find a common point of the solution set of problem

(EP) and the set of fixed points of a nonexpansive mapping becomes an attractive field

for many researchers (see [7-15]). An important special case of equilibrium problems

is the variational inequalities (shortly (VIP)), where F : C ® H and f(x, y) = 〈F(x), y -

x〉. Various methods have been developed for finding a common point of the solution

set of problem (VIP) and the set of fixed points of a nonexpansive mapping when F is

monotone (see [16-18]).

Motivated by fixed point techniques of Takahashi and Takahashi in [19] and an

improvement set of extragradient-type iteration methods in [20], we introduce a new

iteration algorithm for finding a common of the solution set of equilibrium problems

with a monotone and Lipschitz-type continuous bifunction and the set of fixed points of

a nonexpansive mapping. We show that all of the iterative sequences generated by this

algorithm convergence strongly to the common element in a real Hilbert space.

2 Preliminaries
Let C be a nonempty closed convex subset of a Hilbert space H. We write xn ⇀ x to

indicate that the sequence {xn} converges weakly to x as n ® ∞, xn ® x implies that

{xn} converges strongly to x. For any x Î H, there exists a nearest point in C, denoted

by PrC(x), such that

||x − PrC(x)|| ≤ ||x − y||, ∀y ∈ C.

PrC is called the metric projection of H to C. It is well known that PrC satisfies the

following properties:

〈x − y,PrC(x) − PrC(y)〉 ≥ ||PrC(x) − PrC(y)||2, ∀x, y ∈ H, (2:1)

〈x − PrC(x),PrC(x) − y >〉 ≥ 0, ∀x ∈ H, y ∈ C, (2:2)

||x − y||2 ≥ ||x − PrC(x)||2 + ||y − PrC(x)||2, ∀x ∈ H, y ∈ C. (2:3)

Let us assume that a bifunction f : C × C → R and a nonexpansive mapping S : C ®
C satisfy the following conditions:

A1. f is Lipschitz-type continuous on C;

A2. f is monotone on C;

A3. for each x Î C, f (x, ·) is subdifferentiable and convex on C;

A4. Fix(S) ∩ Sol(f, C) ≠ ∅.

Recently, Takahashi and Takahashi in [19] first introduced an iterative scheme by the

viscosity approximation method. The sequence {xk} is defined by:
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⎧⎨
⎩
x0 ∈ H,
Find uk ∈ C such that f (uk, y) + 1

rk
〈y − uk, uk − xk〉 ≥ 0, ∀y ∈ C,

xk+1 = αkg(xk) + (1 − αk)S(uk), ∀k ≥ 0,

where C is a nonempty closed convex subset of H and g is a contractive mapping of

H into itself. The authors showed that under certain conditions over {ak} and {rk},

sequences {xk} and {uk} converge strongly to z = PrSol(f,C)∩Fix(S) (g(x
0)). Recently, iterative

methods for finding a common element of the set of solutions of equilibrium problems

and the set of fixed points of a nonexpansive mapping have further developed by many

authors. These methods require to solve approximation auxilary equilibrium problems.

In this paper, we introduce a new iteration method for finding a common point of

the set of fixed points of a nonexpansive mapping S and the set of solutions of pro-

blem EP(f, C). At each our iteration, the main steps are to solve two strongly convex

problems
{
yk = argmin {λkf (xk, y) + 1

2 ||y − xk||2 : y ∈ C},
tk = argmin {λkf (yk, y) + 1

2 ||y − xk||2 : y ∈ C}, (2:4)

and compute the next iteration point by Mann-type fixed points

xk+1 = αkg(xk) + (1 − αk)S(tk), (2:5)

where g : C ® C is a δ-contraction with 0 < δ < 1
2.

To investigate the convergence of this scheme, we recall the following technical lem-

mas which will be used in the sequel.

Lemma 2.1 (see [21]) Let {an} be a sequence of nonnegative real numbers such that:

an+1 ≤ (1 − αn)an + βn,n ≥ 0,

where {an}, and {ßn} satisfy the conditions:

(i) an ⊂ (0, 1) and
∞∑
n=1

αn = ∞;

(ii) lim sup
n→∞

βn
αn

≤ 0 or
∞∑
n=1

|βn| < ∞.

Then

lim
n→∞ an = 0.

Lemma 2.2 ([22]) Assume that S is a nonexpansive self-mapping of a nonempty

closed convex subset C of a real Hilbert space H. If Fix(S) ≠ Ø, then I - S is demiclosed;

that is, whenever {xk} is a sequence in C weakly converging to some x̄ ∈ C and the

sequence {(I - S)(xk)} strongly converges to some ȳ, it follows that (I − S)(x̄) = ȳ. Here I is

the identity operator of H.

Lemma 2.3 (see [20], Lemma 3.1) Let C be a nonempty closed convex subset of a real

Hilbert space H. Let f : C × C → Rbe a pseudomonotone, Lipschitz-type continuous

bifunction with constants c1 >0 and c2 >0. For each × Î C, let f(x, ·) be convex and

subdifferentiable on C. Suppose that the sequences {xk}, {yk}, {tk} generated by Scheme

(2.4) and x* Î Sol(f, C). Then

||tk −x∗||2 ≤ ||xk −x∗||2 −(1−2λkc1)||xk −yk||2−(1−2λkc2)||yk − tk||2, ∀k ≥ 0.
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3 Main results
Now, we prove the main convergence theorem.

Theorem 3.1 Suppose that Assumptions A1-A4 are satisfied, x0 Î C and two positive

sequences {lk}, {ak} satisfy the following restrictions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=0

|αk+1 − αk| < ∞,

lim
k→∞

αk = 0,
∞∑
k=0

αk = ∞,

∞∑
k=0

√|λk+1 − λk| < ∞,

{λk} ⊂ [a, b] for some a, b ∈ (0,
1
L
), where L = max{2c1, 2c2}.

Then the sequences {xk}, {yk} and {tk} generated by (2.4) and (2.5) converge strongly to

the same point x*, where

x∗ = PrFix(S)∩Sol(f ,C)g(x∗).

The proof of this theorem is divided into several steps.

Step 1. Claim that

lim
k→∞

||xk − tk|| = 0.

Proof of Step 1. For each x* Î Fix(S) ∩ Sol(f, C), it follows from xk+1 = akg(x
k) + (1 -

ak)S(t
k), Lemma 2.3 and δ ∈ (0, 1

2) that

||xk+1 − x∗||2 = ||αk(g(xk) − x∗) + (1 − αk)(S(tk) − S(x∗))||2
≤ αk||g(xk) − x∗||2 + (1 − αk)||S(tk) − S(x∗)||2
= αk||(g(xk) − g(x∗)) + (g(x∗) − x∗)||2 + (1 − αk)||S(tk) − S(x∗)||2
≤ 2δ2αk||xk − x∗||2 + 2αk||g(x∗) − x∗||2 + (1 − αk)||tk − x∗||2
≤ 2δ2αk||xk − x∗||2 + 2αk||g(x∗) − x∗||2 + (1 − αk)||xk − x∗||2

− (1 − αk)(1 − 2λkc1)||xk − yk||2 − (1 − αk)(1 − 2λkc2)||yk − tk||2
≤ ||xk − x∗||2 + 2αk||g(x∗) − x∗||2 − (1 − αk)(1 − 2λkc1)||xk − yk||2

− (1 − αk)(1 − 2λkc2)||yk − tk||2.

Then, we have

(1 − αk)(1 − 2bc1)||xk − yk||2 ≤ (1 − αk)(1 − 2λkc1)||xk − yk||2
≤ ||xk − x∗||2 − ||xk+1 − x∗||2 + 2αk||g(x∗) − x∗||2

→ 0 as k → ∞,

and

lim
k→∞

||xk − yk|| = 0. (3:1)

By the similar way, also

lim
k→∞

||yk − tk|| = 0.
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Combining this, (3.1) and the inequality ||xk - tk|| = ||xk - yk || + || yk - tk ||, we have

lim
k→∞

||xk − tk|| = 0. (3:2)

Step 2. Claim that

lim
k→∞

||xk+1 − xk|| = 0.

Proof of Step 2. It is easy to see that tk = argmin { 12 ||t − xk||2 + λkf (yk, t) : t ∈ C} if
and only if

0 ∈ ∂2(λkf (yk, y) + 1
2 ||y − xk||2)(tk) +NC(tk),

where NC(x) is the (outward) normal cone of C at x Î C. This means that

0 = λkw + tk − xk + w̄, where w Î ∂2f(y
k, tk) and w̄ ∈ NC(tk). By the definition of the

normal cone NC we have, from this relation that

〈tk − xk, t − tk〉 ≥ λk〈w, tk − t〉∀t ∈ C.

Substituting t = tk+1 into this inequality, we get

〈tk − xk, tk+1 − tk〉 ≥ λk〈w, tk − tk+1〉. (3:3)

Since f(x, ·) is convex on C for all x Î C, we have

f (yk, t) − f (yk, tk) ≥ 〈w, t − tk〉∀t ∈ C, w ∈ ∂2f (yk, tk).

Using this and (3.3), we have

〈tk − xk, tk+1 − tk〉 ≥ λk〈w, tk − tk+1〉
≥ λk(f (yk, tk) − f (yk, tk+1)).

(3:4)

By the similar way, we also have

〈tk+1 − xk+1, tk − tk+1〉 ≥ λk+1(f (yk+1, tk+1) − f (yk+1, tk)). (3:5)

Using (3.4), (3.5) and f is Lipschitz-type continuous and monotone, we get

1
2

||xk+1 − xk||2 − 1
2

||tk+1 − tk||2

≥ 〈tk+1 − tk, tk − xk − tk+1 + xk+1〉
≥ λk(f (yk, tk) − f (yk, tk+1))

+ λk+1(f (yk+1, tk+1) − f (yk+1, tk))

≥ λk(−f (tk, tk+1) − c1||yk − tk||2 − c2||tk − tk+1||2)
+ λk+1(−f (tk+1, tk) − c1||yk+1 − tk+1||2 − c2||tk − tk+1||2)

≥ (λk+1 − λk)f (tk, tk+1)

≥ −|λk+1 − λk||f (tk, tk+1)|.

Hence

||tk+1 − tk|| ≤
√

||xk+1 − xk||2 + 2|λk+1 − λk||f (tk, tk+1)|

≤ ||xk+1 − xk|| +
√
2|λk+1 − λk||f (tk, tk+1)|

(3:6)

PN and DD Journal of Inequalities and Applications 2012, 2012:116
http://www.journalofinequalitiesandapplications.com/content/2012/1/116

Page 5 of 11



Since (3.6), ak+1 - ak ® 0 as k ®∞, g is contractive on C, Lemma 2.3, Step 2 and the

definition of xk+1 that xk+1 = akg(x
k) + akS(t

k), we have

||xk+1 − xk|| = ||αkg(xk) + αkS(tk) − αk−1g(xk−1) − αk−1S(tk−1)||
= ||(αk − αk−1)(g(xk−1) − S(tk−1)) + (1 − αk)(S(tk) − S(tk−1))

+ αk(g(xk) − g(xk−1))||
≤ |αk − αk−1|||g(xk−1) − S(tk−1)|| + (1 − αk)||tk − tk−1|| + αkδ||xk − xk−1||
≤ |αk − αk−1|||g(xk−1) − S(tk−1)|| + (1 − αk)(||xk − xk−1||
+

√
2|λk − λk−1||f (tk−1, tk)|) + αkδ||xk − xk−1||

= (1 − (1 − δ)αk)||xk − xk−1|| + |αk − αk−1|||g(xk−1) − S(tk−1)||
+ (1 − αk)

√
2|λk − λk−1||f (tk−1, tk)|

≤ (1 − (1 − δ)αk)||xk − xk−1|| +M|αk − αk−1| + K(1 − αk)
√
2|λk − λk−1|,

where δ is contractive constant of the mapping g, M = sup{||g(xk - 1) - S(tk - 1)||: k =

0, 1, ...} and K = sup
{√

|f (tk−1, tk)| : k = 0, 1, · · ·
}
, since

∞∑
k=0

|αk − αk−1| < ∞ and

∞∑
k=0

√
|λk − λk−1| < ∞, in view of Lemma 2.1, we have lim

k→∞
||xk+1 − xk|| = 0.

Step 3. Claim that

lim
k→∞

||tk − S(tk)|| = 0.

Proof of Step 3. From xk+1 = akg(x
k) + (1 - ak)S(t

k), we have

xk+1 − xk = αkg(xk) + (1 − αk)S(tk) − xk

= αk(g(xk) − xk) + (1 − αk)(tk − xk) + (1 − αk)(S(tk) − tk)

and hence

(1− αk)||S(tk)− tk|| ≤ ||xk+1 − xk || + αk ||g(xk)− xk || + (1− αk)|| tk − xk ||.

Using this, lim
k→∞

αk = 0, Step 1 and Step 2, we have

lim
k→∞

||tk − S(tk)|| = 0.

Step 4. Claim that

lim sup
k→∞

〈x∗ − g(x∗), S(tk) − x∗〉 ≥ 0.

Proof of Step 4. By Step 1, {tk} is bounded, there exists a subsequence {tki} of {tk} such
that

lim sup
k→∞

〈x∗ − g(x∗), tk − x∗〉 = lim
i→∞

〈x∗ − g(x∗), tki − x∗〉.

Since the sequence {tki} is bounded, there exists a subsequence {tkij } of {tki} which
converges weakly to t̄. Without loss of generality we suppose that the sequence {tki}
converges weakly to t̄ such that
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lim sup
k→∞

〈x∗ − g(x∗), tk − x∗〉 = lim
i→∞

〈x∗ − g(x∗), tki − x∗〉. (3:7)

Since Lemma 2.2 and Step 3, we have

S(t̄) = t̄ ⇔ t̄ ∈ Fix(S). (3:8)

Now we show that t̄ ∈ Sol(f ,C). By Step 1, we also have

xki ⇀ t̄, yki ⇀ t̄.

Since yk is the unique solution of the strongly convex problem

min{ 12 ||y − xk||2 + f (xk, y) : y ∈ C},

we have

0 ∈ ∂2(λkf (xk, y) +
1
2

||y − xk||2)(yk) +NC(yk).

This follows that

0 = λkw + yk − xk + wk,

where w Î ∂2f (x
k, yk) and wk Î NC(y

k). By the definition of the normal cone NC, we

have

〈yk − xk, y − yk〉 ≥ λk〈w, yk − y〉, ∀y ∈ C. (3:9)

On the other hand, since f(xk, ·) is subdifferentiable on C, by the well-known Mor-

eau-Rockafellar theorem, there exists w Î ∂2f(x
k, yk) such that

f (xk, y) − f (xk, yk) ≥ 〈w, y − yk〉, ∀y ∈ C.

Combining this with (3.9), we have

λk(f (xk, y) − f (xk, yk)) ≥ 〈yk − xk, yk − y〉, ∀y ∈ C.

Hence

λkj(f (x
kj , y) − f (xkj , ykj)) ≥ 〈ykj − xkj , ykj − y〉, ∀y ∈ C.

Then, using {λk} ⊂ [a, b] ⊂ (0, 1L ) and the continuity of f , we have

f (t̄, y) ≥ 0, ∀y ∈ C.

Combining this and (3.8), we obtain

tki ⇀ t̄ ∈ Fix(S) ∩ Sol(f , C).

By (3.7) and the definition of x*, we have

lim sup
k→∞

〈x∗ − g(x∗), tk − x∗〉 = 〈x∗ − g(x∗), t̄ − x∗〉 ≥ 0.

Using this and Step 3, we get

lim sup
k→∞

〈x∗ − g(x∗), S(tk) − x∗〉 = 〈x∗ − g(x∗), t̄ − x∗〉 ≥ 0.

Step 5. Claim that the sequences {xk}, {yk} and {tk} converge strongly to x*.
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Proof of Step 5. Using xk+1 = akg(x
k) + (1 - ak)S(t

k) and Lemma 2.3, we have

||xk+1 − x∗||2 = ||αk(g(xk) − x∗) + (1 − αk)(S(tk) − x∗)||2
= α2

k ||g(xk) − x∗||2 + (1 − αk)2||S(tk) − x∗||2
+ 2αk(1 − αk)〈g(xk) − x∗, S(tk) − x∗〉

≤ α2
k ||g(xk) − x∗||2 + (1 − αk)2||xk − x∗||2

+ 2αk(1 − αk)〈g(xk) − x∗, S(tk) − x∗〉
= α2

k ||g(xk) − x∗||2 + (1 − αk)2||xk − x∗||2
+ 2αk(1 − αk)〈g(xk) − g(x∗), S(tk) − x∗〉
+ 2αk(1 − αk)〈g(x∗) − x∗, S(tk) − x∗〉

≤ α2
k ||g(xk) − x∗||2 + (1 − αk)2||xk − x∗||2

+ 2δαk(1 − αk)||xk − x∗||||(tk) − x∗||
+ 2αk(1 − αk)〈g(x∗) − x∗, S(tk) − x∗〉

≤ α2
k ||g(xk) − x∗||2 + ((1 − αk)2 + 2δαk(1 − αk))||xk − x∗||2

+ 2αk(1 − αk)〈g(x∗) − x∗, S(tk) − x∗〉
≤ (1 − αk + 2δαk)||xk − x∗||2 + α2

k ||g(xk) − x∗||2
+ 2αk(1 − αk)max{0, 〈g(x∗) − x∗, S(tk) − x∗〉}

= (1 − Ak)||xk − x∗||2 + Bk,

where Ak and Bk are defined by
{
Ak = αk(1 − 2δ),
Bk = α2

k ||g(xk) − x∗||2 + 2αk(1 − αk)max{0, 〈g(x∗) − x∗, S(tk) − x∗〉}.

Since lim
k→∞

αk = 0,
∞∑
k=1

αk = ∞, Step 4, we have lim sup
k→∞

〈x∗ − g(x∗), S(tk) − x∗〉 ≥ 0 and

hence

Bk = o(Ak), lim
k→∞

Ak = 0,
∞∑
k=1

Ak = ∞.

By Lemma 2.1, we obtain that the sequence {xk} converges strongly to x*. It follows

from Step 1 that the sequences {yk} and {tk} also converge strongly to the same solu-

tion x*= PrFix(S)∩Sol(f,C)g(x*).

□

4 Applications
Let C be a nonempty closed convex subset of a real Hilbert space H and F be a func-

tion from C into H. In this section, we consider the variational inequality problem

which is presented as follows:

Find x∗ ∈ C such that 〈F(x∗), x − x∗〉 ≥ 0 for all x ∈ C. VI(F, C)

Let f : C × C → R be defined by f(x, y) = 〈F(x), y - x〉. Then Problem EP(f, C) can be

written in VI(F, C). The set of solutions of VI(F, C) is denoted by Sol(F, C). Recall that

the function F is called strongly monotone on C with ß >0 if

〈F(x) − F(y), x − y〉 ≥ β||x − y||2, ∀x, y ∈ C;
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monotone on C if

〈F(x) − F(y), x − y〉 ≥ 0, ∀x, y ∈ C;

pseudomonotone on C if

〈F(y), x − y〉 ≥ 0 ⇒ 〈F(x), x − y〉 ≥ 0, ∀x, y ∈ C;

Lipschitz continuous on C with constants L >0 if

||F(x) − F(y)|| ≤ L||x − y||, ∀x, y ∈ C.

Since

yk = argmin{λkf (xk, y) +
1
2

||y − xk||2 : y ∈ C}

= argmin {λk〈F(xk), y − xk〉 + 1
2

||y − xk||2 : y ∈ C}
= PrC(xk − λkF(xk)),

(2.4), (2.5) and Theorem 3.1, we obtain that the following convergence theorem for

finding a common element of the set of fixed points of a nonexpansive mapping S and

the solution set of problem VI(F, C).

Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H, F

be a function from C to Hsuch that F is monotone and L-Lipschitz continuous on C, g :

C ® C is contractive with constant δ ∈ (0, 1
2), S: C ® C be nonexpansive and positive

sequences {ak} and {lk} satisfy the following restrictions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=0

|αk+1 − αk| < ∞,

lim
k→∞

αk = 0,
∞∑
k=0

αk = ∞,

∞∑
k=0

√|λk+1 − λk| < ∞,

{λk} ⊂ [a, b] for some a, b ∈ (0, 1
L ).

Then sequences {xk}, {yk} and {tk} generated by

⎧⎨
⎩
yk = PrC(xk − λkF(xk)),
tk = PrC(xk − λkF(yk)),
xk+1 = αkg(xk) + (1 − αk)S(tk),

converge strongly to the same point x* Î PrFix(S)∩Sol(F,C)g(x*).

Thus, this scheme and its convergence become results proposed by Nadezhkina and

Takahashi in [23]. As direct consequences of Theorem 3.1, we obtain the following

corollary.

Corollary 4.2 Suppose that Assumptions A1-A3 are satisfied, Sol(f, C) ≠ Ø, x0 Î C

and two positive sequences {lk}, {ak} satisfy the following restrictions:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=0

|αk+1 − αk| < ∞,

lim
k→∞

αk = 0,
∞∑
k=0

αk = ∞,

∞∑
k=0

√|λk+1 − λk| < ∞,

{λk} ⊂ [a, b] for some a, b ∈ (0, 1
L ), where L = max{2c1, 2c2}.

Then, the sequences {xk}, {yk} and {tk} generated by
⎧⎨
⎩
yk = argmin {λkf (xk, y) + 1

2 ||y − xk||2 : y ∈ C},
tk = argmin {λkf (yk, y) + 1

2 ||y − xk||2 : y ∈ C}
xk+1 = αkg(xk) + (1 − αk)tk,

where g : C ® C is a δ-contraction with 0 < δ < 1
2, converge strongly to the same

point x*=PrSol(f,C)g(x*).
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