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Abstract

Recently, Gupta and Wang introduced certain g-Durrmeyer type operators of real
variable x € [0, 1] and studied some approximation results in the case of real
variables. Here we extend this study to the complex variable for analytic functions
in compact disks. We establish the quantitative Voronovskaja type estimate. In this
way, we put in evidence the over convergence phenomenon for these g-
Durrmeyer polynomials; namely, the extensions of approximation properties (with
quantitative estimates) from the real interval [0,1] to compact disks in the
complex plane. Some of these results for g = 1 were recently established in
Gupta-Yadav.
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1. Introduction
In the recent years applications of g-calculus in the area of approximation theory
and number theory is an active area of research. Several researchers have proposed
the g analogue of exponential, Kantorovich and Durrmeyer type operators. Also Kim
[1,2] used g-calculus in area of number theory. Recently, Gupta and Wang [3] pro-
posed certain g-Durrmeyer operators in the case of real variables. The aim of the
present article is to extend approximation results for such g-Durrmeyer operators to
the complex case. The main contributions for the complex operators are due to Gal;
in fact, several important results have been complied in his recent monograph [4].
Also very recently, Gal and Gupta [5-7] have studied some other complex Durr-
meyer type operators, which are different from the operators considered in the pre-
sent article.

We begin with some notations and definitions of g-calculus: For each nonnegative
integer k, the g-integer [k], and the g-factorial [k],! are defined by

— g —
[k],,;:{;(; q9/(1 - aq), q;:ll’
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and

1

[k]q' Z={[l}f]q[k_l]q“'[1]ql ki=0

respectively. For the integers n, k, n > k > 0, the g-binomial coefficients are defined
by

|:n] o [n]q!
k1, [kl — k],

In this article, we shall study approximation results for the complex g-Durrmeyer opera-
tors (introduced and studied in the case of real variable by Gupta-Wang [3]), defined by

Mag(fi2) = [n+ 13 > 4" " pur(d;2) f F(Opnr-1(q; qt)dqt + f(0)pno(q; ),  (1.1)
k=1 0

where ze C,n=1,2,...;9€ (0,1) and (a—b)j = H;’ial(a — ¢'b), q-Bernstein

basis functions are defined as
R L n—k
paled) = | ] #0 -
q
also in the above g-Beta functions [8] are given as

1

By(m, n) = [¢"'(1 —qt);~"dgt, m, n> 0.
0

Throughout the present article we use the notation Dr = {z € C: |z| < R} and by H

(Dg), we mean the set of all analytic functions on f: Drp — C with f(z) = Z:o arZ

for all z e Dpg. The norm |[|f||, = max{|[f(z)| : |z| < r}. We denote 7, (§; 2) = M,,; (ey
z) foralle, = ¢, pe N U {0}.

In what follows, we shall study the approximation properties of the operators M, ,(f;
z), which is extension of the results studied in [10]. Further, for these operators we will
estimate an upper bound, a quantitative Voronovskaja-type asymptotic formula, and
exact order of approximation on compact disks.

2, Basic results
To prove the results of following sections, we need the following basic results.

Lemma 1. Let g € (0, 1). Then, n,,,(q; z) is a polynomial of degree < min (m, n),
and

[n+1],!

5 6 (m)[nfsBugles ),

Tmn(4;2) = [n+m+ 1]q! s=1

where c(m) 2 0 are constants depending on m and q, and B, (f; z) is the gq-Bernstein

polynomials given by By 4(f;z) = Z;O Pne(q; 2)f ([k],/[n],) -
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[m—1],![n—1],!

(men—1],1 > W€ have

Proof. By definition of g-Beta function, with By(m, n) =

T (@52) = [+ 11y 3 ¢ pua(@:2) f P (@ q0) " dgt

k=1

= [n + 1](] quikpn,k(q;z)/ |:kf ]:| (q[)k71(1 qt)n k+1 md ¢
k=1 0 q

" [n] !

= [n+1]q;pn,k(q;z)[k_ . ![nq_k+1]q!Bq(k+m, n—rk+2)
~ [n+1],! [k+m—1],!
T neme1],! ;;p”’*(q'z) —1],!

For m =1, we find

[n+1],!

@2 = o

[k]
> a2 - 2]q ank(q,z)[nlq i,

q° k=1
= ns 2}42[% na(es2),

thus the result is true for m = 1 with ¢;(1) = 1 > 0.
Next for m = 2, with [k + 1], = 1 + g[k],, we get

[n+1],! [n+1],!
720 (0;2) = ln+31z §pnk(q 0l = o [l 2) - B )
[n
“ ns 3] Y @l uale),
q° s=1

thus the result is true for m = 2 with ¢;(2) = 1 >0, ¢»(2) = g >0.

Similarly for m = 3, using [k + 2], = [2], + qz[k]q and [k + 1], = 1 + g[k], we have

e i55(3)["];Bn,q(€s}Z),

7T3 ”(q’ z) [n 4 =

where ¢;(3) = [2]; >0, ¢x(3) = 2¢* + q >0, and ¢5(3) = ¢° >0.

Continuing in this way the result follows immediately for all m € N. O

Lemma 2. Let g € (0, 1). Then, for all m, n € N, we have the inequality
[n+1],!

ftcs(m)[nr <1,

[n+m+1],! <

Proof. By Lemma 1, with e,, = £”, we have

[n+1],! &

(1) = [n+m+ l]q! =

ci(m)[n]Bnq(es 1) = [n+m 1] ch(m)[n]s
q° s=1

Also

Pu(d; 2) = |: ] k(l —2)(1—q=2)(1 —¢q Z) (1 qnfkflz).

q
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It immediately follows that p, x(q; 1) =0, k=0,1,2,...,n-1and p, (g 1) = 1.
Thus, we obtain

1
Tmn(q; 1) = [n+ Ugpnn(q; 1)g'™" /Pn,n—l (@ qt)t"dgt
0

1
=[n+ 1|q/ [n],"" (1 — qt)dgt
0

(nm tn+m+1 i| 1

[n+m], —q

= [n+1]4[nly |:

) [n+1],[n],
[n+m][n+m+1], —

[n+m+1], 0

o
Corollary 1. Let r > 1 and q € (0, 1). Then, for all m, n €e NU{0} and |z| < r we
have |1,,,(q; 2)| < r".
Proof. By using the methods Gal [4], p. 61, proof of Theorem 1.5.6, we have |B,,, (es;
z)| < 7, By Lemma 2 and for all m e N and |z] < r,

m

> cs(m)[nl|Bpg(es 2)]

s=1

Z cs(m)[nfyr' <™.

s=1

Al < [n+1],!
Imn(d2)] = [n+m+ 1]q!
[n+1],!

<
T [n+m+ 1]t
o

Lemma 3. Let g € (0, 1) then for z € C, we have the following recurrence relation:

¢’ [n] =+ [p],
[n+p+2],

¢z(1 — z)

[n+p+2]q Tpn(4; 2)-

Tpe1,n(q2) = Dygmpn(q; z) +

Proof. By simple computation, we have
(1-2)Dg(pui (4:2)) = (Ikly- [1],2) Pus(a; 2),

and
(1 = G)Dq (P (63 40)) = (1 = 11, = [1],0¢) P (05 1),

Using these identities, it follows that

n 1
2(1 = 2)Dg(mpn(;2)) = [n+ 1]y D _q" ™" ([qu - [n]qz) Pui(d:2) / Pri1(4; gt) ¢ dgt
0

k=1

N 1
=[n+1], qu_kﬂn,k(lﬁ z)/ (1 +qlk—1], - [n]qqzt + [n]qq2t)pn,k,1(q; qt)iPd,t
0

k=1

1
n
—Z["]q[” + 1]4 Z ql_kpn,k(q; Z) /pn,k—l (61? qt)tpdqt

=1 9

n 1
=qln+1lg )" a" "pui(ai2) / (Dgbni—1(a; at))t(1 — qt)tdgt
0

k=1

+7p0(; 2) + [n)q@* 7ps1,n (45 2) — 2[n]g7pn(; 2).
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p 1
Let us denote §(t) = ,;(1 _t)<f,> = e (#*' — #*2). Then, the last g-integral

becomes

1 1
/mm%Mwmuﬂm%w/mm%mewmt
0 0

1
=wm%Mwm—/%Hmmmwmt
0
1
=—q ! / Pje—1(q; Gt)Dg(t"*" — 72)dyt
0
1
=—q " p+1] f Pnje—1(q; qt)PPdgt
0

1
+q P p+ 2], / Pre—1(q; gE)P* dgt
0

and hence

2(1 = 2)Dgrpn(q;2) = =4 P[p + Ugmtpn(q:2) + 4P [p + 2]g7p1,0(4; 2)
+10p,0(q; 2) + [n]qqznml,n(q; z) — z[n]ympa(q; 2).

Therefore,
z(1 —z) [nlz+q7Plp+1], -1
Tpe1n(g;2) = Dympn(g;z) + yn(q; 2
@ g, o (a2 DD g a2, g2 T
Pz(1 — ¢ [nlgz+ ]
74 ?) Dympn(q;2) + q a Tpn(g; 2).

" [p+2], + [n],gr [p + 2], + [n] "+

Finally, using the identity [p + 2], + [#], FP=m+p+ 2], we get the required

recurrence relation. O

3. Upper bound
If P,, () is a polynomial of degree m, then by the Bernstein inequality and the complex
mean value theorem, we have

IDgPm(2)l < |IPylly <

m
[|Pp||for all|z| <.
r

The following theorem gives the upper bound for the operators (1.1).
Theorem 1. Let f(z) = 2:0 ap? for all |z| < R and let 1 < r < R, then for all |z| < r,

qge (0,1)and neN,

Myg(fi2) — fl)l < 0

~[n+2],

where K:(f) = (1 +71) Z:l laylp(p + 1)r" ! < 0.
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Proof First, we shall show that Mn,q(f;z)=Z:0 apmpn(g;2). If we denote

m .
fm(z) = Zj:o iz, |z] <1 with m € N, then by the linearity of M,, ;> we have

m
My q(fniz) = 2 apmpn(q; 2).
p=0

Thus, it suffice to show that for any fixed n ¢ N and |z| < r with r > 1, lim,,,_,.. M,,,
(fw 2) = M,, ,(f; z). But this is immediate from lim,,_,.. [|f, - f]|, = 0 and by the
inequality

—Myq(fmi 2) - My q(f5 2)—

n 1
< 1n(0) = O = 2)" |+ [n+ 11y Y Ipne(gi2)lg" ™ [ P (@, G0 fin () — F(O)1dgt
0

k=1

= Cr,n”fm _fllr/

where

1
n
Con= (e e 1Y [ ] (e [ i s@ande
k=1 q 0
Since, 19,,(q; z) = 1, we have

Mng(f;2) = f@)] < Y lagllmpn(d:z) — ey(2)].

p=1
Now using Lemma 3, for all p > 1, we find

¢ 'z(1 — 2)
[n+p+1],
qp_l[n]qz"' [p_ 1]q
[n+p+1],
qp_l[n]qz + [p - 1]q p—1 _ b

[n+p+1],
gtz (1 —2) '
[Tl+p+ 1]q Dq(n’P*L"(q'z))
qp_l[n]qz+ [P_ 1]q
[n+p+1],
=1 5, g nl,—[n+p+ g ,
[n+p+1], [n+p+1],

Tpn(d;2) — €p(2) = Dy(tp-1,1(4: 2))

(7p-1(4:2) — €p-1(2))

(p-1(4:2) — p-1(2))

However

qpil[n]q - [n+p+ 1]qu
[n+p+1],

qpil[n]q - [p - I]q - qpil[n]q - qn+p71 - qn+p

p
[n+p+1], £

_ b,
- [n+p+1]q
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Combining the above relations and inequalities, we find

1+ -1
170n(d2) = (2| < ;(1 . 2]1 P @2,
+1
+T|mp—1,0(q; 2) — ep—1(2)] + {Z . 2}: rﬂ—l(l +7)

_ @+ - 1)Tp—1 +T|7p—1,1(q: 2) — ep—1(2)|

[n+2],
p+1l,
’ [1’1 + 2]qrp 1(1 ’ T)
<2p [511++2T])q P+ r17p—1,n(q 2) — ep—1(2)I.

From the last inequality, inductively it follows that

ton(4:2) — ()] <1 (flﬂp—zm(q; )o@+ 2P D r)rp-l)

[n+2],
2 [(nl++2r])q 1
- im0 —g2@1+ 2 ) 1)
<. < [(nl:;])qp(p 1)
Thus, we obtain
1er

> laglp(p + 1)r"

n+2|, P

Muq(fi2) = f(@)] < Y lap|- 1mpn(@:2) — ep(2)| < [

p=1

which proves the theorem. O

Remark 1. Let g € (0, 1) be fixed. Since, r}LIglo [njz]q =1 —(q.Theorem 1, is not a con-
vergence result. To obtain the convergence one can choose 0 <q, < 1 with q,, 7 1 as n

— oo. In that case [né]q — 0 as n — oo(see Videnskii[9], formula(2.7)), from Theorem

1 we get My q,(f;2) = f(2), uniformly for |z| < r, and for any 1 < r < R.

4, Asymptotic formula and exact order

Here we shall present the following quantitative Voronovskaja-type asymptotic result:
Theorem 2. Suppose that fe H(Dg), R >1. Then, for any fixed r € [1, R] and for all

neN, |z| < r and q € (0, 1),
(1 =2)f"(2) = 24f'(2) | _ M:(f)

[], ~ Inlg

where M, (f) = Z:l |ag| kB, 7" < 0o, and

have|M,4(f;z) — f(2) — . +2(1—q) ioj | ay, |kr*,
k=1

Biy = (k—1)(k—2)(2k — 3) + 8k(k — 1)? + 6(k — 1)k? + +4k(k — 1)?(1 +71).
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Proof. In view of the

proof of Theorem 1,
My4(f;z) = Zk:o a7,n(q; 2) . Thus

we can write

‘Mn,q(f; z) — f(z) — z2(1 — 2)f"(z) — 2zf'(2)

[,
<Y lal
k=1

T (q; 2) — en(z) — (k(k—1) —[:](k +1)z)2" !
q

’

for all ze Dg n e N. If we denote

— _ + k—
Ek,n(q; z) = nk,n(q; Z) _ ek(Z) _ (k(k 1) k(k 1)Z)Z 1[
(],

then E;,(q; z) is a polynomial of degree < k, and by simple calculation and using
Lemma 3, we have

Ly d7z(1-2) o q T ]+ =11, , _
Epn(g;2) = n+k+ 1](] Dqu,”,(q, z) + n+k+ 1]q Er—1,0(q: 2) + Xin(q: 2),
where
k—2
Xk,n(q;z) =

il ok 1,19 O D= 2Dl 20y = 1= 1)k = 2)

w2 (¢l lk = 11, = ¢ 0= 1)k = 2 = 2], = ¢l = D[k~ 11,
+q"[n], (k= 1)k — 2) + [k = 1] [n], — [k = 1] Je(k — 1) — (ke — 1)[n + ] + 1]q)
2 (k(k+ Dln+k+ 1], — [l [n+k+ 1], — ¢ [n] (k- 1)

+ 7 [l + el = D[k — 1], — 4" [ [k~ 11,)]

Zk—2

= [l n +k+ I]q(Xl,q,n(k) +2Xa,qn(k) + 2 X3,4n (k).
Obviously as 0 < g <1, it follows that
1X1,qn(R) < (k—1)(k—2)(2k — 3).
Next with [n + k + 1], = [k - 1], + f’l[n]q + ¢ + g™ we have

Xaqn(k) = [nlq (e = 11, + [k = 1], = 247 (k= 1))

— ¢ (k= 1)k~ 2)[k — 2], — ¢kl — D[k~ 1],
— [ = k(e — 1) — k(k = 1)k = 1]y — k(e — 1)q"*" — k(le — 1)q"*

and

[lg ("1l = 10, + [k = 1], = 24" (k= 1))
= [mlgd" " (1 = 1y = (e = 1)) + [nly([k = 1], = "7 (e = 1))

k=2 k-1
= nled'™ (@ = 1) 2 Gl + Inla(1 = ) Yl
j=0 )
k-2 k-1

=d N = 1) Y Ll + (1 =) Y lild

j=0 j=1
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Thus,
(Xoqn(R)l = (k= 1)[k = 2]g+ (k—1)[k—1]q
+(k—1)(k—2)[k— 2], +k(k — 1)[k — 1], + [k — 1] k(k — 1)
+k(k—1)[k—1], +k(k—1) +k(k—1)
< 8k(k —1)°.
Now we will estimate X, ,(k):
Xsqn(k) =k(k+1)[n+k+1];— [nlgln + k+ 1]y — ¢ [nlgk(k — 1)

+ g7 n)Z +d k(e = 1)[k— 1]y — ¢ [n]g[k — 1],

=k(k+1) ([k — 1+ g ], + g+ qu)

= g (= 10, + @[l + " 4 ) = ¢ [l e — 1)

+ 4 [n]g + ¢ Rk = 1)k = 1]y — ¢ [n]lk — 1]

= k(s 1)l = g + (e 1) (4771 + g"F) = [l 1k = 1],

— [nly (quq +qn+k> +2qu’][n]q

+ 4 k(k = 1)[k = 1]y = ¢ nlylk — 1],

= [nlg (="l = 11, = [k = 1], 44" 2k) — g™ = ¢)

+ k(k+ 1)k — 1]+ k(k+ 1)@ + %) + ¢ k(k — 1) [k — 1],

= = [nlgd" ' (Ik = 1g — (k= 1)) + [n]gq" " (1 = ¢") + [nly(kq" " = [k = 1], — g"*)

+h(k+1)[k— 1]; +k(k+ 1)(g""* " + ¢™*) + ¢ k(k — 1) [k — 1],

= = [ngd 7 ([k = 1]g = (k= 1)) + [n]gq" ' (1 = ¢") = [nlg([k = 1] = (k= 1)4""")
— (@™ = @) + e+ D[k = g+ k(ke+ 1)@+ ¢™F) + ¢* (k= 1)k = 1]

k=2 k—1

=—d7d" =) il - A =a) D[l d T+ A= gl

0 1
— [l (@™ = @) + Rl + V)l = 1]y + k(e + 1) (@ + ¢ + ¢ k(e — 1)[ke — 1],

Hence, it follows that
(X340 (R)| < (k= 1)[k—2]g + (k= 1)[k = 1]g + (1 — g")[n]4
+(1— q"”)[n]q +k(k+1)[k—1];+2k(k+1) + k(k — 1)[k — 1],
< 6(k = 1)* + (1 = q")[nly + (1 — g™ ") [nly.

Thus,
X (g;2)| < I:]j (k=1)(k—2)(2k — 3) + r8k(k — 1)2 + r26(k - l)kZ)
Zk n k n+1
+ [n]q(l —q")+ n+ l]q(l—q )
- f:]z (k= 1)(k — 2)(2k — 3) + r8k(k — 1)2 + 126(k — 1)k?) + 2r*(1 — q)
q

forallk>1, neN and |z] < r
Next, using the estimate in the proof of Theorem 1, we have

(1+ 1)kl + 1)

|7 (q;2) — er(2)| < n+2],

’

forallk, neN, | z| <rwithl<r

Page 9 of 13
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Hence, for all k, n e N, k> 1and | z | < r, we have

dr(1+r) qk’l[n]qr+ [k — 1],
Epn(q; = E,_ ; Er—1,0(q; | Xi,n (g 2) 1.
|Ein(q;2)| < [n+k+1]q| —1n(@ 2) |+ ke 1], |Er—1,n(q; 2)1 + | Xi,n (q; )|
. =1l el
However, since quzgﬁ? < [;S;?]q da’ [[Zh:u”]: ll”r, it follows that
(1 +71)

|En(q:2)] < [n IEj_1 (@ 2)| + T|Ek—1,n(; 2)| + [Xipn (q; 2)1-

+k+1],

Now we shall compute an estimate for —E;_, ,(¢; 2)—, k > 1. For this, taking into

account the fact that Ex,, (¢; z) is a polynomial of degree < k - 1, we have

k—1
|E/k71,n(q;z)| = ’ IEk—1,nllr

< -l 71,1 — €e—1lr + (U= 1)k = 2) = k(k = Derjera]
r [n], .
_ k=) [(Uen)(k= 1) k(= 1)(1+1)
- T [n+2], [n],
_ k(e ~ 1)? oy Ak(k—1)%2
< [”]q [2rk 2 4 ok 2] = [”]q
Thus,
r(L+r) o Ak = 1) (1+ )t
[n+k+ 1]q'Ek—1f"(q’z)' = [n]?
and
—12(1 + )t
|Ern(q;2)| < Helle = 1) 2(1 r +T1Ee—1,n(4; 2)| + [Xin(q; 2) 1,
[n]q
where

ke
.
Xin(d:2)l < Ar+2r%(1 = q),
[n]q
forall |z | <rn k=1, neN, where
Ap = (k—1)(k—2)(2k — 3) + 8k(k — 1) + 6(k — 1)k2.

Hence, forall |z |<n k=21, neN

k

.

|Ekn(q;2)| < 1l1Er—1,n(q: 2)| + (]2 By, +21%(1 — q),
a

where By, is a polynomial of degree 3 in k defined as

By = Ap, + 4k(k — 1)2(1 + 7).

Page 10 of 13
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But Ey, (g; z) = 0, for any z € C, and therefore by writing the last inequality for k =
1, 2, ... we easily obtain step by step the following

k
|Ern(q;2)] < ZB”+2r (1—q)_ Bkr+2rkk(1—q)
[ ]q] 1 [ ]q

Therefore, we can conclude that

Mug(fi2) — () = 0 AT E =2 EN 5™ i g2)
k=1

[n],

R Z |ax| KBy, 7" + 2(1 — q) Z | ap [er*.

_[]‘1k1 k=1

AsfW(z) = Z:i; ark(k — 1)(k — 2)(k — 3)2"* and the series is absolutely conver-
o0 4
gent in |z| < r, it easily follows that Zk_4 |ag|k(k — 1) (k — 2)(k — 3)** < 0o, which
implies that 2:1 |ak|kBk,rk < 00. This completes the proof of theorem. O

Remark 2. For g € (0, 1) fixed, we have [,,I]q — 1 —qas n— o, thus Theorem 2 does
not provide convergence. But this can be improved by choosing 1 — nlz <qgn <1 with q,
7 1 as n — . Indeed, since in this case ["L —>0as n —> o and

1—gn< b < = ]2 Sfrom Theorem 2, we get

2(1-2)f"(2) = 24f'(2)| _ M:(f) = 2
W(f12) = f(2) — < S laglk.
Mna [n],, 3, " (g, 5
Our next main result is the exact order of approximation for the operator (1.1).

Theorem 3. Let 1 — nlz <gyn<1,neN, R >l and let fe H(Dg), R >1. If fis not a
polynomial of degree O, then for any r € [1, R), we have

G(f)

, neN,
la,

(1M g, (f;-) = fllr = n

where the constant C,(f) >0 depends on f, r and on the sequence (qn)nen, but it is
inde-pendent of n.
Proof. For all z € Dg and n € N, we have

My, (fi2) — f(z)—[] [2(1—2) [ (2) — 22f (2)
qn

1 . z(1 — 2)f"(z) — 2zf'(2)
“lnl, :[nlﬁn (Mn,qn (f;2) —f(2) - ], )” :

We use the following property.

IF+Gllr = IFll; = IGIl:] = [IFll; = [IGl];-
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to obtain

Mg, () = fllr = ["Ln [llex(1 = en)f” — 261/l

1
“p, {[’”5" ” |

By the hypothesis, fis not a polynomial of degree 0 in Dg, we get ||e1(1-e1)f*-2e1 f||,
>0. Supposing the contrary, it follows that z(1 - z)f“(z) - 2zf(z) = 0 for all |z| < r, that
is (1 - 2)f*(2) - 2f(2z) = O for all | z| < r with z = 0. The last equality is equivalent to [(1
-2) f(2)] - f(z) =0, for all |z] < r with z # 0. Therefore, (1 - 2) f(z) - fiz) = C, where C

is a constant, that is, f(z) = lc_zz, for all |z| < r with z = 0. But since fis analytic in D,

61(1 — 81) g 261](,
(g,

Mg, (f;) = f =

and r > 1, we necessarily have C = 0, a contradiction to the hypothesis.

But by Remark 2, we have

2 1(1 —e)f" — 2eif’ x
[n]2 ‘ e[n]qn ‘ M) +2 3 | i,

Mg, (fi) —f —

r

with I"L — 0 as n — oo. Therefore, it follows that there exists an index n, depend-
ing only on £, r and on the sequence (g,),, such that for all n > ny, we have
lle1 (1~ e1)f"~ 2exf"|lr
er(1—en)f” —2eif }
.

[nl,

1
> 2||€1(1 —e))f" = 2eif'll,

Mg, (fi) —f —

1 2
“nl,, {[”]""

which implies that
1 1" 4
[IMaq, (f; ) = fllr = llex(1 —e1)f” — 2eaf'|lr, Yn = no.
2[n],,

For 1 < m < ny - 1, we clearly have

Crn(f)
M ;' - > ' ’

[IMnq,(f;-) = fllr = Inl,

where ¢ (f) = [nlg, - IMnq, (f; -) = fll; > 0, which finally implies

_ Gl

> Jforalln e N,
(],

[IMy,q,(f; ) = fllr
where

C/(f) = min {cm(f), cra(f) oo Crmg—1(f), ;Hel(l —e)f" — 2e1f/||r} .

0

Combining Theorem 3 with Theorem 1 we get the following.
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Corollary 2. Let 1 — ,,12 < (qn < 1for all n e N, R >1, and suppose that f € H(Dg). If
fis not a polynomial of degree O, then for any r € [1, R), we have

, neN,

1
Mg, (f; ) = fllr ~ [nl,,

where the constants in the above equivalence depend on f, r, (q,),, but are indepen-
dent of n.

The proof follows along the lines of [7].

Remark 3. For 0 < o < B, we can define the Stancu type generalization of the opera-
tors (1.1) as

[n],t+a

n 1
aBr. - 1-k . . ; d o . - 2).
Mg (fiz) = [n+1]4 k§=1 q pn,k(a,Z)0/f< [nl, + ) Puje—1(q; qt)dgt+f ([n]q +ﬂ> Pno(q;2)

The analogous results can be obtained for such operators. As analysis is different, it
may be considered elsewhere.
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