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Abstract

The main purpose of the present article is to establish some new sharp integral
inequalities in 2n independent variables. Our results in special cases yield some of
the recent results on Pachpatter, Agarwal and Sheng’s inequalities and provide some
new estimates on such types of inequalities.
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1 Introduction

Inequalities involving functions of # independent variables, their partial derivatives,
integrals play a fundamental role in establishing the existence and uniqueness of initial
and boundary value problems for ordinary and partial differential equations as well as
difference equations [1-10]. Especially, in view of wider applications, inequalities due to
Agarwal, Opial, Pachpatte, Wirtinger, Poincaréand et al. have been generalized and
sharpened from the very day of their discover. As a matter of fact these now have
become research topic in their own right [11-14]. In the present article we shall use
the same method of Agarwal and Sheng [15], establish some new estimates on these
types of inequalities involving 2# independent variables. We further generalize these
inequalities which lead to result sharp than those currently available. An important
characteristic of our results is that the constants in the inequalities are explicit.

2 Main results
Let R be the set of real numbers and R” the n-dimensional Euclidean space. Let E, E’

be a bounded domain in R” defined by E x E' = H?—1 [ai, bi] x [ci,di],i=1,..,n. For

X, ¥, € Ri=1,..,m (%Y =&, . X, Y1, - ¥, is a variable point in E x E" and dxdy
= dx; ... dx, dy; ... dy,. For any continuous real-valued function u(x, y) defined on E x
E we denote by [¢ [p u(x, y) dxdy the 2n-fold integral

by
/---/anb”/cldl..-/cnd"u(xl,...,xn,yl,...,yn)dxl...dxndyl...dyn,
a
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and for any (x, y) € E x E, [E(x) [E'(x)u(s, t) dsdt is the 2n-fold integral

/alx‘ ---/a,,x"/cly‘ ---/c,,y"u(sl,...,sn, e, t)dxy ... dspdty ... dty,,

We represent by F(E x E) the class of continuous functions u(x, y) : E x E — R, for

each i1 <i<mn,
u(x,y) |xf:a,- =0,u(x,y) |yi:va =0,u(x,y) |xi:bi =0,u(xy) |)’i:di =0,(i=1,...,n)
the class F(E x E’) is denoted as G(E x E).
Theorem 2.1. Let I, 4, A > 1, be given real numbers such that lll + i = 1. Further, let

u(x, y) € G(E x E). Then, the following inequality holds
] 1 (< i (-1) Yu
[ [ Ehonfas = ), (;[(bf —ai)(ci—df)lﬂ) ([ [ mtsn| " asar)

12
x(fE/ E' | grad u(x,y) ||; dxdy) ,

A) 1/n

Proof. For each fixed i, 1 < i < n, in view of

(2.1)

where

n

|grad u(x,y)||, = (Z

i=1

2
u(xy)

axiayi

u(x, y) |xi=ﬂi = 0' u(x' Y) |Yi=Ci = O' u(x, y) |xi=bi = O' u(x, y) |Yi=di = O' (l = 1' e n)

we have
82
ul(x, ) =ul_1(x, ) f a;s / ¢ u(x, y; si, t;)ds;d;, (2.2)
ds;0t;
and
82
ul(xy) =u" 1 (x, )’)/xih/‘)’idi u(x, y; si, ti)ds;dt;, (2.3)
ds;0t;
where

u(x/ Vi Sis tl) = u(xlr e Xi— 1 St Xig s oo o Xy Y10 e o0 Vie1s L, Viels oo rYn)-

Hence, from (2.2) and (2.3) and in view of the arithmetic-geometric means inequality
and Holder inequality with indices ¢ and A, it follows that

1 — , |92
lux,y)| < 2|u(x,y)|l 1faib1/cid’ aSiatiu(x,y;si, t;) |dsidt;
) 22 N 1/ (2.4)
- ; )
<, s )| ‘[(h—m)(a—d»]lf“( Ja [ | s 50 dsid”) |

Now, summing the inequalities (2.4) for 1 < i < n, integrating over E x E’ and apply-
ing Holder inequality with indices ¢ and 4 two times, we get
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/E/E/|”(x/ V)|ldxd)’ = 21n ; [(b; — ai)(ci — di)]'*

x/E/E’]u(x,y)]l_l (/ aibi/Cidi

= (/ [ Elu y)|(”>“dxdy> : Z [(b: — a) (i — )]

x(/E/E//aib'/cid'

21n (/ E / E/]u(x, Y)‘(l_l)udxd)’> " g [(bi — ai)(ci — di)]m“l/k
(fefe )"

21n (/ E/E/’“(xr Y)‘(H)ded)’> " (é [(bi — ai)(ci — di)]”) "
x(/E/E/ | grad u(x, y) ||idxdy) l/k,

32
7 ; ‘/ t
asiatiu(x Vi l)

A 1/x
dsidt,) dxdy

1/

32
7 ; ‘/ t
35iatiu(x Visi l)

A
ds;dt; dxdy)

IA

u(x,
axiayi

IA

where

n 2

5 N\ 1/
|grad u(x,y)||, = (Z . u(x,y) ) ,

The proof is complete.

Remark 2.1. Let u(x, y) reduce to u(x) in (2.1) and with suitable modifications, then

(2.1) becomes

/E|u(x)|(’)"dx 5 21n </ E|u(x)|(”)"dx) Ui (g"; (b — ai)ﬂ> 1
X (/ E |grad u(x) |} dx) l/k,

K) 1/

This is just a important inequality which was given by Agarwal and Sheng [15].

where

n

ngad u(x) ”)\ = (Z

i=1

d
o (%)

Remark 2.2. For the given real numbers [, > 0, 1 < k < r, such that rl; > 1, the arith-

metic-geometric means inequality and (2.1) gives

/E/E’E|uk(x,y)|’kdxdy§ ii/E/E’|uk(x,y)
= onr <Z[(b —ai)(cz—d)]“)w ' (/ /E Jug(x, )" 1’“dxdy>/ (2.5)

/i
x (/ E/E/ | grad w(x, y) Hi dxdy) .

Tl}, dxdy
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This is just a general form of the following result which was given by Agarwal and

Sheng [15].
: I 1 (¢ e, \
/E]‘[|uk(x)| des< di—a) | Y </ Elup(x)] dx)
k=1 i=1 k=1

x (/ E | grad u(x) ||idx> I/A,
,\)1/)\

Remark 2.3. In particular, for i = (pr + 2)/(2r), pr = 1,1 <k <r, py = A = 2, the
inequality (2.5) reduces to

/ /E/< |ug(x, y)|(Pk+2)/2>1/rdxdy
Sam (Z[(b —a)(a—d)l ) /zi (/ gl E’Iu(x,y)|pkdxdy>
k=1
X(f [ ¥l “k(x,y)Hidxdy)l/z

This is just a general form of the following result which was given by Agarwal and

Sheng [15].
fE<l—[ | (x)
k=1
12

< 21" (gj (bi — ai)2> Z <f E|u(x)|phdx> v (/ E | grad u(x) ||§ dx) 1/2.

k=1

Yu

where

n

|grad w.(x) ||, = (Z

i=1

d
o )

1/2

1/r
(ﬂk+2)/2> dx

On the other hand, the above inequality with the right-hand side multiplied by
1/2
(TTher ((pre + 2)/2))1/r and the term (ZL (bi — ai)z) / replace by /nB has been

proved by Pachpatte [16].
Remark 2.4. If u(x, y) reduce to u(x) in (2.1), then the inequality (2.1) and its parti-

cular case [ > 2, y = A = 2 with the right-hand side multiplied by / have been sepa-

rately proved by Pachpatte in [17].
Theorem 2.2. Let A > 1 and u(x, y) € G(E x E'). Then, the following inequality holds

) ” TA2p2a? / " (A=1)/x
E| E'lu(x, E | Eu(x,
[ oy < ™55 ([ [ Eutnfaa)
21 1/4
x( dxdy) ,

where B = max,.;.,(b; - a;) and o = max,;.,(d; - ¢;).

(2.6)
1 Ou du
—-1)

n
E A
0s;0t; +( u(x, y) ox; dy;
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Proof. For each fixed i, 1 < i < n, we obtain that

. _ 9%u _ ou
u*(x,y) =A/aix’/ci” [uA Yx,y;si, t")as,-at,- + (A= D2 (x s tl)8 ot ]dsldtl,

and hence from the Cauchy-Schwarz inequality, it follows that

lu(x, )" < A2(xi — a)) (i — ci)

A 1. 92u _ u ou |’ 2.7)
x/aix’/ciy’ v 1(%)’251/'?1')85&‘ + (= 1 2(xfy?5i'ti)35, o, | dsidti
i i 1 1
and similarly,
A 2
|u(x,y)|" < 22 (bi — x:)(di — i)
. , %u u du’ (2:8)
X /xibL/y,-dl u " (x, v si, e D=2 (x, y; i, ) o Bt" dsidt,
i i 1 1

Hence, multiplying (2.7) and (2.8) and in view of using the arithmetic-geometric
means inequality, summing the resulting inequalities for 1 < i < n, and then integrating
over E x E, to obtain

2 n
/E/E/‘u(x,y)}ndxdy < gn /E/E/ {Z[(xl —al-)(y,- _Ci)(bi —Xi)(di_yi)]l/z

9%u du ou |’
by d A2
Vi i )\' —_ 1 Vs Si, t:
x /al fCl 9s;0t; * ( )u (x Visi 1)351' dt;
_ Z al | (i — ai)(yi — &) (bi — x;)(di — i) dxidy;
n A 1 1 i i)\Vi i i i i Vi iayi
< JE B, 0= D)
ds;0t;
7.[}\2'32 2
E/
—  128n / / Z
where B = max;.;.,(b; - a;) and o = max;<;,(d; - ¢;).

Hence, using Holder inequality with indices A and A/(A - 1) in right-hand side of
above inequality, we have

, 2 A2 B2a? y 2 =1/
E[E , E|E ’
/ / [u(x, )| dxdy < L28n (/ / [u(x, y)|™" dxdy
n 21 1/n
X ( dxdy) .

The proof is complete.
Remark 2.5. Let u(x, y) reduce to u(x) in (2.6) and with suitable modifications, then
(2.6) becomes the following Agarwal and Sheng [15] inequality.

/E}u(x)}ndx < ni\;gz </ E|u(x)|2kdx> M (f E ||grad u(x) Hi'\ dx> I/A,

where 8 = max;<;<,(b; - a,).

W,y si )

ds;dt; } dxdy

du ou |’ dxdy

| dxdy,

) g O D ou

1 OJu ou

-1
)u(x, y) 0x; dy;

+ (A
ds;0t;
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Theorem 2.3. Let [ > 0, m > 1 be given real numbers, and let u(x, y) € G(E x E).
Then, the following inequality holds

[ e[ Eluon| "y < | (”;;l)mgj[(bi —a)d - )"

" (2.8a)
92 ) ou o
X/E/E’ ul™(x, y) vy um=1 (x, ) uou dxdy.
ox;dy; m 0x; 0Y;
Proof. For each fixed i, 1 < i < n, we obtain that
. m+1 (s
wny) = T [y
. . ?u 1 _ du du
X / a; / it |:ul/'"(x, Vi sioti) asiar F mu(l/’" D(x, yisi,t:) 2s; 8t-] dsidt;,
1 1 1 1
and, hence, it follows that
I+ m+ 1 —1)(I+
\u(x,y)| m S " |u(x,)/)|(m )( Wl)/m
2.9)
. v 9?2 ) _ ou ou (
x/aix’/ci% ul/m(x,y;si,ti)a&at‘ + mu(l/’" 1)(x,y;si,ti)a& At dsidt;,
1 1 1 1
and, similarly,
I+ m+1 —1)(1+
Jue )" < fugx D
2.10)
. . ?u 1 _ du du (
X /xib‘ /yid‘ ul/m(x, ¥; Sis ti) 9501 + mu(l/’" 1)(x, ¥; i ti) 95 a1 ds;dt;.
1 1 1 1

Now, adding (2.9) and (2.10) and integrating the resulting inequality from a; to b;
and ¢; to d;, respectively. Then

+ l —1)(I+
/aib,-/cid,-w(x,y”l M dvidy, < ";; (/ aibi/Cidi|u(x,y)|(m 1) m)/mdxidyi)

a2 I ou 0
x/aib"/cid" Wn(ey) O Tl ) O O

X0y, m ax; 0y;
Next in each integral of the right-hand side of the above inequality we apply Holder

dxi dyi .

inequality with indices m and m/(m - 1), to get

(m—1)/m
/aibi/Cidi’u(xr Y)|l+mdxid)/i =< n;;l(/ aibi/Cidi’u(xr Y)|l+mdxidyi>
x[(bs = ai)(di — )" (b — @) (di — )]

m 1/m
x(/ aib‘/cid‘ dxid)/i) ,

which is unless [ a [ i [u(x,y)|"dxidy; = 0 (for which the inequality (2.8) is

2
W (x, ) 9°u . lu(l/m’l)(x,y) ou du

ax;0y; m ax; dy;

obvious), is the same as
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b d l+m 1fm m+1
(/ a; ifci ilu(x, y)| dx,dy,) < m [(bl — a,-)(d,- — Ci)]

X /aibffcidf

Finally, raising m-th power both sides of the above inequality, integrating the result-

1
ou ou|™ /m

0%u
| dxidy;
1

I
I/m (Ym—1)
) oyt W gy

ing inequality from a; to b; and ¢; to dj, respectively, then summing the # inequalities
1 <i < n, we find the desired inequality (2.8).

Remark 2.6. Let u(x, y) reduce to u(x) in (2.8) and with suitable modifications, then
(2.8) becomes the following Agarwal and Sheng [15] inequality.

/E|u(x)|l+mdx < rll (t;l>mg(bi —ai)’”/E|u(x)|l‘aiiu(x)

Remark 2.7. The inequality (2.8) for u(x, y) reduce to u(x), with the right-hand sides
multiplied by m™ and (b; - a;)" replaced by (o8)" has been obtained by Pachpatte [18].
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