RESEARCH Open Access

Some sharp integral inequalities involving partial derivatives

Chang-Jian Zhao^{1*}, Wing-Sum Cheung² and Mihály Bencze³

¹Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China Full list of author information is available at the end of the article

Abstract

The main purpose of the present article is to establish some new sharp integral inequalities in 2n independent variables. Our results in special cases yield some of the recent results on Pachpatter, Agarwal and Sheng's inequalities and provide some new estimates on such types of inequalities.

Mathematics Subject Classification 2000: 26D15.

Keywords: Cauchy-Schwarz's inequality, Pachpatte's inequality, Hölder integral inequality, the arithmetic-geometric means inequality

1 Introduction

Inequalities involving functions of n independent variables, their partial derivatives, integrals play a fundamental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [1-10]. Especially, in view of wider applications, inequalities due to Agarwal, Opial, Pachpatte, Wirtinger, Poincaréand et al. have been generalized and sharpened from the very day of their discover. As a matter of fact these now have become research topic in their own right [11-14]. In the present article we shall use the same method of Agarwal and Sheng [15], establish some new estimates on these types of inequalities involving 2n independent variables. We further generalize these inequalities which lead to result sharp than those currently available. An important characteristic of our results is that the constants in the inequalities are explicit.

2 Main results

Let R be the set of real numbers and \mathbb{R}^n the n-dimensional Euclidean space. Let E, E' be a bounded domain in R^n defined by $E \times E' = \prod_{i=1}^n [a_i, b_i] \times [c_i, d_i]$, i = 1, ..., n. For $x_i, y_i \in R$, i = 1, ..., n, $(x, y) = (x_1, ..., x_n, y_1, ..., y_n)$ is a variable point in $E \times E'$ and $dxdy = dx_1 ... dx_n dy_1 ... dy_n$. For any continuous real-valued function u(x, y) defined on $E \times E'$ we denote by $\int_E \int_E u(x, y) dxdy$ the 2n-fold integral

$$\int_{a_1}^{b_1} \cdots \int a_n^{b_n} \int c_1^{d_1} \cdots \int c_n^{d_n} u(x_1, \ldots, x_n, \gamma_1, \ldots, \gamma_n) dx_1 \ldots dx_n d\gamma_1 \ldots d\gamma_n,$$

^{*} Correspondence: chjzhao@163.

and for any $(x, y) \in E \times E'$, $\int E(x) \int E'(x)u(s, t) dsdt$ is the 2*n*-fold integral

$$\int a_1^{x_1} \cdots \int a_n^{x_n} \int c_1^{\gamma_1} \cdots \int c_n^{\gamma_n} u(s_1, \ldots, s_n, t_1, \ldots, t_n) dx_1 \ldots ds_n dt_1 \ldots dt_n,$$

We represent by $F(E \times E')$ the class of continuous functions $u(x, y) : E \times E' \to \mathbb{R}$, for each $i, 1 \le i \le n$,

$$u(x, y)|_{x_i=a_i} = 0, u(x, y)|_{y_i=c_i} = 0, u(x, y)|_{x_i=b_i} = 0, u(x, y)|_{y_i=a_i} = 0, (i = 1, ..., n)$$

the class $F(E \times E')$ is denoted as $G(E \times E')$.

Theorem 2.1. Let $l, \mu, \lambda \ge 1$, be given real numbers such that $\frac{1}{\mu} + \frac{1}{\lambda} = 1$. Further, let $u(x, y) \in G(E \times E')$. Then, the following inequality holds

$$\int E \int E' |u(x,y)|^l dxdy \leq \frac{1}{2n} \left(\sum_{i=1}^n \left[(b_i - a_i)(c_i - d_i) \right]^{\mu} \right)^{1/\mu} \left(\int E \int E' |u(x,y)|^{(l-1)\mu} dxdy \right)^{1/\mu} \\
\times \left(\int E \int E' \|\operatorname{grad} u(x,y)\|_{\lambda}^{\lambda} dxdy \right)^{1/\lambda}, \tag{2.1}$$

where

$$\|\operatorname{grad} u(x, y)\|_{\lambda} = \left(\sum_{i=1}^{n} \left| \frac{\partial^{2}}{\partial x_{i} \partial y_{i}} u(x, y) \right|^{\lambda} \right)^{1/\lambda}.$$

Proof. For each fixed i, $1 \le i \le n$, in view of

$$u(x, y) \Big|_{x_i = a_i} = 0, u(x, y) \Big|_{y_i = c_i} = 0, u(x, y) \Big|_{x_i = b_i} = 0, u(x, y) \Big|_{y_i = d_i} = 0, (i = 1, ..., n)$$

we have

$$u^{l}(x, y) = u^{l-1}(x, y) \int a_{i}^{x_{i}} \int c_{i}^{y_{i}} \frac{\partial^{2}}{\partial s_{i} \partial t_{i}} u(x, y; s_{i}, t_{i}) ds_{i} dt_{i},$$

$$(2.2)$$

and

$$u^{l}(x, y) = u^{l-1}(x, y) \int x_{i}^{b_{i}} \int y_{i}^{d_{i}} \frac{\partial^{2}}{\partial s_{i} \partial t_{i}} u(x, y; s_{i}, t_{i}) ds_{i} dt_{i},$$

$$(2.3)$$

where

$$u(x, y; s_i, t_i) = u(x_1, \dots, x_{i-1}, s_i, x_{i+1}, \dots, x_n, y_1, \dots, y_{i-1}, t_i, y_{i+1}, \dots, y_n).$$

Hence, from (2.2) and (2.3) and in view of the arithmetic-geometric means inequality and Hölder inequality with indices μ and λ , it follows that

$$|u(x,y)|^{l} \leq \frac{1}{2}|u(x,y)|^{l-1} \int a_{i}^{b_{i}} \int c_{i}^{d_{i}} \left| \frac{\partial^{2}}{\partial s_{i} \partial t_{i}} u(x,y;s_{i},t_{i}) \right| ds_{i} dt_{i}$$

$$\leq \frac{1}{2}|u(x,y)|^{l-1} \left[(b_{i}-a_{i})(c_{i}-d_{i}) \right]^{1/\mu} \left(\int a_{i}^{x_{i}} \int c_{i}^{y_{i}} \left| \frac{\partial^{2}}{\partial s_{i} \partial t_{i}} u(x,y;s_{i},t_{i}) \right|^{\lambda} ds_{i} dt_{i} \right)^{1/\lambda}. \tag{2.4}$$

Now, summing the inequalities (2.4) for $1 \le i \le n$, integrating over $E \times E'$ and applying Holder inequality with indices μ and λ two times, we get

$$\int E \int E' |u(x,y)|^{l} dxdy \leq \frac{1}{2n} \sum_{i=1}^{n} \left[(b_{i} - a_{i})(c_{i} - d_{i}) \right]^{1/\mu}$$

$$\times \int E \int E' |u(x,y)|^{l-1} \left(\int a_{i}^{b_{i}} \int c_{i}^{d_{i}} \left| \frac{\partial^{2}}{\partial s_{i} \partial t_{i}} u(x,y;s_{i},t_{i}) \right|^{\lambda} ds_{i} dt_{i} \right)^{1/\lambda} dxdy$$

$$\leq \frac{1}{2n} \left(\int E \int E' |u(x,y)|^{(l-1)\mu} dxdy \right)^{1/\mu} \sum_{i=1}^{n} \left[(b_{i} - a_{i})(c_{i} - d_{i}) \right]^{1/\mu}$$

$$\times \left(\int E \int E' \int a_{i}^{b_{i}} \int c_{i}^{d_{i}} \left| \frac{\partial^{2}}{\partial s_{i} \partial t_{i}} u(x,y;s_{i},t_{i}) \right|^{\lambda} ds_{i} dt_{i} dxdy \right)^{1/\lambda}$$

$$\leq \frac{1}{2n} \left(\int E \int E' |u(x,y)|^{(l-1)\mu} dxdy \right)^{1/\mu} \sum_{i=1}^{n} \left[(b_{i} - a_{i})(c_{i} - d_{i}) \right]^{1/\mu+1/\lambda}$$

$$\times \left(\int E \int E' \left| \frac{\partial^{2}}{\partial x_{i} \partial y_{i}} u(x,y) \right|^{\lambda} dxdy \right)^{1/\lambda}$$

$$\leq \frac{1}{2n} \left(\int E \int E' |u(x,y)|^{(l-1)\mu} dxdy \right)^{1/\mu} \left(\sum_{i=1}^{n} \left[(b_{i} - a_{i})(c_{i} - d_{i}) \right]^{\mu} \right)^{1/\mu}$$

$$\times \left(\int E \int E' \left\| \operatorname{grad} u(x,y) \right\|_{\lambda}^{\lambda} dxdy \right)^{1/\lambda},$$

where

$$\|\operatorname{grad} u(x, y)\|_{\lambda} = \left(\sum_{i=1}^{n} \left| \frac{\partial^{2}}{\partial x_{i} \partial y_{i}} u(x, y) \right|^{\lambda} \right)^{1/\lambda}.$$

The proof is complete.

Remark 2.1. Let u(x, y) reduce to u(x) in (2.1) and with suitable modifications, then (2.1) becomes

$$\int E|u(x)|^{(l)\mu} dx \le \frac{1}{2n} \left(\int E|u(x)|^{(l-1)\mu} dx \right)^{1/\mu} \left(\sum_{i=1}^{n} (b_i - a_i)^{\mu} \right)^{1/\mu} \times \left(\int E \|\text{grad } u(x)\|_{\lambda}^{\lambda} dx \right)^{1/\lambda},$$

where

$$\|\operatorname{grad} u(x)\|_{\lambda} = \left(\sum_{i=1}^{n} \left|\frac{\partial}{\partial x_{i}} u(x)\right|^{\lambda}\right)^{1/\lambda}.$$

This is just a important inequality which was given by Agarwal and Sheng [15].

Remark 2.2. For the given real numbers $l_k \ge 0$, $1 \le k \le r$, such that $rl_k \ge 1$, the arithmetic-geometric means inequality and (2.1) gives

$$\int E \int E' \prod_{k=1}^{r} |u_{k}(x,y)|^{l_{k}} dx dy \leq \frac{1}{r} \sum_{k=1}^{r} \int E \int E' |u_{k}(x,y)|^{rl_{k}} dx dy$$

$$\leq \frac{1}{2nr} \left(\sum_{i=1}^{n} \left[(b_{i} - a_{i})(c_{i} - d_{i}) \right]^{\mu} \right)^{1/\mu} \sum_{k=1}^{r} \left(\int E \int E' |u_{k}(x,y)|^{(rl_{k} - 1)\mu} dx dy \right)^{1/\mu}$$

$$\times \left(\int E \int E' \| \operatorname{grad} u_{k}(x,y) \|_{\lambda}^{\lambda} dx dy \right)^{1/\lambda}.$$
(2.5)

This is just a general form of the following result which was given by Agarwal and Sheng [15].

$$\int E \prod_{k=1}^{r} |u_{k}(x)|^{l_{k}} dx \leq \frac{1}{2nr} \left(\sum_{i=1}^{n} (b_{i} - a_{i})^{\mu} \right)^{1/\mu} \sum_{k=1}^{r} \left(\int E |u_{k}(x)|^{(rl_{k} - 1)\mu} dx \right)^{1/\mu} \times \left(\int E \|\operatorname{grad} u_{k}(x)\|_{\lambda}^{\lambda} dx \right)^{1/\lambda},$$

where

$$\|\operatorname{grad} u_k(x)\|_{\lambda} = \left(\sum_{i=1}^n \left|\frac{\partial}{\partial x_i}u(x)\right|^{\lambda}\right)^{1/\lambda}.$$

Remark 2.3. In particular, for $l_k = (p_k + 2)/(2r)$, $p_k \ge 1, 1 \le k \le r$, $\mu = \lambda = 2$, the inequality (2.5) reduces to

$$\int E \int E' \left(\prod_{k=1}^{r} |u_{k}(x,y)|^{(p_{k}+2)/2} \right)^{1/r} dxdy$$

$$\leq \frac{1}{2nr} \left(\sum_{i=1}^{n} \left[(b_{i} - a_{i})(c_{i} - d_{i}) \right]^{2} \right)^{1/2} \sum_{k=1}^{r} \left(\int E \int E' |u(x,y)|^{p_{k}} dxdy \right)^{1/2}$$

$$\times \left(\int E \int E' \| \operatorname{grad} u_{k}(x,y) \|_{2}^{2} dxdy \right)^{1/2}.$$

This is just a general form of the following result which was given by Agarwal and Sheng [15].

$$\int E\left(\prod_{k=1}^{r} |u_k(x)|^{(p_k+2)/2}\right)^{1/r} dx$$

$$\leq \frac{1}{2nr} \left(\sum_{i=1}^{n} (b_i - a_i)^2\right)^{1/2} \sum_{k=1}^{r} \left(\int E|u(x)|^{p_k} dx\right)^{1/2} \left(\int E \|\operatorname{grad} u_k(x)\|_2^2 dx\right)^{1/2}.$$

On the other hand, the above inequality with the right-hand side multiplied by $\left(\prod_{k=1}^r \left((p_k+2)/2\right)\right)^{1/r}$ and the term $\left(\sum_{i=1}^n \left(b_i-a_i\right)^2\right)^{1/2}$ replace by $\sqrt{n}\beta$ has been proved by Pachpatte [16].

Remark 2.4. If u(x, y) reduce to u(x) in (2.1), then the inequality (2.1) and its particular case $l \ge 2$, $\mu = \lambda = 2$ with the right-hand side multiplied by l have been separately proved by Pachpatte in [17].

Theorem 2.2. Let $\lambda \geq 1$ and $u(x, y) \in G(E \times E')$. Then, the following inequality holds

$$\int E \int E' |u(x,y)|^{2\lambda} dx dy \leq \frac{\pi \lambda^2 \beta^2 \alpha^2}{128n} \left(\int E \int E' |u(x,y)|^{2\lambda} dx dy \right)^{(\lambda-1)/\lambda}$$

$$\times \left(\int E \int E' \sum_{i=1}^{n} \left| \frac{\partial^2 u}{\partial s_i \partial t_i} + (\lambda - 1) \frac{1}{u(x,y)} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \right|^{2\lambda} dx dy \right)^{1/\lambda},$$
(2.6)

where $\beta = \max_{1 \le i \le n} (b_i - a_i)$ and $\alpha = \max_{1 \le i \le n} (d_i - c_i)$.

Proof. For each fixed i, $1 \le i \le n$, we obtain that

$$u^{\lambda}(x,\gamma) = \lambda \int a_i^{x_i} \int c_i^{y_i} \left[u^{\lambda-1}(x,\gamma;s_i,t_i) \frac{\partial^2 u}{\partial s_i \partial t_i} + (\lambda-1) u^{\lambda-2}(x,\gamma;s_i,t_i) \frac{\partial u}{\partial s_i} \frac{\partial u}{\partial t_i} \right] ds_i dt_i,$$

and hence from the Cauchy-Schwarz inequality, it follows that

$$|u(x,\gamma)|^{\lambda} \leq \lambda^{2}(x_{i}-a_{i})(\gamma_{i}-c_{i})$$

$$\times \int a_{i}^{x_{i}} \int c_{i}^{\gamma_{i}} \left| \gamma^{\lambda-1}(x,\gamma;s_{i},t_{i}) \frac{\partial^{2} u}{\partial s_{i} \partial t_{i}} + (\lambda-1)u^{\lambda-2}(x,\gamma;s_{i},t_{i}) \frac{\partial u}{\partial s_{i}} \frac{\partial u}{\partial t_{i}} \right|^{2} ds_{i} dt_{i},$$
(2.7)

and similarly,

$$|u(x,\gamma)|^{\lambda} \leq \lambda^{2}(b_{i}-x_{i})(d_{i}-\gamma_{i})$$

$$\times \int x_{i}^{b_{i}} \int \gamma_{i}^{d_{i}} \left| u^{\lambda-1}(x,\gamma;s_{i},t_{i}) \frac{\partial^{2}u}{\partial s_{i}\partial t_{i}} + (\lambda-1)u^{\lambda-2}(x,\gamma;s_{i},t_{i}) \frac{\partial u}{\partial s_{i}} \frac{\partial u}{\partial t_{i}} \right|^{2} ds_{i}dt_{i},$$
(2.8)

Hence, multiplying (2.7) and (2.8) and in view of using the arithmetic-geometric means inequality, summing the resulting inequalities for $1 \le i \le n$, and then integrating over $E \times E'$, to obtain

$$\int E \int E' |u(x, y)|^{2\lambda} dx dy \leq \frac{\lambda^2}{2n} \int E \int E' \left\{ \sum_{i=1}^n \left[(x_i - a_i)(y_i - c_i)(b_i - x_i)(d_i - y_i) \right]^{1/2} \right.$$

$$\times \int a_i^{b_i} \int c_i^{d_i} \left| u^{\lambda - 1}(x, y; s_i, t_i) \frac{\partial^2 u}{\partial s_i \partial t_i} + (\lambda - 1)u^{\lambda - 2}(x, y; s_i, t_i) \frac{\partial u}{\partial s_i} \frac{\partial u}{\partial t_i} \right|^2 ds_i dt_i \right\} dx dy$$

$$= \frac{\lambda^2}{2n} \sum_{i=1}^n \int a_i^{b_i} \int c_i^{d_i} \left[(x_i - a_i)(y_i - c_i)(b_i - x_i)(d_i - y_i) \right]^{1/2} dx_i dy_i$$

$$\times \int E \int E' \left| y^{\lambda - 1}(x, y) \frac{\partial^2 u}{\partial s_i \partial t_i} + (\lambda - 1)u^{\lambda - 2}(x, y) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \right|^2 dx dy$$

$$\leq \frac{\pi \lambda^2 \beta^2 \alpha^2}{128n} \int E \int E' \sum_{i=1}^n \left| u^{\lambda - 1}(x, y) \frac{\partial^2 u}{\partial s_i \partial t_i} + (\lambda - 1)u^{\lambda - 2}(x, y) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \right|^2 dx dy,$$

where $\beta = \max_{1 \le i \le n} (b_i - a_i)$ and $\alpha = \max_{1 \le i \le n} (d_i - c_i)$.

Hence, using Hölder inequality with indices λ and $\lambda/(\lambda - 1)$ in right-hand side of above inequality, we have

$$\int E \int E' |u(x,y)|^{2\lambda} dx dy \leq \frac{\pi \lambda^2 \beta^2 \alpha^2}{128n} \left(\int E \int E' |u(x,y)|^{2\lambda} dx dy \right)^{(\lambda-1)/\lambda}$$

$$\times \left(\int E \int E' \sum_{i=1}^{n} \left| \frac{\partial^2 u}{\partial s_i \partial t_i} + (\lambda - 1) \frac{1}{u(x,y)} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \right|^{2\lambda} dx dy \right)^{1/\lambda}.$$

The proof is complete.

Remark 2.5. Let u(x, y) reduce to u(x) in (2.6) and with suitable modifications, then (2.6) becomes the following Agarwal and Sheng [15] inequality.

$$\int E|u(x)|^{2\lambda}dx \leq \frac{\pi\lambda^2\beta^2}{16n} \left(\int E|u(x)|^{2\lambda}dx\right)^{(\lambda-1)/\lambda} \left(\int E\|\operatorname{grad} u(x)\|_2^{2\lambda}dx\right)^{1/\lambda},$$

where $\beta = \max_{1 \le i \le n} (b_i - a_i)$.

Theorem 2.3. Let $l \ge 0$, $m \ge 1$ be given real numbers, and let $u(x, y) \in G(E \times E')$. Then, the following inequality holds

$$\int E \int E' |u(x,y)|^{l+m} dx dy \leq \frac{1}{n} \left(\frac{m+l}{2m}\right)^m \sum_{i=1}^n \left[(b_i - a_i)(d_i - c_i) \right]^m$$

$$\times \int E \int E' |u^{l/m}(x,y) \frac{\partial^2 u}{\partial x_i \partial y_i} + \frac{l}{m} u^{(l/m-1)}(x,y) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \Big|^m dx dy.$$
(2.8a)

Proof. For each fixed i, $1 \le i \le n$, we obtain that

$$u^{l+m}(x, y) = \frac{m+l}{m} [u(x, y)]^{(m-1)(l+m)/m}$$

$$\times \int a_i^{x_i} \int c_i^{y_i} \left[u^{l/m}(x, y; s_i, t_i) \frac{\partial^2 u}{\partial s_i \partial t_i} + \frac{l}{m} u^{(l/m-1)}(x, y; s_i, t_i) \frac{\partial u}{\partial s_i} \frac{\partial u}{\partial t_i} \right] ds_i dt_i,$$

and, hence, it follows that

$$\left|u(x,\gamma)\right|^{l+m} \leq \frac{m+l}{m} \left|u(x,\gamma)\right|^{(m-1)(l+m)/m}$$

$$\times \int a_i^{x_i} \int c_i^{y_i} \left|u^{l/m}(x,\gamma;s_i,t_i)\frac{\partial^2 u}{\partial s_i \partial t_i} + \frac{1}{m} u^{(l/m-1)}(x,\gamma;s_i,t_i)\frac{\partial u}{\partial s_i}\frac{\partial u}{\partial t_i}\right| ds_i dt_i,$$

$$(2.9)$$

and, similarly,

$$\left|u(x,\gamma)\right|^{l+m} \leq \frac{m+l}{m} \left|u(x,\gamma)\right|^{(m-1)(l+m)/m}$$

$$\times \int x_i^{b_i} \int \gamma_i^{d_i} \left|u^{l/m}(x,\gamma;s_i,t_i)\frac{\partial^2 u}{\partial s_i\partial t_i} + \frac{l}{m} u^{(l/m-1)}(x,\gamma;s_i,t_i)\frac{\partial u}{\partial s_i}\frac{\partial u}{\partial t_i}\right| ds_i dt_i.$$

$$(2.10)$$

Now, adding (2.9) and (2.10) and integrating the resulting inequality from a_i to b_i and c_i to d_i , respectively. Then

$$\int a_i^{b_i} \int c_i^{d_i} |u(x, y)|^{l+m} dx_i dy_i \leq \frac{m+l}{2m} \left(\int a_i^{b_i} \int c_i^{d_i} |u(x, y)|^{(m-1)(l+m)/m} dx_i dy_i \right)$$

$$\times \int a_i^{b_i} \int c_i^{d_i} \left| u^{l/m}(x, y) \frac{\partial^2 u}{\partial x_i \partial y_i} + \frac{l}{m} u^{(l/m-1)}(x, y) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \right| dx_i dy_i.$$

Next in each integral of the right-hand side of the above inequality we apply Hölder inequality with indices m and m/(m-1), to get

$$\int a_{i}^{b_{i}} \int c_{i}^{d_{i}} |u(x,y)|^{l+m} dx_{i} dy_{i} \leq \frac{m+l}{2m} \left(\int a_{i}^{b_{i}} \int c_{i}^{d_{i}} |u(x,y)|^{l+m} dx_{i} dy_{i} \right)^{(m-1)/m} \\ \times \left[(b_{i} - a_{i})(d_{i} - c_{i}) \right]^{1/m} \left[(b_{i} - a_{i})(d_{i} - c_{i}) \right]^{(m-1)/m} \\ \times \left(\int a_{i}^{b_{i}} \int c_{i}^{d_{i}} |u^{l/m}(x,y) \frac{\partial^{2} u}{\partial x_{i} \partial y_{i}} + \frac{l}{m} u^{(l/m-1)}(x,y) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial y_{i}} \Big|^{m} dx_{i} dy_{i} \right)^{1/m},$$

which is unless $\int a_i^{b_i} \int c_i^{d_i} |u(x,y)|^{l+m} dx_i dy_i = 0$ (for which the inequality (2.8) is obvious), is the same as

$$\left(\int a_i^{b_i} \int c_i^{d_i} |u(x,y)|^{l+m} dx_i dy_i\right)^{1/m} \leq \frac{m+l}{2m} [(b_i - a_i)(d_i - c_i)]$$

$$\times \left(\int a_i^{b_i} \int c_i^{d_i} |u^{l/m}(x,y) \frac{\partial^2 u}{\partial x_i \partial y_i} + \frac{l}{m} u^{(l/m-1)}(x,y) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial y_i} \Big|^m dx_i dy_i\right)^{1/m}.$$

Finally, raising m-th power both sides of the above inequality, integrating the resulting inequality from a_j to b_j and c_j to d_j , respectively, then summing the n inequalities $1 \le i \le n$, we find the desired inequality (2.8).

Remark 2.6. Let u(x, y) reduce to u(x) in (2.8) and with suitable modifications, then (2.8) becomes the following Agarwal and Sheng [15] inequality.

$$\int E|u(x)|^{l+m}dx \leq \frac{1}{n}\left(\frac{m+l}{2m}\right)^m \sum_{i=1}^n (b_i-a_i)^m \int E|u(x)|^l \left|\frac{\partial}{\partial x_i}u(x)\right|^m dx.$$

Remark 2.7. The inequality (2.8) for u(x, y) reduce to u(x), with the right-hand sides multiplied by m^m and $(b_i - a_i)^m$ replaced by $(\alpha \beta)^m$ has been obtained by Pachpatte [18].

Acknowledgements

C.-J. Zhao research was supported by National Natural Sciences Foundation of China (10971205). W.-S. Cheung research was partially supported by a HKU URG grant.

Author details

¹Department of Mathematics, China Jiliang University, Hangzhou 310018, P. R. China ²Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong ³Str. Hărmanului 6, 505600 Săcele-Négyfalu, Jud. Braşov, Romania

Authors' contributions

C-JZ, W-SC and MB jointly contributed to the main results Theorems 2.1, 2.2, and 2.3. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 1 February 2012 Accepted: 18 May 2012 Published: 18 May 2012

References

- Agarwal, RP, Pang, PYH: Opial Inequalities with Applications in Differential and Difference Equations. Kluwer Academic Publishers, Dordrecht (1995)
- Agarwal, RP, Lakshmikantham, V: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. World Scientific. Singapore (1993)
- Agarwal, RP, Thandapani, E: On some new integrodifferential inequalities Anal sti Univ. "Al I Cuza" din Iasi. 28, 123–126 (1982)
- 4. Bainov, D, Simeonov, P: Integral Inequalities and Applications. Kluwer Academic Publishers, Dordrecht (1992)
- Li, JD: Opial-type integral inequalities involving several higher order derivatives. J Math Anal Appl. 167, 98–100 (1992). doi:10.1016/0022-247X(92)90238-9
- Mitrinovič, DS, Pečarić, JE, Fink, AM: Inequalities involving Functions and Their Integrals ang Derivatives. Kluwer Academic Publishers, Dordrecht (1991)
- Cheung, WS: On Opial-type inequalities in two variables. Aequationes Math. 38, 236–244 (1989). doi:10.1007/ BF01840008
- 8. Cheung, WS: Some new Opial-type inequalities. Mathematika. **37**, 136–142 (1990). doi:10.1112/S0025579300012869
- Cheung, WS: Some generalized Opial-type inequalities. J Math Anal Appl. 162, 317–321 (1991). doi:10.1016/0022-247X (91)90152-P
- 10. Cheung, WS: Opial-type inequalities with *m* functions in *n* variables. Mathematika. **39**, 319–326 (1992). doi:10.1112/S0025579300015047
- 11. Crooke, PS: On two inequalities of the Sobolev type. Appl Anal. 3, 345–358 (1974). doi:10.1080/00036817408839076
- 12. Pachpatte, BG: Opial type inequality in several variables. Tamkang J Math. 22, 7–11 (1991)
- Pachpatte, BG: On some new integral inequalities in two independent variables. J Math Anal Appl. 129, 375–382 (1988). doi:10.1016/0022-247X(88)90256-9
- 14. Wang, XJ: Sharp constant in a Sobolev inequality. Nonlinear Anal. 20, 261–268 (1993). doi:10.1016/0362-546X(93)90162-L
- 15. Agarwal, RP, Sheng, Q: Sharp integral inequalities in *n* independent varibles. Nonlinear Anal Theory Methods Appl. **26**(2):179–210 (1996). doi:10.1016/0362-546X(94)00273-K

- Pachpatte, BG: On Sobolev type integral inequalities. Proc R Soc Edinb. 103, 1–14 (1986). doi:10.1017/ S0308210500013986
- Pachpatte, BG: On two inequalities of the Serrin type. J Math Anal Appl. 116, 193–199 (1986). doi:10.1016/0022-247X(86) 90051-X
- 18. Pachpatte, BG: On some variants of Sobolev's inequality. Soochow J Math. 17, 121–129 (1991)

doi:10.1186/1029-242X-2012-109

Cite this article as: Zhao et al.: Some sharp integral inequalities involving partial derivatives. Journal of Inequalities and Applications 2012 2012:109.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com