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1. Introduction and preliminaries
There are several constants defined on Banach spaces such as the Gao [1] and von

Neumann-Jordan constants [2]. It has been shown that these constants are very useful

in geometric theory of Banach spaces, which enable us to classify several important

concepts of Banach spaces such as uniformly non-squareness and uniform normal

structure [3-8]. On the other hand, calculation of the constant for some concrete

spaces is also of some interest [5,6,9].

Throughout this article, we assume that X is a real Banach space. By SX and BX we

denote the unit sphere and the unit ball of a Banach space X, respectively. The notion

of the Ptolemy constant of Banach spaces was introduced in [10] and recently it has

been studied by Llorens-Fuster in [9].

Definition 1.1 For a normed space (X, ||.||) the real number

Cp(X) := sup

{ ∥∥x − y
∥∥ ‖z‖

‖x − z‖∥∥y∥∥ +
∥∥z − y

∥∥ ‖x‖ : x, y, z ∈ X\{0}, x �= y �= z �= x

}

is called the Ptolemy constant of (X, ||.||).

As we have already mentioned [10], 1 ≤ Cp(X) ≤ 2 for all normed spaces X. The Ptol-

emy inequality shows that Cp(H) = 1 whenever (H, ||.||) is an inner product space. It is

obvious that if Y is a subspace of (X, ||.||), then Cp(Y) ≤ Cp(X). Since Cp(Y) = 2 for Y =

(ℝ2, ||.||∞), it follows that Cp(X) = 2 whenever X contains an isometric copy of (ℝ2,

||.||∞).

Recall that a norm on ℝ2 is called absolute if ||(z, w)|| = ||(|z|, |w|)|| for all z, w Î ℝ

and normalized if ||(1, 0)|| = ||(0, 1)|| = 1. Let Na denotes the family of all absolute

normalized norms on ℝ2, and let Ψ denotes the family of all continuous convex func-

tions on [0, 1] such that ψ(1) = ψ(0) = 1 and max{1 - t, t} ≤ ψ(t) ≤ 1(0 ≤ t ≤ 1). It has
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been shown that Na and Ψ are a one-to-one correspondence in view of the following

proposition in [11].

Proposition 1.2 If ||.|| Î Na, then ψ(t) = ||(1 - t, t)|| Î Ψ. On the other hand, if ψ(t)

Î Ψ, defining the norm ||.||ψ as

∥∥(z,ω)∥∥
ψ
:=

⎧⎨
⎩ (|z| + |ω|)ψ

( |ω|
|z| + |ω|

)
, (z,ω) �= (0, 0);

0, (z,ω) = (0, 0).

then the norm ||.||ψ Î Na.

A simple example of absolute normalized norm is usual lp(1 ≤ p ≤ ∞) norm. From

Proposition 1.2, one can easily get the corresponding function of the lp norm:

ψp(t) =

{
{(1 − t)p + tp}1/p, 1 ≤ p < ∞,

max{1 − t, t}, p = ∞.

Also, the above correspondence enable us to get many non-lp norms on ℝ2. One of

the properties of these norms is stated in the following result.

Proposition 1.3 Let ψ, � Î Ψ and � ≤ ψ. Put M = max0≤t≤1
ψ(t)
ϕ(t), then

‖.‖ϕ ≤ ‖.‖ψ ≤ M‖.‖ϕ .

The Cesàro sequence space was defined by Shue [12]. It is very useful in the theory

of matrix operators and others. Let l be the space of real sequences. For 1 <p < ∞, the

Cesàro sequence space cesp is defined by

cesp =

⎧⎨
⎩x ∈ l : ‖x‖ =

∥∥(x(i))∥∥ =

( ∞∑
n=1

(
1
n

n∑
i=1

∣∣x(i)∣∣
)p)1/p

< ∞
⎫⎬
⎭

The geometry of Cesàro sequence spaces have been extensively studied in [13-21].

Let us restrict ourselves to the 2D Cesàro sequence space ces(2)p which is just ℝ2

equipped with the norm defined by norm defined by

∥∥(x, y)∥∥ =

(
|x|p +

(
|x| + ∣∣y∣∣

2

)p)1/p

2. Main results
In this section, we give a simple method to determine and estimate the Ptolemy con-

stant of absolute normalized norms on ℝ2. Moreover, the exact values were calculated

in some concrete Banach spaces. For a norm ||.|| on ℝ2, we write Cp(||.||) for Cp

(ℝ2,||.||).

Proposition 2.1 Let � Î Ψ and ψ(t) = �(1 - t). Then Cp(||.||�) = Cp(||.||ψ)

Proof. For any x = (a, b) Î ℝ2 and a ≠ 0, b ≠ 0, put x̃ = (b, a). Then

‖x‖ϕ = (|a| + |b|)ϕ
( |b|

|a| + |b|
)
= (|b| + |a|)ψ

( |a|
|a| + |b|

)
=

∥∥x̃∥∥
ψ
.
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Consequently, we have

Cp(‖.‖ϕ) = sup

{ ∥∥x − y
∥∥

ϕ
‖z‖ϕ

‖x − z‖ϕ

∥∥y∥∥
ϕ
+

∥∥z − y
∥∥

ϕ
‖x‖ϕ

: x, y, z ∈ X\{0}, x �= y �= z �= x

}

= sup

{ ∥∥x̃ − ỹ
∥∥

ψ
‖z̃‖ψ∥∥x̃ − z̃

∥∥
ψ

∥∥ỹ∥∥
ψ
+

∥∥z̃ − ỹ
∥∥

ψ

∥∥x̃∥∥
ψ

: x̃, ỹ, z̃ ∈ X\{0}, x̃ �= ỹ �= z̃ �= x̃

}

= Cp(‖.‖ψ).

We now consider the Ptolemy constant of a class of absolute normalized norms on

ℝ2. Now let us put

M1 = max
0≤t≤1

ψ2(t)
ψ(t)

and M2 = max
0≤t≤1

ψ(t)
ψ2(t)

Theorem 2.2 Let ψ Î Ψ and ψ ≤ ψ2, if the function ψ2(t)
ψ(t) attains its maximum at t =

1/2, then

Cp(‖.‖ψ) =
1

2ψ2(1/2)
.

Proof. By Proposition 1.3, we have ||.||ψ ≤ ||.||2 ≤ M1||.||ψ. Let x, y Î X, (x, y) ≠ (0,

0), where X = ℝ2. Then∥∥x − y
∥∥

ψ
‖z‖ψ

‖x − z‖ψ

∥∥y∥∥
ψ
+

∥∥z − y
∥∥

ψ
‖x‖ψ

≤
∥∥x − y

∥∥
2‖z‖2

(1/M2
1)‖x − z‖2

∥∥y∥∥2 + ∥∥z − y
∥∥
2‖x‖2

≤ M2
1Cp(‖.‖2)

≤ M2
1

from the definition of Cp(X), implies that

Cp(‖.‖ψ ) ≤ M2
1 = max

0≤t≤1

ψ2
2 (t)

ψ2(t)
. (1)

On the other hand, note that the function ψ2(t)
ψ(t) attains its maximum at t = 1/2, i.e.,

M1 = ψ2(1/2)
ψ(1/2) . Let us put x = (1/2, 1/2), y = (1/2, -1/2), z = (1, 0), then

∥∥x − y
∥∥

ψ
‖z‖ψ

‖x − z‖ψ

∥∥y∥∥
ψ
+

∥∥z − y
∥∥

ψ
‖x‖ψ

=

∥∥(0, 1)∥∥
ψ

∥∥(1, 0)∥∥
ψ∥∥(−1/2, 1/2)

∥∥
ψ

∥∥(1/2,−1/2)
∥∥

ψ
+

∥∥(1/2, 1/2)∥∥
ψ

∥∥(1/2, 1/2)∥∥
ψ

=
1

2ψ2(1/2)

=
2 × 1/2 × (1 − 1/2)

ψ2(1/2)
=
(1/2)2 + (1 − 1/2)2

ψ2(1/2)

=
ψ2
2 (1/2)

ψ2(1/2)
= M2

1.

From (1) and the above equality, we have

Cp(‖.‖ψ ) = M2
1 =

1
2ψ2(1/2)

.

Theorem 2.3 Let ψ Î Ψ and ψ ≥ ψ2, if the function ψ(t)
ψ2(t)

attains its maximum at t =

1/2, then
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Cp(‖.‖ψ) = 2ψ2(1/2).

Proof. By Proposition 1.3, we have ||.||2 ≤ ||.||ψ ≤ M2||.||2. Let x, y Î X, (x, y) ≠ (0,

0), where X = ℝ2. Then∥∥x − y
∥∥

ψ
‖z‖ψ

‖x − z‖ψ

∥∥y∥∥
ψ
+

∥∥z − y
∥∥

ψ
‖x‖ψ

≤ M2
2

∥∥x − y
∥∥
2‖z‖2

‖x − z‖2
∥∥y∥∥2 + ∥∥z − y

∥∥
2‖x‖2

≤ M2
2Cp(‖.‖2)

≤ M2
2

from the definition of Cp(X), implies that

Cp(‖.‖ψ ) ≤ M2
2 = max

0≤t≤1

ψ2(t)

ψ2
2 (t)

. (2)

On the other hand, note that the function ψ(t)
ψ2(t)

attains its maximum at t = 1/2, i.e.,

M2 = ψ(1/2)
ψ2(1/2)

. Let us put x = (1/2, 0), y = (0, 1/2), z = (1/2, 1/2), then

∥∥x − y
∥∥

ψ
‖z‖ψ

‖x − z‖ψ

∥∥y∥∥
ψ
+

∥∥z − y
∥∥

ψ
‖x‖ψ

=

∥∥(1/2,−1/2)
∥∥

ψ

∥∥(1/2, 1/2)∥∥
ψ∥∥(0,−1/2)

∥∥
ψ

∥∥(0, 1/2)∥∥
ψ
+

∥∥(1/2, 0)∥∥
ψ

∥∥(1/2, 0)∥∥
ψ

= 2ψ2(1/2)

=
ψ2(1/2)

(1/2)2 + (1 − 1/2)2

=
ψ2(1/2)

ψ2
2 (1/2)

= M2
2.

From (2) and the above equality, we have

Cp(‖.‖ψ ) = M2
2 = 2ψ2(1/2).

Theorem 2.4 If X is the lp (1 ≤ p ≤ ∞) space, then

Cp(‖.‖p) = max{22/p−1, 22/q−1}.

In particular, Cp(||.||1) = Cp(||.||∞) = 2.

Proof. Let 1 ≤ p ≤ 2, then we have ψp(t) ≥ ψ2(t) and ψp(t)/ψ2(t) attains s maximum at

t = 1/2. Since

ψ2(t) ≤ ψp(t) ≤ 21/p−1/2ψ2(t) (0 ≤ t ≤ 1),

where the constant 21/p-1/2 is the best possible. On the other hand, for t = 1/2, we

have

ψp(1/2)

ψ2(1/2)
=

((1 − 1/2)p + (1/2)p)
1/p

((1 − 1/2)2 + (1/2)2)
1/2

= 21/p−1/2

Therefore, by Theorem 2.3, we have

Cp(‖.‖p) = 2ψ2
p (1/2) = 22/p−1. (3)

Similarly, for 2 <p < ∞, then we have 1 <q < 2 and ψp(t) ≤ ψ2(t). By Theorem 2.2, we

have
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Cp(‖.‖p) =
1

2ψ2
p (1/2)

= 22/q−1. (4)

From (3) and (4), we have

Cp(‖.‖p) = max{22/p−1, 22/q−1}.

Lemma 2.5 Let ||.|| and |.| be two equivalent norms on a Banach space. If a|.| ≤ ||.||

≤ b|.|(b ≥ a > 0), then

a2Cp(|.|)
b2

≤ Cp(‖.‖) ≤ b2Cp(|.|)
a2

Moreover, if ||x|| = a|x|, then Cp(||.||) = Cp(|.|).

Proof. From the definition of Cp(X), we have

Cp(‖.‖) = sup

{ ∥∥x − y
∥∥ ‖z‖

‖x − z‖ ∥∥y∥∥ +
∥∥z − y

∥∥ ‖x‖ : x, y, z ∈ X\{0}, x �= y �= z �= x

}

≤ sup

{
b2

∣∣x − y
∣∣ |z|

a2 |x − z| ∣∣y∣∣ + ∣∣z − y
∣∣ |x| : x, y, z ∈ X\{0}, x �= y �= z �= x

}

=
b2

a2
sup

{ ∣∣x − y
∣∣ |z|

|x − z| ∣∣y∣∣ + ∣∣z − y
∣∣ |x| : x, y, z ∈ X\{0}, x �= y �= z �= x

}

≤ b2

a2
Cp(|.|).

Similarly, we also have

a2Cp(|.|)
b2

≤ Cp(‖.‖).

Example 2.6 Let X = ℝ2 with the norm

‖x‖ = max{‖x‖2,λ‖x‖1} (1/
√
2 ≤ λ ≤ 1).

Then

Cp(‖.‖) = 2λ2.

Proof. It is very easy to check that ||x|| = max{||x||2, l||x||1} Î Na and its corre-

sponding function is

ψ(t) =
∥∥(1 − t, t)

∥∥ = max{ψ2(t),λ} ≥ ψ2(t).

Therefore

ψ(t)
ψ2(t)

= max{1, λ

ψ2(t)
}.

Since ψ2(t) attains minimum at t = 1/2 and hence ψ(t)
ψ2(t)

attains maximum at t = 1/2.

Therefore, from Theorem 2.3, we have

Cp(‖.‖) = 2ψ2(1/2) = 2λ2
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Example 2.7 Let X = ℝ2 with the norm

‖x‖ = max{‖x‖2,λ‖x‖∞} (1 ≤ λ ≤
√
2).

Then

Cp(‖.‖) = λ2.

Proof. It is obvious to check that the norm ||x|| = max{||x||2, l||x||∞} is absolute,

but not normalized, since ||(1, 0)|| = ||(0, 1)|| = l. Let us put

|.| = ‖.‖
λ

= max
{‖.‖2

λ
, ‖.‖∞

}

Then |.| Î Na and its corresponding function is

ψ(t) =
∥∥(1 − t, t)

∥∥ = max
{

ψ2(t)
λ

,ψ∞(t)
}

≤ ψ2(t).

Thus

ψ2(t)
ψ(t)

= min
{
λ,

ψ2(t)
ψ∞(t)

}
.

Consider the increasing continuous function g(t) = ψ2(t)
ψ(t) (0 ≤ t ≤ 1/2). Because g(0) =

1 and g(1/2) =
√
2, hence, there exists a unique 0 ≤ a ≤ 1 such that g(a) = l. In fact g

(t) is symmetric with respect to t = 1/2, then we have

g(t) =

{
ψ2(t)
ψ(t) , t ∈ [0, a] ∪ [1 − a, a];
λ, t ∈ [a, 1 − a]

Obvious, g(t) attains its maximum at t = 1/2. Hence, from Theorem 2.2 and Lemma

2.5, we have

Cp(‖.‖) = Cp(|.|) = 1
2ψ2(1/2)

= λ2.

Example 2.8 Let X = ℝ2 with the norm

‖x‖ = (‖x‖22 + λ ‖x‖2∞) (λ ≥ 0)

Then

Cp(‖.‖) = 2(1 + λ)/λ + 2.

Proof. It is obvious to check that the norm ‖x‖ = (‖x‖22 + λ ‖x‖2∞) is absolute, but not

normalized, since ||(1, 0)|| = ||(0, 1)|| = (1 + l)1/2. Let us put

|.| = ‖.‖√
1 + λ

.

Therefore |.| Î Na and its corresponding function is

ψ(t) =
∥∥(1 − t, t)

∥∥ =

{
[(1 − t)2 + t2/(1 + λ)]

1/2
, t ∈ [0, 1/2],

[t2 + (1 − t)2/(1 + λ)]
1/2

, t ∈ [1/2, 1].
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Obvious ψ(t) ≤ ψ2(t). Since λ ≥ 0, ψ2(t)
ψ(t) is symmetric with respect to t = 1/2, it suf-

fices to consider ψ2(t)
ψ(t) for t Î [0, 1/2]. Note that, for any t Î [0, 1/2], put g(t) = ψ2(t)

2

ψ(t)2
.

Taking derivative of the function g(t), then we have

g′(t) =
2λ

1 + λ
× t(1 − t)

[(1 − t)2 + t2/(1 + λ)]
2 .

We always have g’(t) ≥ 0 for 0 ≤ t ≤ 1/2, this implies that the function g(t) is

increased for 0 ≤ t ≤ 1/2. Therefore, the function ψ2(t)
ψ(t) attains its maximum at t = 1/2,

by Theorem 2.2 and Lemma 2.5, we have

Cp(‖.‖) = Cp(|.|) = 1
2ψ2(1/2)

= 2(1 + λ)/λ + 2.

Example 2.9 (Lorentz sequence spaces) Let 0 <a < 1. Two-dimensional Lorentz

sequence space, i.e., ℝ2 with the norm∥∥(z,ω)∥∥a,2 = ((x∗
1)

2 + a(x∗
2)

2)1/2,

where (x∗
1, x

∗
2) is the rearrangement of (|z|, |ω|) satisfying (x∗

1 ≥ x∗
2), then

Cp(
∥∥(z,ω)∥∥a,2) = 2

a + 1
.

Proof. Indeed, ||(z, ω)||a,2 Î Na, and the corresponding convex function is given by

ψa,2(t) =
∥∥(1 − t, t)

∥∥
a,2 =

{
[(1 − t)2 + at2]

1/2
, t ∈ [0, 1/2],

[t2 + a(1 − t)2]
1/2

, t ∈ [1/2, 1].

Obvious ψa,2(t) ≤ ψ2(t). Repeating the arguments in the proof of Example 2.8, we can

easily get the conclusion that ψ2(t)
ψa,2(t)

attains its maximum at t = 1/2. By Theorem 2.2,

we have

Cp(
∥∥(z,ω)∥∥a,2) = 2

a + 1
.

Example 2.10 Let X be a 2D Cesàro space ces(2)2
, then

Cp(ces
(2)
2 ) = 1 +

1√
5
.

Proof. We first define

∣∣x, y∣∣ = ∥∥∥∥
(

2x√
5
, 2y

)∥∥∥∥
ces(2)2

for (x, y) Î ℝ2. It follows that ces(2)2 is isometrically isomorphic to (ℝ2,|.|) and |.| is

absolute and normalized norm, and the corresponding convex function is given by

ψ(t) =

[
4(1 − t)2

5
+

(
1 − t√

5
+ t

)2
] 1

2
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Indeed, T : ces(2)2 → (R2, |.|) defined by T(x, y) =
(

x√
5
, 2y

)
is an isometric isomorph-

ism. We prove that ψ(t) ≥ ψ2(t). Note that(
1 − t√

5
+ t

)2

≥
(
1 − t√

5

)2

+ t2

Consequently,

ψ(t) ≥ ((1 − t)2 + t2)1/2 = ψ2(t)

Some elementary computation shows that ψ(t)
ψ2(t)

attains its maximum at t = 1/2.

Therefore, from Theorem 2.3, we have

Cp(ces
(2)
2 ) = 2ψ2(1/2) = 1 +

1√
5
.
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