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Abstract

We consider boundary regularity for weak solutions of second-order quasilinear
elliptic systems under controllable growth condition, and obtain a general criterion
for a weak solution to be regular in the neighborhood of a given boundary point.
Combined with existing results on interior partial regularity, this result yields an
upper bound on the Hausdorff dimension of the singular set at the boundary.
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1 Introduction
In this article we are concerned with boundary regularity for weak solutions of quasi-

linear elliptic systems of the following type:

−Dα

(
Aαβ

ij (x, u)Dβu
j
)
= Bi(x, u, Du), (1:1)

where Ω is a bounded domain in Rn, n ≥ 2, u and Bi take values in Rn, N >1. Here

each Aαβ

ij maps Ω × RN into R, and each Bi maps Ω × RN × RnN into R. In this article,

we shall be concerned with weak solutions. In order to define weak solutions to (1.1),

one needs to impose certain structural and regularity conditions on Aαβ

ij and inhomo-

geneity Bi as follows:

(H1) There exists L >0 such that

Aαβ

ij (x, ξ)(v, ṽ) ≤ L|v||ṽ| for all (x, ξ) ∈ �̄ × RN, v, ṽ ∈ RnN.

(H2) Aαβ

ij (x, ξ) is uniformly strongly elliptic, that is, for some l >0 we have

Aαβ

ij (x, ξ)(v, v) ≥ λ|v|2 for all (x, ξ) ∈ �̄ × RN , v ∈ RnN.

(H3) There exists a monotone nondecreasing concave function ω(t, s): [0, ∞) ® [0,

∞) with ω(t, 0) = 0, continuous at 0, such that

|Aαβ

ij (x, u) − Aαβ

ij (y, v)| ≤ ω(|x − y|2 + |u − v|2),

for all x, y Î Ω, u, v Î RN.
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(H4) Bi fulfill the following controllable growth condition:

|Bi(x, ξ , v)| ≤ C(|v|2(1− 1
r ) + |ξ |r−1 + 1),

where r = 2n
n−2 if n >2, or any exponent if n = 2; for all x ∈ �̄, ξ ∈ RN and ν Î RnN .

(H5) There exists s with s > n and a function g Î H1,s(Ω, Rn), such that there holds:

u|∂� = g|∂�.

Note that we trivially have g ∈ H1,2(�, RN). Further, by Sobolev embedding theorem

we have g Î C0,�(Ω, Rn) for any κ ∈ [0, 1 − n
s ]. If g|∂� ≡ 0,we will take g ≡ 0 on Ω.

We will be particularly concerned with a model case in which the domain is the

upper half unit ball B+. We reformulate the boundary condition for this case:

(H5)′ There exists s with s > n and a function g Î H1,s(B+, Rn) such that there holds:

u|D = g|D.

For x0 Î Rn−1 × {0} we write Dr (x0) = {x Î Rn : xn = 0, |x − x0| < r}, and set Dr =

Dr (0), D = D1.

Definition 1.1. By a weak solution of (1.1) we mean a vector valued function u Î W
1,2(Ω, Rn) such that∫

�

Aαβ

ij (x, u)(Dβu
j, Dαϕi)dx =

∫
�

Bi(x, u, Du) · ϕidx, (1:2)

holds for all test-functions ϕ ∈ C∞
0 (�, RN) and, by approximation, for all

ϕ ∈ W1,2
0 (�, RN). Where we have introduced the notation

Aαβ

ij (x, ξ)(v, ṽ) =
(
Aαβ

ij (x, ξ) v
)

· ṽ. (1:3)

In the current situation the Sobolev embedding theorem yields the existence of a

constant Cs depending only on s, n and N such that there holds:

sup
B+

ρ (x0)
|g − g′

x0,ρ | ≤ Csρ
1− n

s
∥∥g∥∥H1,s(B+

ρ(x0),RN), (1:4)

for x0 Î D, r ≤ 1−|x0|. Obviously, the inequality remains true if we replace
||g||H1,s(B+

ρ(x0),RN) by ||g||H1,s(B+,RN), which we will henceforth abbreviate simply as ||g||H1,s.

We also note here that the Poincare inequality in this setting yields:∫
B+

ρ (x0)

|g − g′
x0,ρ |2dx ≤ Cpρ

2
∫

B+
ρ (x0)

|Dg|2dx, (1:5)

for a constant Cp which depending only on n.

Finally, we fix an exponent s Î (0, 1) as follows: if g ≡ 0, s can be chosen arbitrary

(but henceforth fixed); otherwise we take s fixed in (0, 1 − n
s ].

Under such assumptions on the structural conditions, full regularity of (1.1) at the

boundary cannot, in general, be expected [1], even if the boundary data is smooth.

Then, our goal is to establish a partial boundary regularity for weak solutions of

systems (1.1).
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There are some previous partial regularity results for quasilinear systems. For exam-

ple, Arkhipova has studied regularity up to the boundary for nonlinear and quasilinear

systems [2-4]. And there are more results of particular forms. For systems in diagonal

form, boundary regularity was first established by Wiegner [5], and the proof was gen-

eralized and extended by Hildebrandt-Widman [6]. The further discussions in this case

can be seen in [7,8]. In the case of minima of functionals of the form ∫ΩA(x, u)|Du|
2

dx, Jost-Meier [8] established full regularity in a neighborhood of the boundary.

Further more, the dimension of singular set of solutions to non-differentiable elliptic

systems are reduced by Kristensen and Mingione [9,10]

The result which is most closely related to that given here was shown that in [11]

Grotowski obtained the boundary partial regularity results for more general systems of

the form: −DαAα
i (·, u, Du) = f i(·, u, Du), i = 1,..., N, under the quadratic growth and

natural condition. And in [12], he got the analogous boundary regularity of (1.1) under

natural growth condition. However the results in the current article do not follow

from those in [11]; in the current situation we need only impose weaker structure con-

ditions, and at the same time can obtain stronger conclusions.

The comparison is made possible by the technique of A-harmonic approximation.

This technique is the natural extension of the technique of harmonic approximation.

The harmonic approximation technique has its origins in Simon’s [13] proof of the

regularity theorem of Allard [14]. The technique of A-harmonic approximation then

refers to the direct analog of the above situation. The interior version of this technique

has previously been applied by Duzaar and Grotowski [15] to obtain a new, elementary

proof for interior partial regularity for systems of the form (1.3). Then it has been

extended and developed in [16,17].

In this article, we shown optimal boundary regularity of (1.1) under controllable

growth condition. As the argument for combining the boundary and interior estimates

is relatively standard, we omit it and get the following results:

Theorem 1.1. Let Ω be a bounded domain in Rn , with boundary of class C1. Let u

be a weak solution of (1.1) satisfying the boundary condition (H5), where the structure

conditions (H1)-(H3) hold for Aαβ

ij , and (H4) holds for Bi. Consider a fixed g Î (0, s].

Then there exist positive R1 and ε0(depending only on n, N, l, L, ω(·) and g) with the

property that

–∫BR(x0)∩�|u − u′
x0,R|2dx + ‖g‖2H1,sR

2(1−
n
s
)
+ R2 ≤ ε20,

for some R Î (0, R1] for a given x0 Î ∂Ω implies u ∈ C0,γ (B̄ R
2
(x0) ∩ �̄, RN).

Note in particular that the boundary condition (H5) means that u′
x0,R makes sense: in

fact, we have u′
x0,R = g′

x0,R.

Combining this result with the analogous interior [18] and a standard covering argu-

ment allows us to obtain immediately the following bound on the size of the singular

set:

Corollary 1.2. Under the assumptions of Theorem 1.1, the singular set of the weak

solution u has (n − 2)-dimensional Hausdorff measure zero in �̄.

If the domain of the main step in proving Theorem 1.1 is a half ball; the result then

follows from a relatively standard transformation argument.
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Theorem 1.2. Consider a weak solution of (1.1) on the upper half unit ball B+ which

satisfies the boundary condition (H5)′, where the structure conditions (H1)-(H3)hold

forAαβ

ij , and (H4) holds for Bi. Then there exist positive R0 and ε0(depending only on n,

N, l, L, ω(·) and g) with the property that

–∫B+
R(x0)|u − u′

x0,R|2dx + ||g||2H1,sR
2(1−

n
s
)
+ R2 ≤ ε20,

for some R Î (0, R0] for a given x0 Î D implies u ∈ C0,γ (B̄ R
2
(x0),RN).

Note that analogously to above, the boundary condition (H5)′ ensures that u′
x0,R

exists, and we have indeed u′
x0,R = g′

x0,R.

We close this section by briefly summarizing the notation we use in this article. For

a given set X we denote by Ln(X) and Hk(X) its n-dimensional Lebesgue measure and

k-dimensional Harsdorff measure, respectively. We write Br(x0) = {x Î Rn : |x − x0| <

r}, and further Br = Br (0), B = B1. Similarly we denote upper half balls as follows: for

x0 Î Rn−1 × {0} we write B+
ρ(x0) for {x Î Rn : xn > 0, |x - x0| <r}, and set

B+
ρ = B+

ρ(0),B
+ = B+

1. For bounded X ⊂ Rn with Ln(X) >0 we denote the average of a

given g Î L1 by –∫X gdx, i.e. –∫Xgdx = 1
Ln(X)

∫
X gdx. For v Î L1 (∂Ω), x0 Î ∂Ω we set

ν ′
x0,R = –∫

∂�∩B̄R(x0)vdH
n−1. In particular, for ν Î L1(Dr(x0)), x0 Î D, we write

ν ′
x0,ρ = –∫Dρ(x0)vdH

n−1. We let an denote the volume of the unit-ball in Rn, i.e. an = Ln

(B). We write Bil(RnN ) for the space of bilinear forms on the space RnN .

2 The A-harmonic approximation technique and some preliminary results
In this section we present the A-harmonic approximation lemma [12], and some stan-

dard results due to Campanato [19,20].

Lemma 2.1. (A-harmonic approximation lemma) Consider fixed positive l and L,

and n, N Î N with n ≥ 2. Then for any given ε >0 there exists δ = δ(n, N, l, L, ε) Î

(0, 1] with the following property: for any Aαβ

ij ∈ Bil(RnN)satisfying

Aαβ

ij (v, v) ≥ λ|v|2, for all v ∈ RnN, (2:1)

and

|Aαβ

ij (v, v̄| ≤ L|v||v̄|, for all v, v̄ ∈ RnN, (2:2)

for any w ∈ H1,2(B+
ρ(x0), R

N) (for some r >0, x0 Î Rn) satisfying

ρ2−n
∫

B+
ρ(x0)

|Dw|2dx ≤ 1, (2:3)

and ∣∣∣∣∣∣∣ρ
2−n

∫
B+

ρ (x0)

Aαβ

ij (Dg, Dϕ)dx

∣∣∣∣∣∣∣ ≤ δρ sup
B+

ρ (x0)
|Dϕ| , (2:4)
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and

w|Dρ (x0) = 0, (2:5)

for all ϕ ∈ C1
0(B

+
ρ(x0), R

N),there exists an A-harmonic function

v ∈ H̃ =

⎧⎪⎨
⎪⎩w̃ ∈ H1,2(B+

ρ(x0), R
N)

∣∣∣∣∣∣∣ρ
2−n

∫
B+

ρ (x0)

|Dw̃|2dx ≤ 1, w̃|Dρ(x0) ≡ 0

⎫⎪⎬
⎪⎭ ,

with

ρ−n
∫

B+
ρ (x0)

|v − w|2dx ≤ ε. (2:6)

Next we recall a slight modification of a characterization of Hölder continuous func-

tions [19].

Lemma 2.2. Consider n Î N, n ≥ 2 and x0 Î Rn−1 × {0}. Suppose that there are posi-

tive constants � and a, with a Î (0, 1] such that, for some v ∈ L2(B+
6R(x0)), there hold

the following:

inf
μ∈R

⎧⎪⎨
⎪⎩ρ−n

∫
B+

ρ (y)

|v − μ|2dx

⎫⎪⎬
⎪⎭ ≤ κ2

(ρ

R

)2α

, (2:7)

for all y Î D2R (x0) and r ≤ 4R; and

inf
μ∈R

ρ−n

⎧⎪⎨
⎪⎩
∫

Bρ (y)

|v − μ|2dx

⎫⎪⎬
⎪⎭ ≤ κ2

(ρ

R

)2α

, (2:8)

for all y ∈ B+
2R(x0) andBρ(y) ⊂ B+

2R(x0).

Then there exists a Hölder continuous representatives of the L2-class of ν on B̄+
R(x0),

and for this representative v̄ there holds:

|v̄(x) − v̄(z)| ≤ Cκ

( |x − z|
R

)α

, (2:9)

for all x, z ∈ B̄+
R(x0), for a constant C� depending only on n and a.

We close this section by a standard estimate for the solutions to homogeneous sec-

ond order elliptic systems with constant coefficients, due originally to Campanato [20].

Lemma 2.3. Consider fixed positive l and L, and n, N Î N with n ≥ 2. Then there

exists C0 depending only on n, N, l and L (without loss of generality we take C0 ≥ 1)

such that for Aαβ

ij ∈ Bil(RnN) satisfying (2.1) and (2.2), any A-harmonic function h on

B+
ρ(x0) with h|Dρ (x0) ≡ 0 satisfies

ρ2 sup
B+

ρ

2
(x0)

|Dh|2 ≤ C0ρ
2−n

∫
B+

ρ (x0)

|Dh|2dx.
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3 Caccioppoli inequality
In this section we prove the following Caccioppoli’s inequality.

Theorem 3.1. Let u ∈ W1,2(�̄, RN) be a weak solution of systems (1.1) under (H1)-

(H5). Then there exists r0 >0, r0 depending only on L, s and ||g||H1,s , such that for all

B+
ρ(x0) ⊂ B+, with x0 Î D+, r < R < r0, there holds∫

B+
ρ/2(x0)

|Du|2dx ≤ C1
ρ2

∫
B+

ρ (x0)

|u(x) − u′
x0,ρ |2dx + C2αn ‖ g ‖2H1,s ρ

n(1−2
s )

+ C3

⎛
⎜⎝ ∫
B+

ρ(x0)

(|Du|2+|u|r + 1)dx

⎞
⎟⎠

2(1− 1
r )

,

(3:1)

where C1, C2, C3 depending only on l, L and
∥∥g∥∥L∞(B,RN), and C2 additional on Cp,

Cs, and also on s.

Proof. Now we consider a cut -off function η ∈ C∞
0 (B+

ρ/2(x0)), satisfying

0 ≤ η ≤ 1, η ≡ 1onB+
ρ/2(x0) and |∇η| < 4

ρ. Then the function (u − g)h2 is in

W1,2
0 (B+

ρ/2(x0, R
N)), and thus can be taken as a test-function.

Using (1.2), (H1), (H4), (H5), for ε positive but arbitrary (to be fixed later), we have:∫
B+

ρ(x0)
Aαβ

ij (x, u)(Du, Du)η2dx

= −2
∫
B+

ρ (x0)
Aαβ

ij (x, u)(Du, Dη)(u − g)ηdx

+
∫
B+

ρ (x0)
Aαβ

ij (x, u)(Du, Dg)η2dx +
∫
B+

ρ (x0)
Bi(x, u, Du) · ϕidx

≤ 2L
∫
B+

ρ(x0)
|Du||Dη||u − g|ηdx + L

∫
B+

ρ (x0)
|Du||Dg|η2dx

+ C
∫
B+

ρ (x0)

(
|Du|2(1− 1

r ) + |u|r−1 + 1
)

· ϕdx

≤ 2ε

∫
B+

ρ(x0)
|Du|2η2dx + L2

ε

∫
B+

ρ (x0)
|u − g|2|Dη|2dx + L2

ε

∫
B+

ρ (x0)
|Dg|2dx

+ C

⎛
⎜⎝ ∫
B+

ρ(x0)

(|Du|2 + |u|r + 1)dx

⎞
⎟⎠
(
1− 1

r

)(∫
B+

ρ(x0)
|ϕ|rdx

) 1
r

≤ 2ε

∫
B+

ρ(x0)
|Du|2η2dx + L2

ε

∫
B+

ρ (x0)
|u − g|2|Dη|2dx + L2

ε

∫
B+

ρ (x0)
|Dg|2dx

+ C

⎛
⎜⎝ ∫
B+

ρ(x0)

(|Du|2 + |u|r + 1)dx

⎞
⎟⎠
(
1− 1

r

)(∫
B+

ρ(x0)
|Dϕ|2dx

) 1
2

≤ 3ε

∫
B+

ρ (x0)

|Du|2η2dx +
(
L2

ε
+ C (ε)

) ∫
B+

ρ (x0)
|u − g|2|Dη|2dx + C(ε)

∫
B+

ρ (x0)
|Dg|2dx

+ C(ε)

⎛
⎜⎝ ∫
B+

ρ(x0)

(|Du|2 + |u|r + 1)dx

⎞
⎟⎠

2
(
1− 1

r

)

.

(3:2)
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Using (H2) and the fact that u′
x0,ρ = g′

x0,ρ, we thus have:

λ

∫
B+

ρ (x0)
|Du|2η2dx

≤ 3ε

∫
B+

ρ (x0)
Du|2η2dx + 2

(
L2

ε
+ C (ε)

) ∫
B+

ρ(x0)
|u − u′

x0,ρ |2|Dη|2dx + C(ε)
∫
B+

ρ (x0)
|Dg|2dx

+ 2
(
L2

ε
+ C (ε)

)∫
B+

ρ (x0)
|g − g′

x0,ρ |2|Dη|2dx + C (ε)

⎛
⎜⎝ ∫
B+

ρ (x0)

(|Du|2 + |u|r + 1)dx

⎞
⎟⎠

2

(
1−

1
r

)

.

Thus, by (1.4), (1.5), we can get:

(λ − 3ε)

∫
B+

ρ (x0)
|Du|2η2dx ≤ 2

(
L2

ε
+ C (ε)

)∫
B+

ρ (x0)
|u − u′

x0,ρ |2|Dη|2dx

+
[
2
(
L2
ε
+ ε
)
Cp + C (ε)

]
αn||g||2H1,sρ

n
(
1− 2

s

)
+ C (ε)

⎛
⎜⎝ ∫
B+

ρ (x0)

(|Du|2 + |u|r + 1)dx

⎞
⎟⎠

2
(
1− 1

r

)

.

(3:3)

Fix ε small enough such that l − 3ε >0, thus (3.3) yields the desired inequality,

where C1, C2, C3 depending only on
∥∥g∥∥L∞(B,RN), l and L, and C2 additional on Cp, Cs

and also on s.

4 The proof of the main theorem
In this section we proceed to the proof of partial regularity result, and hence consider

u Î W1,2(Ω, Rn ) to be a weak solution of (1.1). For R <1 − |x0|, x0 Î D, y Î DR(x0),

Dr(y) ⊂⊂ DR(x0),and ϕ ∈ C∞
0 (B+

ρ

2
(y), RN) with sup

B+
ρ (y)

|Dϕ| ≤ 1, we have

Lemma 4.1.∣∣∣∣∣∣∣∣∣
(ρ

2

)2−n
∫

B+
ρ

2
(y)

A(y, u+y,ρ)(Du, Dϕ)dx

∣∣∣∣∣∣∣∣∣
≤ C8

ρ

2

√
I
(√

I + ω
1
2 (I)

)
sup

B+
ρ

2
(x0)

|Dϕ|, (4:1)

here and hereafter, we define

I(z, r0) = –∫B+
r0
(z)|u − u′

z,r0 |2dx + ||g||2H1,s r
2(1−n/s)
0 + r20,

for z Î D, r0 Î (0, 1 - |z|).

Proof. Consider x0 Î D and y Î DR(x0), Dr(y)⊂⊂ DR(x0), for R <1 − |x0|, and

ϕ ∈ C∞
0 (B+

ρ

2
(y),RN) with sup

B+
ρ (y)

|Dϕ| ≤ 1. From the definition of weak solution:

∫
B+

ρ

2
(y)

Aαβ

ij (y, u
′
y,ρ)(Du, Dϕ)dx

≤ C

⎡
⎢⎣∫

B+
ρ

2
(y)

(
|Du|2

(
1− 1

r

)
+ |u|r−1 + 1

)
dx

⎤
⎥⎦ρ sup

B+
ρ

2
(y)

|Dϕ|

+
∫
B+

ρ

2
(y)

|Aαβ

ij (y, u
′
y,ρ) − Aαβ

ij (x, u)||Du|dx sup
B+

ρ

2
(y)

| Dϕ|.

(4:2)
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By Sobolev’ s and Hölder’s inequalities, and then Young’s inequality, we have

C
∫
B+

ρ

2
(y)

(
|Du|2

(
1− 1

r

)
+ |u|r−1 + 1

)
dx

≤ C

⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

1− 1
r
⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠

1
r

+ C
(|u′

y,ρ/2|r−1 + 1
)
αnρ

n/2

+ C

⎛
⎜⎝∫

B+
ρ

2
(y)

|u − u′
y,ρ/2|rdx

⎞
⎟⎠

(1−
1
r
)⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠
1
r

≤ C

⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

1− 1
r
⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠

1
r

+ C
(|u′

y,ρ/2|r−1 + 1
)
αnρ

n/2

+ C

⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

r
2

(
1− 1

r

)⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠

1
r

≤ C

⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

1− 1
r
⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠

1
r

+ C
(|u′

y,ρ/2|r−1 + 1
)
αnρ

n/2

+ C

⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

( r2−1)(1− 1
r )
⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

1−1
r
⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠

1
r

≤ C(||u||W1,2 )

⎛
⎜⎝∫

B+
ρ

2
(y)

|Du|2dx

⎞
⎟⎠

1− 1
r
⎛
⎜⎝∫

B+
ρ

2
(y)

dx

⎞
⎟⎠

1
r

+ C
(|u′

y,ρ/2|r−1 + 1
)

αnρ
n

2

≤ ε

∫
B+

ρ

2
(y)

|Du|2dx + C(ε, ||u||W1,2 )
(|u′

y,ρ/2|r−1 + 1
)
αnρ

n/2,

(4:3)

and

C3

(∫
B+

ρ (x0)
(|Du|2 + |u|r + 1) dx

)2(1−
1
r
)

≤ c4
2

αnρ
n+2
(
–∫B+

ρ (x0)(|Du|2 + |u − u′
x0,ρ |r + |u′

x0,ρ | + 1)dx
)2(1−

1
r
)

≤ C5αnρ
n+2

⎡
⎢⎣(–∫B+

ρ (x0)|Du|2dx
)2(1−

1
r
)
+
(
–∫B+

ρ (x0)|Du|2dx
)r(1−

1
r
)
+ (|u′

x0,ρ | + 1)
2

(
1−

1
r

)⎤
⎥⎦

≤ C6(||u||W1,2 , |u′
x0,ρ |)αnρ

n+2,

where we have used r = 2n
n−2 and u ∈ W1,2(�̄, RN).
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Then Caccioppoli inequality yields

∫
B+

ρ/2(x0)

|Du|2dx ≤ C1

ρ2

∫
B+

ρ(x0)

|u(x) − u′
x0,ρ |2dx + C2αn||g||2H1,sρ

n(1−
2
s
)
+ C6αnρ

n+2.(4:4)

Henceforth we restrict to r sufficiently small. Applying in turn Young’s inequality,

(H3), (4.4) and Jensen’s inequality we calculate from (4.2):∫
B+

ρ

2
(y)

Aαβ

ij (y, u
′
y,ρ)(Du, Dϕ)dx

≤ Cρ

⎡
⎢⎣∫

B+
ρ

2
(y)

|Du|2dx + (|u′
y,ρ/2|r−1 + 1

)
αnρ

n/2

⎤
⎥⎦

+

⎡
⎢⎣∫

B+
ρ

2
(y)

|Aαβ

ij (y, u
′
y,ρ) − Aαβ

ij (x, u)|2dx

⎤
⎥⎦

1
2

·

⎡
⎢⎣∫

B+
ρ

2
(y)

|Du|2dx

⎤
⎥⎦

1
2

≤ Cρ

⎡
⎢⎣∫

B+
ρ

2
(y)

|Du|2dx + (|u′
y,ρ/2|r−1 + 1

)
αnρ

n/2

⎤
⎥⎦

+ ω
1
2
(
ρ2 + –∫B+

ρ (y)|u − u′
y,ρ |2dx

)
(αnρ

n/2)
(
fB+

ρ(y)|Du|2dx
) 1
2 .

(4:5)

For z Î D, r0 Î (0, 1 − |z|). We introduce the

notationI(z, r0) = –∫B+
r0
(z)|u − u′

z,r0 |2dx + ||g||2H1,s r
2(1−n/s)
0 + r20,

and further write I for I(y, r). We have from (4.5) and by Poincare’s inequality:

∫
B+

ρ

2
(y)

Aαβ

ij (y, u
′
y,ρ)(Du, Dϕ)dx ≤ C7

2
αnρ

n−1

⎡
⎣I + ω

1
2 (I)I

1
2

⎤
⎦ .

For arbitrary ϕ ∈ C∞
0 (�, RN) we thus have, by recalling:∫

B+
ρ

2
(y)

Aαβ

ij (y, u
′
y,ρ)(Du, Dϕ)dx ≤ C7

2
αnρ

n−1
[
I + ω

1
2 (I)I

1
2

]
sup

B+
ρ

2
(x0)

|Dϕ|.

Multiplying through by ( ρ

2 )
2−n, this yields:∣∣∣∣∣∣∣∣∣

(ρ

2

)2−n
∫

B+
ρ

2
(y)

Aαβ

ij (y, u
′
y,ρ)(Du, Dϕ)dx

∣∣∣∣∣∣∣∣∣
≤ C8

ρ

2

⎡
⎣I + ω

1
2 (I)I

1
2

⎤
⎦ sup

B+
ρ

2
(x0)

|Dϕ|, (4:6)

for C8 define by C8 = 2n−3C7an.

Lemma 4.2. Consider u satisfying the condition of Theorem 1 and s fixed, then we can

find δ and s0 together with positive constants C11 such that the smallness conditions:
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0 < ω(|u|, s0) ≤
(

δ

2

)2

,

and

I(x0, R) ≤ C−1
13 min

{
δ2

4
, s0

}
,

together imply the growth condition

I(y, θρ) ≤ θ2σ I(y, ρ).

Proof. Combining Lemma 2.1 and Theorem 3.1, and applying Lemma 2.2, we can

conclude the desired Hölder continuity. As the argument is relatively standard and

similarly to [12], we omit it.
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