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Abstract
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1. Introduction

A tree is a graph G = {T, E} which is connected and contains no circuits. Given any
two vertices o, t(c = t € T), let ot be the unique path connecting ¢ and ¢. Define the
graph distance d (o, t) to be the number of edges contained in the path ot¢.

Let T n be a Cayley tree. In this tree, the root (denoted by o) has only N neighbors
and all other vertices have N + 1 neighbors. Let T 5 be a Bethe tree, on which each ver-
tex has N + 1 neighboring vertices. Here both T and T are homogeneous tree. In
this paper, we mainly consider an m rooted Cayley tree Tcn (see Figure 1). It is formed
by a Cayley tree T with the root o connecting with another vertex denoted by the the
root -1, and then root -1 connecting with another vertex denoted by the root -2, and
continuing to do the same work until the last vertex denoted by the root - (m - 1) is con-
nected. When the context permits, this type of tree is denoted simply by T.

Let o, t(o, t # 0, -1, - 2,..., - (m - 1)) be vertices of an m rooted Cayler tree 7. Write ¢
< o if ¢ is on the unique path connecting o to 0, and |0 | the number of edges on this
path. For any two vertices o, t(0, ¢t # 0, -1, - 2,..., - (m - 1)) of tree T, denote by 6 A ¢
the vertex farthest from o satisfying c At <cand oAt <t

The set of all vertices with distance # from the root o is called the n-th generation of
T, which is denoted by L,. We say that L, is the set of all vertices on level n and espe-
cially root -1 is on the -1st level on tree T, root -2 is on the -2nd level. By analogy,
root -(m - 1) is on the -(m - 1) th level. We denote by T the subtree of an m rooted
Cayley tree T containing the vertices from level -(m - 1) (the root -(m - 1)) to level n.
Let t(t # o, -1, -2, ..., -(m - 1)) be a vertex of an m rooted Cayley tree T. Predecessor of
the vertex ¢ is another vertex, which is nearest from £, on the unique path from root
-(m - 1) to t. We denote the predecessor of t by 1, the predecessor of 1, by 2, and the
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Figure 1 An m rooted Cayley tree TC 5.
L )

predecessor of (1 - 1), by n,. We also say that #, is the n-th predecessor of ¢. X4 = X,
t € A} is a stochastic process indexed by a set A, and denoted by |A| the number of
vertices of A, x* is the realization of X,

Let (2, F) be a measure space, {X,, te T} be a collection of random variables defined
on (2, F) and taking values in G = {0,1,..., b - 1}, where b is a positive integer. Let P
be a general probability distribution on (€2, F). We will call P the random field on
tree T. Denote the distribution of {X;, £ € T} under the probability measure P by

Py = P(x™ = ™), AT e G (1)
Let

fu@) = = o InP™) @

T T '

Jfu(w) is called entropy density of xTt.
Let Q be another probability measure on the measurable space (€2, F), and let the
distribution of {X,, t € T} under Q be

Q(xT(")) _ Q(XT(") _ xT(")), xT(") c GT("). (3)

Let

p(x™
h(P|Q) = lim sup In ( ) .
00 |T(n) | Q(XTW)

h(P | Q) is called the sample divergence rate of P relative to Q.

Remark 1 If P = Q, h(P | Q) = 0 holds. By using the approach of Lemma 1 of Liu and
Wang [1], we also can prove that #(P | Q) = 0, P - a.e; hence, (P | Q) can be regarded
as a measure of the Markov approximation of the arbitrary random field on T.

Definition 1 (see [2]) Let G = {0, 1,.., b - 1} and P(y|xy, x3,..., X,,,) be a nonnegative
functions on G"*'. Let
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Tc,

If

Zp(ﬂxlrxz, e Xm) =1,

yeG

then P is called an m-order transition matrix.

Definition 2 (see [2]). Let T be an m rooted Cayley tree, and let G = {0, 1,..., b - 1}
be a finite state space, {X;, t € T} be a collection of G-valued random variables defined
on the probability space (€2, F, Q). Let Q be a probability on a measurable space
(2,F).

Let

q=(q(x1,%2, ..., %m)), X1.%2,...,%m €G (5)
be a distribution on G, and

Qn = (Gu(ylx1, %2, .., Xm)),  X1,%2, ..., Xm, Yy €G,n > 1 (6)
be m-order transition matrices. For any vertex t € L, n = 1, if

QX =yIX1, =x1, X2, =%2, ..., Xim, =xmand X, foro At < 1))
= Q(X; =yIXy, =x1, X2, =x2, ..., X, = Xm) (7)

=qn(yIx1, %2, .- Xm), VX1, X2, ... X, Y € G
and

Q(X—(m—l) =X1,.. .,X_l = Xm_l,Xo = .X'm)
=q(xlr-~-er71/xm)r x1,-.-,-7Cm€G,

8)

then {X;, t € T} is called a G-valued mth-order nonhomogeneous Markov chain
indexed by an m rooted Cayley tree with the initial 7 dimensional distribution (5) and
m-order transition matrices (6) under the probability measure Q, or called a T-indexed
mth-order nonhomogeneous Markov chain under the probability measure Q.

We denote

om={0,—-1,-2,...,—(m—1)},0,={-1,-2,...,—(m—1)},

X?(t) = {Xnt’ e ’thlxlt}lxg(t) = {Xn[/ o 'IXQ,;/Xlt/Xt}/

and denote by x7(t) and x{(t) the realizations X7 (t) and X{(t), respectively.

Let {X;, t € T} be an mth-order nonhomogeneous Markov chains indexed by an m
rooted Cayley tree T under the probability measure Q defined on above. It is easy to
see that

QU™ = QIX™ = ™) = glx_gm-1y, -~ %) [ | [T el (). ©)
k=1 tel,

In the following, we always assume that P(x”(")), Qx”(")), g(*1,..., %,n), and {g,.(y |
X1y %), 1 = 1} are all positive.
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There have been some works on limit theorems for tree-indexed stochastic process.
Benjamini and Peres [3] have given the notion of the tree-indexed Markov chains and
studied the recurrence and ray-recurrence for them. Berger and Ye [4] have studied
the existence of entropy rate for some stationary random fields on a homogeneous
tree. Pemantle [5] proved a mixing property and a weak law of large numbers for a
PPG-invariant and ergodic random field on a homogeneous tree. Ye and Berger [6,7],
by using Pemantle’s result and a combinatorial approach, have studied the Shannon-
McMillan theorem with convergence in probability for a PPG-invariant and ergodic
random field on a homogeneous tree. Yang and Liu [8] have studied a strong law of
large numbers for the frequency of occurrence of states for Markov chains field on a
Bethe tree (a particular case of tree-indexed Markov chains field and PPG-invariant
random field). Yang [9] has studied the strong law of large numbers for frequency of
occurrence of state and Shannon-McMillan theorem for homogeneous Markov chains
indexed by a homogeneous tree. Yang and Ye [10] have studied the strong law of large
numbers and Shannon-McMillan theorem for nonhomogeneous Markov chains
indexed by a homogeneous tree. Huang and Yang [11] have studied the strong law of
large numbers and Shannon-McMillan theorem for Markov chains indexed by an infi-
nite tree with uniformly bounded degree. Recently, Shi and Yang [12] have also studied
some limit properties of random transition probability for second-order nonhomoge-
neous Markov chains indexed by a tree. Peng et al. [13] have studied a class of strong
deviation theorems for the random fields relative to homogeneous Markov chains
indexed by a homogeneous tree. Shi and Yang [2] have studied the strong law of large
numbers and Shannon-McMillan for the mth-order nonhomogeneous Markov chains
indexed by an m rooted Cayley tree. Yang [14] has also studied a class of small devia-
tion theorems for the sequences of N-valued random variables with respect to mth-
order nonhomogeneous Markov chains.

In this paper, our main purpose is to extend Yang’s [14] result to an m rooted Cayley
tree. By introducing the sample divergence rate of any probability measure with respect
to mth-order nonhomogeneous Markov measure on an m rooted Cayley tree, we estab-
lish a class of strong deviation theorems for the arbitrary random fields indexed by that
tree with respect to mth-order nonhomogeneous Markov chains indexed by that tree.
As corollaries, we obtain the strong law of large numbers and Shannon-McMillan theo-
rem for mth-order nonhomogeneous Markov chains indexed by that tree.

2. Main Results
Before giving the main results, we begin with a lemma.

Lemma 1 Let 7 be an m rooted Cayley tree, G = {0, 1,..., b - 1} be the finite state
space. Let {X;, t € T} be a collection of G-valued random variables defined on the mea-
surable space (€2, F). Let P and Q be two probability measures on the measurable
space (2, F), and let {X,, t € T} be an mth-order nonhomogeneous Markov chains

indexed by tree T under probability measure Q. Let {g,(y1,..., ¥m+1), © = 1} be a

sequence of functions defined on G”*'. Let F, = o (X™)(n > 1). Set

Fa(@) =) &(Xg(1)) (10)

k=1 tely
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and

eHl®) A(X—(m-1y, -+ Xo) [Ther Trer, 0 (XeIXT' (1))

ty(h w) = n T n
! [Tis Tlicr, Bo [28 X5 OXT (1)] P(x™")

(11)

where E, denote the expectation under probability measure Q. Then
{t.(A, @), Fn,n > 1} is a nonnegative martingale under probability measure P.

Proof The proof is similar to Lemma 3 of Peng et al. [12], so the proof is omitted.

Theorem 1 Let T be an m rooted Cayley tree, {X,, t € T} be a collection of random
variables taking values in G = {0, 1,..., b - 1} defined on the measurable space (€2, F).
Let P and Q be two probability measures on the measurable space (€2, F), such that
{X,, t € T} is an mth-order nonhomogeneous Markov chain indexed by T under Q. Let
h(P | Q) be defined by (4), {g,(y1,--» Y1), 7 = 1} be a sequence of functions defined on
G™*!. Let ¢ > 0 be a constant. Set

D(c) ={w : h(P|Q) < c}. (12)

Assume that there exists o >0, such that Vi € G”,

by (") = llrn nsup Z ZEQ[e“lg"(Xm(l))I IX7'(t) =i"] <. (13)

|T(n)| k=1 teL

Let

2t
et —a)?’

where 0 < ¢ < a. Thus, when 0 < ¢ < £?4,, we have

lmsup ) 3 Y 60 (0) — Eolsi (R ()XTON)| imsup < 2VeA,  P-ae,0 D@, (15)
k=1 tely,

In particular,

lim | O 18X (1) — Eqlge(Xg ()X (0]} =0, P—ae,0eD(0).  (16)

n— oo |T(”) |
k=1 tely,

Proof Let £,(A, ®) be defined by (11). By Lemma 1, {t,(}, @), Fy,n > 1} is a non-
negative martingale under probability measure P. By Doob’s martingale convergence
theorem, we have

nlLI& th(A, @) =t(X, w) <00, P—ae.
Hence,

1
lim sup 70| Int,(A, w) <0, P—ae. (17)

n—o0

We have by (9), (10), (11) and (17)

(1)
hm nsup IT(")I |:k_21reZL {Agk(xm(t)) —InEq|e [ 7 (X2 (1)) |Xm(t)]} (IQ)E;(T(M))} <0,Pac. (18)
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By (4),(12) and (18)

lim sup IT(")I ZZ {Agk (X0(1)) — InEq [ e [ 1 (X3 (f))|x'"(t)“ ¢, P-ae,weD().  (19)

n—o00

k=1 tely
This implies that
11m sup T(”)\ Z Z {8:(X5' (1)) — Eqlge(Xg ()IXT' ()]}
k=1 tel (20)
< limsup IT(">| Z 3 {mEQ [ef\Xk ) \x'"(z)] EQ[Agk(Xm(L))\Xm(t)]} +¢, P—ae,weD(c)
k=1 teLy

Let |A| < ¢ By inequalities In x < x -1(x >0) and ¢* — 1 —x < x;e|x|, and noticing

that
max{x’e ™, x > 0} = 4¢"2/h*(h > 0). (21)

We have

lim m sup |T(1")| Z > [ln Eqle [ )»Zk(X"l(t))|X"’(t)] EQ[/\gk(Xrn(t))|Xm(t)]}

k=1 teL;,

< hm sup |T( ) ZZ {EQ[ xgk(x'"(r))|xm(t)] —-1- EQ[Agk(X'"(t))IXM(t)]}

- k=1 teLk

)\‘2
. [A1lg, (X5'(0)]
lim sup |T(”)| E E Eq [gk (X5 (1)) s |X"’(t)]

<
2 oo k=1 tel; (22)
A2 1 <
= lim sup ) ZZBQ [ea\gk(xé"(t))\ng(Xgl(t))e(\xlfa)\gk(xé"(f))l|X11n(t)]
2 oo T
k
22 "
< " limsup ZZE [ 18:(X5(lIge=2/(|A| — a) |X”’(t)]
2 nooo |T(n)| k=1 tel;

< 2A%t/e*(t — ).

By (20) and (22), we have

hrn sup

o kZ 28 050) ~ Eols G OIT O o

<)A, +¢, P—ae,we D(c).

When 0 < A < ¢ < o, we have by (23)

lim sup |T(1n)| D0 18X5 (1) — Eolge(Xg ()IXT (D))

=00 k=1 tely (24)
<AM;+c/h, P—ae., e D(c).
It is easy to see that when 0 < ¢ < £?4,, the function f (A) = AA, + c/A attains, at

A= \/C/A[, its smallest value f(\/c/At) = 2./cA,. Letting X = \/C/At in (24), we have

lim m sup IT(")I Z D 18(X3 (1) — Eqlge(Xg (1) IXT ()]} < 2v/cA,  P—ae, » € D(c). (25)

k=1 tely
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When ¢ = 0, we have by (24)

lim sup IT}n)lZz{gk(xs"(r))—Eo[gk(x;r(t))lxz"(tmsmu Pac,weD(0).  (26)

k=1 teL;

Letting A — 0" in (26), we obtain

lim sup mln)' 33 (X (0) — Eolg X)X (0] <0, P—ae,0eD().  (27)

k=1 teL;

Hence, (25) also holds for ¢ = 0. When -o <-t < A <0, by virtue of (23) it can be
shown in a similar way that

lim inf mlm 33 (@0 0) - EolgKP )X (O] = —2J/cA,  P-ae,0 D). (28)

k=1 tel;

Equation 15 follows from (25) and (28), Equation 15 implies (16) immediately. This
completes the proof of the theorem. O
Theorem 2 Let

H, =2bje*(t—1)?, 0<t<1. (29)

Let f,(w) be defined by (2). Under the conditions of Theorem 1, when 0 < ¢ < £*H,,
we have

n

1
limsupfy () = ) D0 D HIaOXT(©), - @b = 1XT ()]
e T (30)

< 2\/cHt, P—a.e,w e D(c),

lim inf{f, () — |T(1n)| > HIaOIXT (), -, qu(b — UXT ()]} o
k=1 tely

>—2\/cH,—¢, P—ae.,oeD(c),

where H(py,.... pp.1) denote the entropy of distribution (py,..., pp.1), i-€.,

b-1
H(po, -/ po—1) = — ZPi Inp;.

i=0
Proof In Theorem 1, let gi(y1,-» Yims1) = - In @Vt | Y1 ¥) and @ = 1, we have
Eo [egk(xg'(z))| X" (1) = i’"]

= Z elflnqk(j‘im)lqk(ﬂim)
jeG (32)

= > @Gl an(li™)
jeG
=b.

Page 7 of 15
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Hence, Vi" € G",
1 « "
bi(i") =limsup 33" Eq [ Dy () = ] < b,
nooo [TV i
Noticing that
Eql— In qr(X: X7 (1)) IXT' (1)]
= = @GIXT () Inqu(1X7 (1))

jeG
= H|qe(OIXY' (1)), - .., qi(b — 1IXT'(1))] .
When 0 < ¢ < *H,, we have by (34),(29) and (15)

n

k=1 tely, k=1 teL;

fim sup { |T(1")| D2 (CInaXIXy () — |T(1")| 2D _HIa(OX (1), .., qulb — 1|X1"(t))]=

<2JcH, P—ae,oeD(c).

“H‘Ei;}fl ‘T(lm 22 (- Ing(XIX7 (1) - mlm 2 D HIa(OIXT () ai(b — 1x;ﬂ(t))]}

k=1 teL; k=1 tely

>-2J/cH,, P—ae,oeD(c).

By (35), (9) and h(P|Q) = 0,

k=1 tely

lim sup {fn(w) - |T(1n)| 2D Hia(OIXT(0), - qu(b — 1XT(1))]

< lim sup{—

n
oy 1 _ m
msu IT(")IlnP(X ) IT(")IZZ( In (XX (1))

k=1 tely

+lim sup { |T(1")| Z Z (—Ing(X: X7 (1))

n—o0 k=1 tely

- |T}n)| 33 HIg(OIX} (@), .., aulb 1|x;"(t))1}

k=1 tely

<2cH, P—ae,ocD().

By (36), (9) and (12), we have

ligggf‘fn(w) - |T(1”)| 2D HIg(OIXT(0), -, qu(b — 1XT ()]

k=1 tely

k=1 tely

. 1 70 15 m
> hnrggolfl— g PO =y 2200 (- Ina(Xiix (r))]

L 1 ¢ m
+11g(1)£1fl o) ZZ (= Inge(X:|XT' (1))

k=1 teLy

- |T(1")| 22 HIa(OIXT(©), - (b ~ 1X;”(t))1]

k=1 tely
= —h(P|Q) — 2y/cH,
>-2JcH, —¢, P—ae,ocD(c).

(33)

(34)

(36)

(38)
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This completes the proof of this theorem. O
Corollary 1 Under the conditions of Theorem 2, we have

lim !fn(w) |T(")|ZZH[%(O|X”I(I)) ..,qk(lem(t))]l 0, P—ae,weD(0).  (39)

k=1 tel;

If P << Q, then
Jim {fn(w) i) 3OS HIGOXP () .. il 1|X§"(t))1= =0, P—ae  (40)
k=1 teLy,
In particular, if P = Q,

Jlim {fn(w) 1o ;gH[qk(mxmm) (b — 1X§"(t))1} =0, Q-ae (41
1 tely

Proof Letting ¢ = 0 in (30) and (31), Equation 39 follows. If P << Q, then A(P | Q) =
0, P - a.e.,(cf. see [15],P.121), i.e., P(D(0)) = 1. Hence, Equation 40 follows from (39).
In particular, if P = Q, then A(P | Q) = 0. Hence, (41) follows from (40). O

Theorem 3 Under the conditions of Theorem 1, if {g,(y1,.... ¥,,11), # = 1} is uniformly
bounded, i.e., there exists M >0 such that |g,(y1,..., ¥ms1)| € M, then when ¢ > 0, we
have

lim sup T(,, |ZZ{gk(XM(t)) — Eolge(X§ ()IXT (DN} < M(c+2e), P—ae,0€D(c).  (42)

k=1 teLy

Proof By (20) and (12) and the formula in line 2 of (22), we have

E:EZ{QAXMUD-—EQBMX”(ONXmUH}

k=1 tely

ﬂmm(mZZ%wmmﬁ—wwmwm

n—oo k=1 tely

(43)

+¢ P—ae., e D(c).
By the hypothesis of the theorem and the inequality ¢* - 1 - x < |x|(e*! - 1), we have
8 (0) _ 1 g, (XM(1) < |AM(e*M — 1), (44)

By (43) and (44)

lim sup |T(")| Z Z {81(X5' (1)) — Eqlgr(Xg ())IXT ()]}

=00 k=1 tely (45)

< AMM(EM™M —1)+¢, P—ae., o e D(c).

When A >0, we have by (45)

m su mn)l ; IEXL; (8:(X3 (1)) — Eqlge (X5 () X7 ()]} o

<M(M—~1)+¢/r, P—ae.,weD().
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Taking A = ! log(1 + +/c), and using the inequality

Jc

log(1 + +/c) > o

we have when ¢ >0

DD 18(XE (1) — Eqlge(Xg (0)IXT ()]}
k=1 tely
M

log(1 + 4/c)
<M(2c+c), P—ae, e D(c).

li 1
1m su
wooP )|

< Mc+

When A <0, it follows from (45) that

liminf 33 (g (X0 (0) — Eolgi (3 (0)X1 (1)

)
e |T | k=1 tel;

> MM —1)+¢/L P—ae, o e D(c).
Taking A = — ! log(1 + \/c) in (49), and using (47), we have when ¢ >0

liminf 33 (g (X0 (0) — Eolgi (3 (0)XI (O]}

n—oo |T(")| o1 tels

cM

> —Mi/c —

= —MY log(1 + 4/c)

> —M(2+/c+c), P—ae,we D(c).

(47)

(48)

(49)

(50)

In a similar way, it can be shown that (48) and (50) also hold when ¢ = 0. By (48)

and (50), we have (42) holds. This completes the proof of this theorem.O

Corollary 2 Under the conditions of Theorem 1, let g(yy,..., ¥,,+1) be any function

defined on G”*'. Let M = max g(y1,..., ¥,us1). Then when ¢ > 0,

lim su !
O]

k=1 tel;,

DY BEXE 1) — Eols(Xy (0)IXT (D]} < M(c+2ve),  P—a.e, o € D(c).

(51)

Proof Letting g(¥1,-» Yms1) = €u(¥15ee» Yms1), n 2 1 in Theorem 3, this corollary

follows.

lx=Fk
Ox+#k’

in the collection of {X'~!(t),t € T(M\0,,}, that is

In the following, let I;(x) = {

n
Stong, (i1 rim) = Y Y Iy (Xm-1),) - - 1, (X0),

k=0 teLy

Let Sten\g,, (i1, - - - im) be the number of (iy,..., i,,)

(52)

Stono,, (i1, -+ -/ im ims1) be the number of (i1,..., i, ims1) in the collection of

{X(t), t € T™\oy,}, that is

Page 10 of 15
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n
Sty (i1s -+ s ime1) = Z Zlil X)Ly (X)) (53)

k=1 tely

Corollary 3 Let {X,, t € T} be defined as before. Then for all iy,..., i,,,1 € G, ¢ = 0,
we have

. S, (17 -+ -
i ) L S )

oo 1eG k=0 teLy (54‘)

Ji, (Xm=2),) -+ Ly X i1 (imll i1, - im—1)] < c+24/c, P—ae,w e D(c).

n—1

Steno, (11 -+« imse1)
I " I (X
lflsg.gpl |T(n)]| |T(n )| kXO:; i (m— 1)) (55)
k

-Iiz (X(m—2),) v Iim (Xt)Q}Hl (im+1 lig, ..., lm)| <c+ 2\/6, P—ae,oce D(C)

Proof Letting g(y1,...,¥Ym+1) = Li,(y2) - - - L, (ym+1) in Corollary 2.

DY 8T @) =)D I Kmeny,) - - 1y (X2)

k=1 teL k=1 tely (56)
= ST(“)\o’m(ilr e lm) - Ii1 (Xf(mfl)) e Iim (XO)I

and

DN Eqlgxg (1) IXy (1)]

k=1 tely

=) 0D g X (), %) (XY (1))

k=1 tely, x,€G

=) 3D L (Ko, <+ Ly, (X0, (20 (X (1))

k=1 tely x,€G

=S K ) T, ()il X7 (0)

k=1 tely

=Y 3 B ) (Kn-1),) < Loy (X1,) (il L 1 i)

leG k=1 tel,

n—1
= NZ Z ZII(X(mfl)L)Iil Xm-2),) - - Ly X Gresr (imlL 11, - ooy in1)-

leG k=0 tel;
- . (n-1)

Noticing that M = max g(y1,..., ¥ms1) = 1, JLTO ‘TT(")Il = [1], by (56) and (57) and Cor-
ollary 2, (54) holds. Similarly, we let g(yi,..-, Yme1) =1y (y1) - - - Loy ms1), (55)
follows.

Corollary 4 Let {X;, t € T} be defined as before.

lim WZZ (8055 (1)) — Eqlg(KF(M)IX{ (O} =0, P—ae,0eD(0),  (58)

k=1 tel;
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Srong, (it -+« im) 1 —
lim " - e I(Xn-1),)
~Ii1 (X(mfz)t) e Iim,l (Xt)qk+1(im|l, il, ceer l‘mfl)} =0, P—ae,we€ D(O),
Sty (i1 -+ ime1) 1 =
lim { " — Iy (X(m-1),)
> 00 [T |T(n=1)] kg(;g}:{ i \ A (m—1), (60)

Ty (Xon=2),) -+ Ly (Xt (s i1, - .- im)} = 0, P —a.e., € D(0).

If P = Q, then above equations hold Q - a.e..
Proof Letting ¢ = 0 in Corollary 2 and Corollary 3, (58)-(60) follow from (51),(54)
and (55). In particular, if P = Q, then 4(P|Q) = 0, so (58)-(60) hold P - a.e., hence hold

Q- ae.
Definition 3 Let G = {0, 1,.., b - 1} be a finite state space and

Q1 =(q(Gli™)), jeG,i"eG" (61)

be an mth-order transition matrix. Define a stochastic matrix as follows:

Qi = (q("im), " e G", (62)
where
My _ 61(jm|im): lf]v =i,v=12...,m-1,
q0"1") = { 0, otherwise. (63)

Then Q; is called an m-dimensional stochastic matrix determined by the mth-order
transition matrix.Q;.
Lemma 2 (see [16]). Let Q; be an m-dimensional stochastic matrix determined by

the mth-order transition matrix Q;. If the elements of Q, are all positive, that is
Qi1 = (9G1i).  q(li") > 0,Vj € G,i" € G”, (64)

then Q is ergodic.

Theorem 4 Let {X, t € T} be defined as Theorem 1. Let
Stone,, (i1, -/ im) = Steng,, (i), ST, (i1s - - - iy ime1) = ST, (™) and  f,(w)
defined by (52),(53) and (2), respectively. Let 4#(P|Q) and D(c) be defined by (4) and
(12), respectively. Let the mth-order transition matrices defined by (6) be changeless
with #, that is

Qn = Q1 = (q(1li™)), (65)

or {X, t € T} is an mth-order homogeneous Markov chain indexed by tree T with
the mth-order transition matrix Q; under the probability measure Q. Let the m-dimen-
sional stochastic matrix Q; determined by Q; be ergodic. Then for all iy,..., i,y,1 € G,

we have

ST(n) \O'm (lm)

— im —
(70| =n(i"), P—ae.,we D(0). (66)

limy— o0
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S sm+1
lim " )|\;’E‘n()l| ) = 7(i™q(ime1 li"), P — a.e., w € D(0). (67)
lim f (o) = — >0 w(™)q(li™) Ing(jli™), P - a.e., € D(0). 68)
imeG" jeG

where {n(i"”"), i € G"} is the stationary distribution determined by Q;.

Proof Proof of Equation 66. Let K" = (ky,..., k,,). If (65) holds, then we have by (63)
and (52)

n—1
D 1K) Kn-2),) + + Ty, )it (imlL i i)

1eG k=0 teL,

n—1
=3 3 X)) Kn-2),) -+~ Loy, ) q(imlL i, - i)

1eG k=0 tely (69)
> Sy (Lire s imer)q(imll i1, - i)

> St (KM)g(" k™).

kmeGm

By (59) and (69), we have

| Stene,, (™) m "
lim { 70 |T(" | k; St(n-1)\0n (K™)q(" k™)t =0, P—ae,w e D(0).  (70)

Multiplying (70) by g(i'|i"), adding them together for i € G™, and using (70) once
again, we have

iy 1o | Stone, ()
_ mimy m m m
0= Z qG™1i") nlgrolo! [T |T(” 1)| Z Sro-o,, (K")a(™ k")

imecm
. Stenen (™) i STON, (7 )
—,}ggo{_z ey I = )
imeGm
. ST("*l)\ﬂ'm(jm) 1 m My am m1,m
+,}L‘£‘o{ ) = ey S () 3 a6
kmeGm imeGn
X ST(ml)\orm(j ) 1
=nll>r§o< [T -1 }XC: Sro-one, (KD ("R P ae,w € D(0).
kM e G

By induction, we have

lim { Stomng,, (")

(T IT(n P Z Sroona, ()™ Umkm)]_ » Prae,0 D). (71)

n—o00

where ¢ (j”|K™) is the hth step probability determined by Q. We have by ergodi-
city
Jim g™ DG = (), VR € G, (72)

and Y ueon Sto-ng, (F™) = [TC"1] — (m — 1). (66) follows from (71) and (72). B
(66) and (60), Equation 67 follows easily.

Page 13 of 15



Shi et al. Journal of Inequalities and Applications 2012, 2012:1
http://www.journalofinequalitiesandapplications.com/content/2012/1/1

Proof of Equation 68. By (66) and (53), we have

n

DN HIG@OIXT (), - qik(b — UXT(1)))]

k=1 tel;
=33 H[GOIXY (1), .. q(b — 1IXT(1)]
k=1 tely
==Y 33 (X () Ing(IXT (1))
k=1 teL, jeG (73)

n
== 3 5 () - 1, (0,4 Gl™) In qGili™)
k=1 tely jeG imeG™

n——1

=N 33 LK) -+ 1, (X)q(li™) In g(ili™)

k=0 tely jeG imeGM

==N> " > St ((™)q(li") Inq(jlim).

jeG imeGM

Noticing that lim,_, IT;;;;' = 1, by (39), (73) and (66), Equation 68 follows.C

3. Shannon-McMillan Theorem
Theorem 5 Let {X;, t € T} be a G-valued mth-order nonhomogeneous Markov chain
indexed by an m rooted Cayley tree under the probability measure Q with initial distri-

bution (5) and mth-order transition matrices (6). Let Sym\o;,(i"), St \om (™) and f,

(w) be defined as before. Let
Qu = Q1 = (qGli™)), 4q(li") >0, Vi"eG"jeG, (74)

be another positive mth-order transition matrix. Let Q; be an m dimension transi-

tion matrix determined by Q. If

lim ¢,(j|i") = q(j|i"), Vi" e G",j e, (75)
n—oo
then
. Stong, (") m
lim 7T =7, Poae @ eD(O), (76)

S, (™)

lim o) =1 (i"™)q(ims11i"), P —a.e. o€ D(0), (77)
lim f () = — > > 4Gli™) Ing(jli"), P —ae. o e D(0), (78)
imneGm jeG

where {n(i"”"), i € G"} is the stationary distribution determined by Q,. In particular,
if P = Q, then above equations hold Q - a.e.

Proof By (59), (75), (52) and (66), (76) follows immediately. Similarly, by (60), (75),
and (53), (77) follows. It follows from (75) and Cesaro average that

n

1
lim Y2 laGli™ Ingi(li™) — qili™) Inqiili™)| =0, ¥i" eG"je G (79)

n—oo |T(n)
T k=1 tel;
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Notice that

'mlm 2 > HIg(OIXY (1)), -, @r(OIXT'(1)] = \sz 2 2 HIaOX (), .- a(0IXT (1))]]

k=1 tely k=1 tel,
 — -
=1 oy 2o 2 LG T ©) + o 3230 DAY ) ngGRE @) (80)
k=1 tel; jeG k=1 tel; jeG

< |T3n>| ST S I In (i) — g6l In Gl

k=1 tely jeG imeG"

By (79), (80), (39), (73) and (66), (78) follows. In particular, if P = Q, then h(P|Q) = 0.
(76), (77) and (78) also holds P - a.e. &
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