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1. Introduction
A tree is a graph G = {T, E} which is connected and contains no circuits. Given any

two vertices s, t(s ≠ t Î T), let σ t be the unique path connecting s and t. Define the

graph distance d (s, t) to be the number of edges contained in the path σ t .

Let TC,N be a Cayley tree. In this tree, the root (denoted by o) has only N neighbors

and all other vertices have N + 1 neighbors. Let TB, N be a Bethe tree, on which each ver-

tex has N + 1 neighboring vertices. Here both TC,N and TB,N are homogeneous tree. In

this paper, we mainly consider an m rooted Cayley tree TC,N (see Figure 1). It is formed

by a Cayley tree TC,N with the root o connecting with another vertex denoted by the the

root -1, and then root -1 connecting with another vertex denoted by the root -2, and

continuing to do the same work until the last vertex denoted by the root - (m - 1) is con-

nected. When the context permits, this type of tree is denoted simply by T.

Let s, t(s, t ≠ o, -1, - 2,..., - (m - 1)) be vertices of an m rooted Cayler tree T. Write t

≤ s if t is on the unique path connecting o to s, and |s | the number of edges on this

path. For any two vertices s, t(s, t ≠ o, -1, - 2,..., - (m - 1)) of tree T, denote by s ∧ t

the vertex farthest from o satisfying s ∧ t ≤ s and s ∧ t ≤ t.

The set of all vertices with distance n from the root o is called the n-th generation of

T, which is denoted by Ln. We say that Ln is the set of all vertices on level n and espe-

cially root -1 is on the -1st level on tree T, root -2 is on the -2nd level. By analogy,

root -(m - 1) is on the -(m - 1) th level. We denote by T(n) the subtree of an m rooted

Cayley tree T containing the vertices from level -(m - 1) (the root -(m - 1)) to level n.

Let t(t ≠ o, -1, -2, ..., -(m - 1)) be a vertex of an m rooted Cayley tree T. Predecessor of

the vertex t is another vertex, which is nearest from t, on the unique path from root

-(m - 1) to t. We denote the predecessor of t by 1t, the predecessor of 1t by 2t and the
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predecessor of (n - 1)t by nt. We also say that nt is the n-th predecessor of t. XA = {Xt,

t Î A} is a stochastic process indexed by a set A, and denoted by |A| the number of

vertices of A, xA is the realization of XA.

Let (�,F) be a measure space, {Xt, tÎT} be a collection of random variables defined

on (�,F) and taking values in G = {0,1,..., b - 1}, where b is a positive integer. Let P

be a general probability distribution on (�,F) . We will call P the random field on

tree T. Denote the distribution of {Xt, t Î T} under the probability measure P by

P(xT
(n)
) = P(XT(n)

= xT
(n)
), xT

(n) ∈ GT(n)
. (1)

Let

fn(ω) = − 1

|T(n)| ln P(XT(n)
) . (2)

fn(ω) is called entropy density of XT(n) .

Let Q be another probability measure on the measurable space (�,F) , and let the

distribution of {Xt, t Î T} under Q be

Q(xT
(n)
) = Q(XT(n)

= xT
(n)
), xT

(n) ∈ GT(n)
. (3)

Let

h(P|Q) = lim sup
n→∞

1
|T(n)| ln

P(XT(n)
)

Q(XT (n)
)
. (4)

h(P | Q) is called the sample divergence rate of P relative to Q.

Remark 1 If P = Q, h(P | Q) = 0 holds. By using the approach of Lemma 1 of Liu and

Wang [1], we also can prove that h(P | Q) ≥ 0, P - a.e.; hence, h(P | Q) can be regarded

as a measure of the Markov approximation of the arbitrary random field on T.

Definition 1 (see [2]) Let G = {0, 1,..., b - 1} and P(y|x1, x2,..., xm) be a nonnegative

functions on Gm+1. Let
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Figure 1 An m rooted Cayley tree T̄C,2 .
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T̄C,2

If ∑
y∈G

P(y|x1, x2, . . . , xm) = 1,

then P is called an m-order transition matrix.

Definition 2 (see [2]). Let T be an m rooted Cayley tree, and let G = {0, 1,..., b - 1}

be a finite state space, {Xt, t Î T} be a collection of G-valued random variables defined

on the probability space (�,F ,Q) . Let Q be a probability on a measurable space

(�,F) .

Let

q = (q(x1, x2, . . . , xm)), x1, x2, . . . , xm ∈ G (5)

be a distribution on Gm, and

Qn = (qn(y|x1, x2, . . . , xm)), x1, x2, . . . , xm, y ∈ G,n ≥ 1 (6)

be m-order transition matrices. For any vertex t Î Ln, n ≥ 1, if

Q(Xt = y|X1t = x1,X2t = x2, . . . ,Xmt = xm and Xσ for σ ∧ t ≤ 1t)

= Q(Xt = y|X1t = x1,X2t = x2, . . . ,Xmt = xm)

= qn(y|x1, x2, . . . , xm),∀x1, x2, . . . , xm, y ∈ G

(7)

and

Q(X−(m−1) = x1, . . . ,X−1 = xm−1,Xo = xm)

= q(x1, . . . , xm−1, xm), x1, . . . , xm ∈ G,
(8)

then {Xt, t Î T} is called a G-valued mth-order nonhomogeneous Markov chain

indexed by an m rooted Cayley tree with the initial m dimensional distribution (5) and

m-order transition matrices (6) under the probability measure Q, or called a T-indexed

mth-order nonhomogeneous Markov chain under the probability measure Q.

We denote

om = {o,−1,−2, . . . ,−(m − 1)}, o′
m = {−1,−2, . . . ,−(m − 1)},

Xn
1(t) = {Xnt , . . . ,X2t ,X1t },Xn

0(t) = {Xnt , · · ·,X2t ,X1t ,Xt},

and denote by xn1(t) and xn0(t) the realizations Xn
1(t) and Xn

0(t) , respectively.

Let {Xt, t Î T} be an mth-order nonhomogeneous Markov chains indexed by an m

rooted Cayley tree T under the probability measure Q defined on above. It is easy to

see that

Q(xT
(n)
) = Q(XT(n)

= xT
(n)
) = q(x−(m−1), . . . , xo)

n∏
k=1

∏
t∈Lk

qk(xt|xm1 (t)). (9)

In the following, we always assume that P(xT(n)), Q(xT(n)), q(x1,..., xm), and {qn(y |

x1,..., xm), n ≥ 1} are all positive.
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There have been some works on limit theorems for tree-indexed stochastic process.

Benjamini and Peres [3] have given the notion of the tree-indexed Markov chains and

studied the recurrence and ray-recurrence for them. Berger and Ye [4] have studied

the existence of entropy rate for some stationary random fields on a homogeneous

tree. Pemantle [5] proved a mixing property and a weak law of large numbers for a

PPG-invariant and ergodic random field on a homogeneous tree. Ye and Berger [6,7],

by using Pemantle’s result and a combinatorial approach, have studied the Shannon-

McMillan theorem with convergence in probability for a PPG-invariant and ergodic

random field on a homogeneous tree. Yang and Liu [8] have studied a strong law of

large numbers for the frequency of occurrence of states for Markov chains field on a

Bethe tree (a particular case of tree-indexed Markov chains field and PPG-invariant

random field). Yang [9] has studied the strong law of large numbers for frequency of

occurrence of state and Shannon-McMillan theorem for homogeneous Markov chains

indexed by a homogeneous tree. Yang and Ye [10] have studied the strong law of large

numbers and Shannon-McMillan theorem for nonhomogeneous Markov chains

indexed by a homogeneous tree. Huang and Yang [11] have studied the strong law of

large numbers and Shannon-McMillan theorem for Markov chains indexed by an infi-

nite tree with uniformly bounded degree. Recently, Shi and Yang [12] have also studied

some limit properties of random transition probability for second-order nonhomoge-

neous Markov chains indexed by a tree. Peng et al. [13] have studied a class of strong

deviation theorems for the random fields relative to homogeneous Markov chains

indexed by a homogeneous tree. Shi and Yang [2] have studied the strong law of large

numbers and Shannon-McMillan for the mth-order nonhomogeneous Markov chains

indexed by an m rooted Cayley tree. Yang [14] has also studied a class of small devia-

tion theorems for the sequences of N-valued random variables with respect to mth-

order nonhomogeneous Markov chains.

In this paper, our main purpose is to extend Yang’s [14] result to an m rooted Cayley

tree. By introducing the sample divergence rate of any probability measure with respect

to mth-order nonhomogeneous Markov measure on an m rooted Cayley tree, we estab-

lish a class of strong deviation theorems for the arbitrary random fields indexed by that

tree with respect to mth-order nonhomogeneous Markov chains indexed by that tree.

As corollaries, we obtain the strong law of large numbers and Shannon-McMillan theo-

rem for mth-order nonhomogeneous Markov chains indexed by that tree.

2. Main Results
Before giving the main results, we begin with a lemma.

Lemma 1 Let T be an m rooted Cayley tree, G = {0, 1,..., b - 1} be the finite state

space. Let {Xt, t Î T} be a collection of G-valued random variables defined on the mea-

surable space (�,F) . Let P and Q be two probability measures on the measurable

space (�,F) , and let {Xt, t Î T} be an mth-order nonhomogeneous Markov chains

indexed by tree T under probability measure Q. Let {gn(y1,..., ym+1), n ≥ 1} be a

sequence of functions defined on Gm+1. Let Fn = σ (XT(n)
)(n ≥ 1) . Set

Fn(ω) =
n∑

k=1

∑
t∈Lk

gk(Xm
0 (t)) (10)
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and

tn(λ,ω) =
eλFn(ω)∏n

k=1

∏
t∈Lk EQ

[
eλgk(X

m
0 (t))|Xm

1 (t)
] ·q(X−(m−1), . . . ,Xo)

∏n
k=1

∏
t∈Lk qk(Xt|Xm

1 (t))

P(xT(n) )
, (11)

where EQ denote the expectation under probability measure Q. Then

{tn(λ,ω),Fn,n ≥ 1} is a nonnegative martingale under probability measure P.

Proof The proof is similar to Lemma 3 of Peng et al. [12], so the proof is omitted.

Theorem 1 Let T be an m rooted Cayley tree, {Xt, t Î T} be a collection of random

variables taking values in G = {0, 1,..., b - 1} defined on the measurable space (�,F) .

Let P and Q be two probability measures on the measurable space (�,F) , such that

{Xt, t Î T} is an mth-order nonhomogeneous Markov chain indexed by T under Q. Let

h(P | Q) be defined by (4), {gn(y1,..., ym+1), n ≥ 1} be a sequence of functions defined on

Gm+1. Let c ≥ 0 be a constant. Set

D(c) = {ω : h(P|Q) ≤ c}. (12)

Assume that there exists a >0, such that ∀im Î Gm,

bα(im) = lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

EQ[ea|gk(X
m
0 (t))||Xm

1 (t) = im] ≤ τ . (13)

Let

At =
2τ

e2(t − α)2
, (14)

where o < t < a. Thus, when 0 ≤ c ≤ t2At, we have

lim sup
n→∞

1
|T(n)|

∣∣∣∣∣∣
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

∣∣∣∣∣∣ lim sup ≤ 2
√
cAt, P−a.e.,ω ∈ D(c). (15)

In particular,

lim
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]} = 0, P − a.e.,ω ∈ D(0). (16)

Proof Let tn(l, ω) be defined by (11). By Lemma 1, {tn(λ,ω),Fn,n ≥ 1} is a non-

negative martingale under probability measure P. By Doob’s martingale convergence

theorem, we have

lim
n→∞ tn(λ,ω) = t(λ,ω) < ∞, P − a.e.

Hence,

lim sup
n→∞

1

|T(n)| ln tn(λ,ω) ≤ 0, P − a.e.. (17)

We have by (9), (10), (11) and (17)

lim sup
n→∞

1
|T(n)|

⎡
⎣ n∑

k=1

∑
t∈Lk

{
λgk(Xm

0 (t)) − ln EQ
[
eλgk(X

m
0 (t))|Xm

1 (t)
]}

− ln
P(XT(n)

)
Q(XT(n))

⎤
⎦ ≤ 0,P−a.e. (18)
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By (4),(12) and (18)

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{
λgk(Xm

0 (t)) − ln EQ
[
eλgk(X

m
0 (t))|Xm

1 (t)
]}

≤ c, P−a.e.,ω ∈ D(c). (19)

This implies that

lim sup
n→∞

λ

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ lim sup
n→∞

1
|T(n)|

n∑
k=1

∑
t∈Lk

{
lnEQ

[
eλgk(X

m
0 (t))|Xm

1 (t)
]

− EQ[λgk(Xm
0 (t))|Xm

1 (t)]
}
+ c, P − a.e.,ω ∈ D(c)

(20)

Let |l| < t. By inequalities In x ≤ x -1(x >0) and ex − 1 − x ≤ x2

2 e
|x|, and noticing

that

max{x2e−hx, x ≥ 0} = 4e−2/h2(h > 0). (21)

We have

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{
ln EQ

[
eλgk(X

m
0 (t))|Xm

1 (t)
]

− EQ[λgk(Xm
0 (t))|Xm

1 (t)]
}

≤ lim sup
n→∞

1
|T(n)|

n∑
k=1

∑
t∈Lk

{
EQ

[
eλgk(X

m
0 (t))|Xm

1 (t)
]

− 1 − EQ[λgk(Xm
0 (t))|Xm

1 (t)]
}

≤ λ2

2
lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

EQ
[
gk2(Xm

0 (t))e
|λ||gk (X

m
0 (t))||Xm

1 (t)
]

=
λ2

2
lim sup
n→∞

1
|T(n)|

n∑
k=1

∑
t∈Lk

EQ
[
eα|gk(Xm

0 (t))|gk2(Xm
0 (t))e

(|λ|−α)|gk(Xm
0 (t))||Xm

1 (t)
]

≤ λ2

2
lim sup
n→∞

1
|T(n)|

n∑
k=1

∑
t∈Lk

EQ
[
eα|gk(Xm

0 (t))|4e−2/(|λ| − a)2|Xm
1 (t)

]

≤ 2λ2τ /e2(t − α)2.

(22)

By (20) and (22), we have

lim sup
n→∞

λ

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ λ2At + c, P − a.e.,ω ∈ D(c).

(23)

When 0 < l < t < a, we have by (23)

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ λAt + c/λ, P − a.e.,ω ∈ D(c).

(24)

It is easy to see that when 0 < c < t2At, the function f (l) = lAt + c/l attains, at

λ =
√
c/At , its smallest value f (

√
c/At) = 2

√
cAt . Letting λ =

√
c/At in (24), we have

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]} ≤ 2

√
cAt , P−a.e.,ω ∈ D(c). (25)

Shi et al. Journal of Inequalities and Applications 2012, 2012:1
http://www.journalofinequalitiesandapplications.com/content/2012/1/1

Page 6 of 15



When c = 0, we have by (24)

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]} ≤ λAt, P−a.e.,ω ∈ D(0). (26)

Letting l ® 0+ in (26), we obtain

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]} ≤ 0, P − a.e.,ω ∈ D(0). (27)

Hence, (25) also holds for c = 0. When -a <-t < l <0, by virtue of (23) it can be

shown in a similar way that

lim inf
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]} ≥ −2

√
cAt , P−a.e.,ω ∈ D(c). (28)

Equation 15 follows from (25) and (28), Equation 15 implies (16) immediately. This

completes the proof of the theorem. □
Theorem 2 Let

Ht = 2b/e2(t − 1)2, 0 < t < 1. (29)

Let fn(ω) be defined by (2). Under the conditions of Theorem 1, when 0 ≤ c ≤ t2Ht,

we have

lim sup
n→∞

{fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]}

≤ 2
√
cHt , P − a.e.,ω ∈ D(c),

(30)

lim inf
n→∞ {fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]}

≥ −2
√
cHt − c, P − a.e.,ω ∈ D(c),

(31)

where H(p0,.... pb-1) denote the entropy of distribution (p0,..., pb-1), i.e.,

H(p0, . . . , pb−1) = −
b−1∑
i=0

pi ln pi.

Proof In Theorem 1, let gk(y1,..., ym+1) = - In qk(ym+1 | y1,..., ym) and a = 1, we have

EQ
[
egk(X

m
0 (t))|Xm

1 (t) = im
]

=
∑
j∈G

e|−ln qk(j|im)|qk(j|im)

=
∑
j∈G

qk(j|im)/qk(j|im)

= b.

(32)
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Hence, ∀im Î Gm,

b1(im) = lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

EQ
[
egk(X

m
0 (t))|Xm

1 (t) = im
]

≤ b. (33)

Noticing that

EQ[− ln qk(Xt|Xm
1 (t))|Xm

1 (t)]

= −
∑
j∈G

qk(j|Xm
1 (t)) ln qk(j|Xm

1 (t))

= H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))] .

(34)

When 0 ≤ c ≤ t2Ht, we have by (34),(29) and (15)

lim sup
n→∞

⎧⎨
⎩ 1

|T(n)|
n∑

k=1

∑
t∈Lk

(− ln qk(Xt|Xm
1 (t))) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭

≤ 2
√
cHt, P − a.e.,ω ∈ D(c).

(35)

lim inf
n→∞

⎧⎨
⎩ 1

|T(n)|
n∑

k=1

∑
t∈Lk

(− ln qk(Xt|Xm
1 (t))) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭

≥ −2
√
cHt , P − a.e.,ω ∈ D(c).

(36)

By (35), (9) and h(P|Q) ≥ 0,

lim sup
n→∞

⎧⎨
⎩fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

≤ lim sup
n→∞

{− 1

|T(n)| lnP(XT(n)
) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

(− ln qk(Xt|Xm
1 (t))

⎫⎬
⎭

+ lim sup
n→∞

⎧⎨
⎩ 1

|T(n)|
n∑

k=1

∑
t∈Lk

(− ln qk(Xt|Xm
1 (t))

− 1
|T(n)|

n∑
k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭

≤ 2
√
cHt , P − a.e.,ω ∈ D(c).

(37)

By (36), (9) and (12), we have

lim inf
n→∞

⎧⎨
⎩fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

≥ lim inf
n→∞

⎧⎨
⎩− 1

|T(n)| ln P(XT(n)
) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

(− ln qk(Xt|Xm
1 (t))

⎫⎬
⎭

+ lim inf
n→∞

⎧⎨
⎩ 1

|T(n)|
n∑

k=1

∑
t∈Lk

(− ln qk(Xt|Xm
1 (t))

− 1
|T(n)|

n∑
k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭

≥ −h(P|Q) − 2
√
cHt

≥ −2
√
cHt − c, P − a.e.,ω ∈ D(c).

(38)
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This completes the proof of this theorem. □
Corollary 1 Under the conditions of Theorem 2, we have

lim
n→∞

⎧⎨
⎩fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭ = 0, P−a.e.,ω ∈ D(0). (39)

If P << Q, then

lim
n→∞

⎧⎨
⎩fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭ = 0, P − a.e. (40)

In particular, if P = Q,

lim
n→∞

⎧⎨
⎩fn(ω) − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t))]

⎫⎬
⎭ = 0, Q − a.e. (41)

Proof Letting c = 0 in (30) and (31), Equation 39 follows. If P << Q, then h(P | Q) =

0, P - a.e.,(cf. see [15],P.121), i.e., P(D(0)) = 1. Hence, Equation 40 follows from (39).

In particular, if P = Q, then h(P | Q) ≡ 0. Hence, (41) follows from (40). □
Theorem 3 Under the conditions of Theorem 1, if {gn(y1,.... ym+1), n ≥ 1} is uniformly

bounded, i.e., there exists M >0 such that |gn(y1,..., ym+1)| ≤ M, then when c ≥ 0, we

have

lim sup
n→∞

1

|T(n)| |
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}| ≤ M(c+2

√
c), P−a.e.,ω ∈ D(c). (42)

Proof By (20) and (12) and the formula in line 2 of (22), we have

lim sup
n→∞

λ

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ lim sup
n→∞

1
|T(n)|

n∑
k=1

∑
t∈Lk

EQ[eλgk(X
m
0 (t)) − 1 − λgk(Xm

0 (t))|Xm
1 (t)]

+c P − a.e.,ω ∈ D(c).

(43)

By the hypothesis of the theorem and the inequality ex - 1 - x ≤ |x|(e|x| - 1), we have

eλgk(X
m
0 (t)) − 1 − λgk(Xm

0 (t)) ≤ |λ|M(e|λ|M − 1). (44)

By (43) and (44)

lim sup
n→∞

λ

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ |λ|M(e|λ||M − 1) + c, P − a.e.,ω ∈ D(c).

(45)

When l >0, we have by (45)

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ M(eλM − 1) + c/λ, P − a.e.,ω ∈ D(c).

(46)
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Taking λ = 1
M log(1 +

√
c) , and using the inequality

log(1 +
√
c) ≥

√
c

1 +
√
c
, (47)

we have when c >0

lim sup
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≤ M
√
c +

cM

log(1 +
√
c)

≤ M(2
√
c + c), P − a.e.,ω ∈ D(c).

(48)

When l <0, it follows from (45) that

lim inf
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≥ −M(eλM − 1) + c/λ P − a.e.,ω ∈ D(c).

(49)

Taking λ = − 1
M log(1 +

√
c) in (49), and using (47), we have when c >0

lim inf
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{gk(Xm
0 (t)) − EQ[gk(Xm

0 (t))|Xm
1 (t)]}

≥ −M
√
c − cM

log(1 +
√
c)

≥ −M(2
√
c + c), P − a.e.,ω ∈ D(c).

(50)

In a similar way, it can be shown that (48) and (50) also hold when c = 0. By (48)

and (50), we have (42) holds. This completes the proof of this theorem.□
Corollary 2 Under the conditions of Theorem 1, let g(y1,..., ym+1) be any function

defined on Gm+1. Let M = max g(y1,..., ym+1). Then when c ≥ 0,

lim sup
n→∞

1
|T(n)|

∣∣∣∣∣∣
n∑

k=1

∑
t∈Lk

{g(Xm
0 (t)) − EQ[g(Xm

0 (t))|Xm
1 (t)]}

∣∣∣∣∣∣ ≤ M(c+2
√
c), P−a.e.,ω ∈ D(c). (51)

Proof Letting g(y1,..., ym+1) = gn(y1,..., ym+1), n ≥ 1 in Theorem 3, this corollary

follows.

In the following, let Ik(x) =
{
1 x = k
0 x �= k

. Let ST(n)\o′
m
(i1, . . . , im) be the number of (i1,..., im)

in the collection of {Xm−1
0 (t), t ∈ T(n)\o′

m} , that is

ST(n)\o′
m
(i1, . . . , im) =

n∑
k=0

∑
t∈Lk

Ii1(X(m−1)t) · · · Iim(Xt), (52)

ST(n)\om(i1, . . . , im, im+1) be the number of (i1,..., im, im+1) in the collection of

{Xm
0 (t), t ∈ T(n)\om} , that is
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ST(n)\om(i1, . . . , im, im+1) =
n∑

k=1

∑
t∈Lk

Ii1(Xmt ) · · · Iim+1 (Xt). (53)

Corollary 3 Let {Xt, t Î T} be defined as before. Then for all i1,..., im+1 Î G, c ≥ 0,

we have

lim sup
n→∞

|ST(n)\o′
m
(i1, . . . , im)

|T(n)| − 1
|T(n−1)|

∑
l∈G

n−1∑
k=0

∑
t∈Lk

Il(X(m−1)t)

.Ii1(X(m−2)t) · · · Iim−1 (Xt)qk+1(im|l, i1, . . . , im−1)| ≤ c + 2
√
c, P − a.e.,ω ∈ D(c).

(54)

lim sup
n→∞

|ST(n)\om(i1, . . . , im+1)

|T(n)| − 1
|T(n−1)|

n−1∑
k=0

∑
t∈Lk

Ii1(X(m−1)t)

.Ii2(X(m−2)t) · · · Iim(Xt)qk+1(im+1|i1, . . . , im)| ≤ c + 2
√
c, P − a.e.,ω ∈ D(c).

(55)

Proof Letting g(y1, . . . , ym+1) = Ii1(y2) · · · Iim(ym+1) in Corollary 2.

n∑
k=1

∑
t∈Lk

g(Xm
0 (t)) =

n∑
k=1

∑
t∈Lk

Ii1(X(m−1)t) · · · Iim(Xt)

= ST(n)\o′
m
(i1, . . . , im) − Ii1 (X−(m−1)) · · · Iim(Xo),

(56)

and

n∑
k=1

∑
t∈Lk

EQ[g(Xm
0 (t))|Xm

1 (t)]

=
n∑

k=1

∑
t∈Lk

∑
xt∈G

g(Xm
1 (t), xt)qk(xt|Xm

1 (t))

=
n∑

k=1

∑
t∈Lk

∑
xt∈G

Ii1 (X(m−1)t) · · · Iim−1 (X1t)Iim(xt)qk(xt|Xm
1 (t))

=
n∑

k=1

∑
t∈Lk

Ii1(X(m−1)t) · · · Iim−1 (X1t )qk(im|Xm
1 (t))

=
∑
l∈G

n∑
k=1

∑
t∈Lk

Il(Xmt )Ii1(X(m−1)t) · · · Iim−1 (X1t)qk(im|l, i1, . . . , im−1)

= N
∑
l∈G

n−1∑
k=0

∑
t∈Lk

Il(X(m−1)t)Ii1 (X(m−2)t) · · · Iim−1 (Xt)qk+1(im|l, i1, . . . , im−1).

(57)

Noticing that M = max g(y1,..., ym+1) = 1, lim
n→∞

|T(n−1) |
|T(n)| = 1

N , by (56) and (57) and Cor-

ollary 2, (54) holds. Similarly, we let g(y1, . . . , ym+1) = Ii1(y1) · · · Iim+1 (ym+1), (55)

follows.

Corollary 4 Let {Xt, t Î T} be defined as before.

lim
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

{g(Xm
0 (t)) − EQ[g(Xm

0 (t))|Xm
1 (t)]} = 0, P − a.e.,ω ∈ D(0), (58)
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lim
n→∞

⎧⎨
⎩ST(n)\o′

m
(i1, . . . , im)

|T(n)| − 1
|T(n−1)|

∑
l∈G

n−1∑
k=0

∑
t∈Lk

Il(X(m−1)t)

.Ii1 (X(m−2)t) · · · Iim−1 (Xt)qk+1(im|l, i1, ..., im−1)} = 0, P − a.e.,ω ∈ D(0),

(59)

lim
n→∞

{
ST(n)\om(i1, . . . , im+1)

|T(n)| − 1
|T(n−1)|

n−1∑
k=0

∑
t∈Lk

Ii1 (X(m−1)t)

.Ii2(X(m−2)t) · · · Iim(Xt)qk+1(im+1|i1, . . . , im)} = 0, P − a.e.,ω ∈ D(0).

(60)

If P = Q, then above equations hold Q - a.e..

Proof Letting c = 0 in Corollary 2 and Corollary 3, (58)-(60) follow from (51),(54)

and (55). In particular, if P = Q, then h(P|Q) = 0, so (58)-(60) hold P - a.e., hence hold

Q - a.e.

Definition 3 Let G = {0, 1,..., b - 1} be a finite state space and

Q1 = (q(j|im)), j ∈ G, im ∈ Gm (61)

be an mth-order transition matrix. Define a stochastic matrix as follows:

Q̄1 = (q(jm|im)), im, jm ∈ Gm, (62)

where

q(jm|im) =
{
q(jm|im), if jv = iv+1, v = 1, 2, . . . ,m − 1,

0, otherwise.
(63)

Then Q̄1 is called an m-dimensional stochastic matrix determined by the mth-order

transition matrix.Q1.

Lemma 2 (see [16]). Let Q̄1 be an m-dimensional stochastic matrix determined by

the mth-order transition matrix Q1. If the elements of Q1 are all positive, that is

Q1 = (q(j|im)), q(j|im) > 0,∀j ∈ G, im ∈ Gm, (64)

then Q̄1 is ergodic.

Theorem 4 Let {Xt, t Î T} be defined as Theorem 1. Let

ST(n)\o′
m
(i1, . . . , im) = ST (n)\o′

m
(im), ST (n)\om(i1, . . . , im, im+1) = ST (n)\om(i

m+1) and fn(ω)

defined by (52),(53) and (2), respectively. Let h(P|Q) and D(c) be defined by (4) and

(12), respectively. Let the mth-order transition matrices defined by (6) be changeless

with n, that is

Qn = Q1 = (q(j|im)), (65)

or {Xt, t Î T} is an mth-order homogeneous Markov chain indexed by tree T with

the mth-order transition matrix Q1 under the probability measure Q. Let the m-dimen-

sional stochastic matrix Q̄1 determined by Q1 be ergodic. Then for all i1,..., im+1 Î G,

we have

limn→∞
ST(n)\o′

m
(im)

|T(n)| = π(im), P − a.e.,ω ∈ D(0). (66)
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lim
n→∞

ST (n)\om(i
m+1)

|T(n)| = π(im)q(im+1|im), P − a.e.,ω ∈ D(0). (67)

lim
n→∞ fn(ω) = −

∑
im∈Gm

∑
j∈G

π(im)q(j|im) ln q(j|im), P − a.e.,ω ∈ D(0). (68)

where {π(im), im Î Gm} is the stationary distribution determined by Q̄1 .

Proof Proof of Equation 66. Let km = (k1,..., km). If (65) holds, then we have by (63)

and (52)

∑
l∈G

n−1∑
k=0

∑
t∈Lk

Il(X(m−1)t)Ii1(X(m−2)t) · · · Iim−1 (Xt)qk+1(im|l, i1, . . . , im−1)

=
∑
l∈G

n−1∑
k=0

∑
t∈Lk

Il(X(m−1)t)Ii1 (X(m−2)t) · · · Iim−1 (Xt)q(im|l, i1, . . . , im−1)

=
∑
l∈G

ST(n−1)\o′
m
(l, i1, · · · , im−1)q(im|l, i1, . . . , im−1)

=
∑

km∈Gm

ST(n−1)\o′
m
(km)q(im|km).

(69)

By (59) and (69), we have

lim
n→∞

{
ST(n)\o′

m
(im)

|T(n)| − 1
|T(n−1)|

∑
km∈Gm

ST(n−1)\o′
m(k

m)q(im|km)
}
= 0, P−a.e.,ω ∈ D(0). (70)

Multiplying (70) by q(jm|im), adding them together for im Î Gm, and using (70) once

again, we have

0 =
∑
im∈Gm

q(jm|im) · lim
n→∞

{
ST(n)\o′

m
(im)

|T(n)| − 1
|T(n−1)|

∑
km∈Gm

ST(n−1)\o′
m
(km)q(im|km)

}

= lim
n→∞

{ ∑
im∈Gm

ST(n)\o′
m
(im)

|T(n)| q(jm|im) − ST(n+1)\o′
m
(jm)

|T(n+1)|

}

+ lim
n→∞

{
ST(n+1)\o′

m
(jm)

|T(n+1)| − 1

|T(n−1)|
∑

km∈Gm

ST(n−1)\o′
m
(km)

∑
im∈Gm

q(jm|im)q(im|km)
}

= lim
n→∞

{
ST(n+1)\o′

m
(jm)

|T(n+1)| − 1

|T(n−1)|
∑

km∈Gm

ST(n−1)\o′
m
(km)q(2)(jm|km)

}
, P − a.e.,ω ∈ D(0).

By induction, we have

lim
n→∞

{
ST(n+N)\o′

m
(jm)

|T(n+N)| − 1
|T(n−1)|

∑
km∈Gm

ST(n−1)\o′
m
(km)q(N+1)(jm|km)

}
= 0, P−a.e.,ω ∈ D(0). (71)

where q(h)(jm|km) is the hth step probability determined by Q̄1 . We have by ergodi-

city

lim
N→∞

q(N+1)(jm|km) = π(jm), ∀km ∈ Gm, (72)

and
∑

km∈Gm ST(n−1)\o′
m
(km) = |T(n−1)| − (m − 1) . (66) follows from (71) and (72). By

(66) and (60), Equation 67 follows easily.
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Proof of Equation 68. By (66) and (53), we have

n∑
k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(b − 1|Xm

1 (t)))]

=
n∑

k=1

∑
t∈Lk

H[q(0|Xm
1 (t)), . . . , q(b − 1|Xm

1 (t)))]

= −
n∑

k=1

∑
t∈Lk

∑
j∈G

q(j|Xm
1 (t)) ln q(j|Xm

1 (t))

= −
n∑

k=1

∑
t∈Lk

∑
j∈G

∑
im∈Gm

Ii1(Xmt ) · · · Iim(X1t)q(j|im) ln q(j|im)

= −N
n−−1∑
k=0

∑
t∈Lk

∑
j∈G

∑
im∈Gm

Ii1(X(m−1)t) · · · Iim(Xt)q(j|im) ln q(j|im)

= −N
∑
j∈G

∑
im∈Gm

ST (n−1)\o′
m
(im)q(j|im) ln q(j|im).

(73)

Noticing that limn→∞ |T(n−1)|
|T(n)| = 1

N , by (39), (73) and (66), Equation 68 follows.□

3. Shannon-McMillan Theorem
Theorem 5 Let {Xt, t Î T} be a G-valued mth-order nonhomogeneous Markov chain

indexed by an m rooted Cayley tree under the probability measure Q with initial distri-

bution (5) and mth-order transition matrices (6). Let ST(n)\o′
m(i

m), ST (n)\om(im+1) and fn

(ω) be defined as before. Let

Qn = Q1 = (q(j|im)), q(j|im) > 0, ∀im ∈ Gm, j ∈ G, (74)

be another positive mth-order transition matrix. Let Q̄1 be an m dimension transi-

tion matrix determined by Q1. If

lim
n→∞ qn(j|im) = q(j|im), ∀im ∈ Gm, j ∈ G, (75)

then

lim
n→∞

ST(n)\o′
m
(im)

|T(n)| = π(im), P − a.e. ω ∈ D(0), (76)

lim
n→∞

ST(n)\om(i
m+1)

|T(n)| = π(im)q(im+1|im), P − a.e. ω ∈ D(0), (77)

lim
n→∞ fn(ω) = −

∑
im∈Gm

∑
j∈G

q(j|im) ln q(j|im), P − a.e. ω ∈ D(0), (78)

where {π(im), im Î Gm} is the stationary distribution determined by Q̄1 . In particular,

if P = Q, then above equations hold Q - a.e.

Proof By (59), (75), (52) and (66), (76) follows immediately. Similarly, by (60), (75),

and (53), (77) follows. It follows from (75) and Cesaro average that

lim
n→∞

1

|T(n)|
n∑

k=1

∑
t∈Lk

|qk(j|im) ln qk(j|im) − qk(j|im) ln qk(j|im)| = 0, ∀im ∈ Gm, j ∈ G. (79)
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Notice that

| 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[qk(0|Xm
1 (t)), . . . , qk(0|Xm

1 (t))] − 1

|T(n)|
n∑

k=1

∑
t∈Lk

H[q(0|Xm
1 (t)), . . . , q(0|Xm

1 (t))]|

= | − 1
|T(n)|

n∑
k=1

∑
t∈Lk

∑
j∈G

qk(j|Xm
1 (t)) ln qk(j|Xm

1 (t)) +
1

|T(n)|
n∑

k=1

∑
t∈Lk

∑
j∈G

q(j|Xm
1 (t)) ln q(j|Xm

1 (t))

≤ 1
|T(n)|

n∑
k=1

∑
t∈Lk

∑
j∈G

∑
im∈Gm

|qk(j|im) ln qk(j|im) − q(j|im) ln q(j|im)|.

(80)

By (79), (80), (39), (73) and (66), (78) follows. In particular, if P = Q, then h(P|Q) = 0.

(76), (77) and (78) also holds P - a.e. □
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