
RESEARCH Open Access

Some normality criteria of functions related
a Hayman conjecture
Wenjun Yuan1*, Bing Zhu2 and Jianming Lin3*

* Correspondence:
wjyuan1957@126.com;
ljmguanli@21cn.com
1School of Mathematics and
Information Science, Guangzhou
University, Guangzhou 510006,
China
3School of Economic and
Management, Guangzhou
University of Chinese Medicine,
Guangzhou 510006, China
Full list of author information is
available at the end of the article

Abstract

In the article, we study the normality of families of meromorphic functions
concerning shared values. We consider whether a family meromorphic functions F is
normal in D, if for every pair of functions f and g in F , fn f’ and gn g’ share a nonzero
value a. Two examples show that the conditions in our results are best possible in a
sense.

1 Introduction and main results
Let f(z) and g(z) be two nonconstant meromorphic functions in a domain D ⊆ C, and let

a be a finite complex value. We say that f and g share a CM (or IM) in D provided that f

- a and g - a have the same zeros counting (or ignoring) multiplicity in D. When a = ∞

the zeros of f - a means the poles of f (see [1]). It is assumed that the reader is familiar

with the standard notations and the basic results of Nevanlinna’s value-distribution

theory [1-4].

Bloch’s principle [5] states that every condition which reduces a meromorphic func-

tion in the plane C to be a constant forces a family of meromorphic functions in a

domain D normal. Although the principle is false in general (see [6]), many authors

proved normality criterion for families of meromorphic functions corresponding to

Liouville-Picard type theorem (see [4]).

It is also more interesting to find normality criteria from the point of view of shared

values. In this area, Schwick [7] first proved an interesting result that a family of mero-

morphic functions in a domain is normal if in which every function shares three dis-

tinct finite complex numbers with its first derivative. And later, more results about

normality criteria concerning shared values have emerged, for instance, (see [8-10]). In

recent years, this subject has attracted the attention of many researchers worldwide.

We now first introduce a normality criterion related to a Hayman normal conjecture [11].

Theorem 1.1 Let F be a meromorphic function family on domain D, n Î N. If each

function f(z) of family F satisfies fn (z) f’ (z) ≠ 1, then F is normal in D.

The proof of Theorem 1.1 is because of Gu [12] for n ≥ 3, Pang [13] for n = 2, Chen

and Fang [14] for n = 1. In 2004, by the ideas of shared values, Fang and Zalcman [15]

obtained:

Theorem 1.2 Let F be a family of meromorphic functions in D, n be a positive inte-

ger. If for each pair of functions f and g in F , f and g share the value 0 and fn f’ and gn

g’ share a nonzero value a in D, then F is normal in D.
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In 2008, Zhang [10] obtained a criterion for normality of F in terms of the multiplicities

of the zeros and poles of the functions in F and use it to improve Theorem 1.2 as follows.

Theorem 1.3 Let F be a family of meromorphic functions in D satisfying that all zeros

and poles of f ∈ F have multiplicities at least 3. If for each pair of functions f and g in

F , f’ and g’ share a nonzero value a in D, then F is normal in D.

Theorem 1.4 Let F be a family of meromorphic functions in D, n be a positive integer. If

n ≥ 2 and for each pair of functions f and g in F , fn f’ and gn g’ share a nonzero value a in

D, then F is normal in D.

Zhang [10] gave the following example to show that Theorem 1.4 is not true when n =

1, and therefore the condition n ≥ 1 is best possible.

Example 1.1 The family of holomorphic functions F = {fj(z) =
√
j(z + 1

j ) : j = 1, 2, . . . , } is not

normal in D = {z : |z| < 1} This is deduced by f #j (0) =
j
√

j
j+1 → ∞, as j ® ∞ and Marty’s

criterion [2], although for any fj(z) ∈ F , fjf ′
j = jz + 1.Hence, for each pair m, j, fmf ′

m and

fjf ′
j share the value 1.

Here f#(ξ) denotes the spherical derivative

f #(ξ) =
|f ′(ξ)|

1 + |f (ξ)|2 .

In this article, we will improve Theorem 1.3 and use it to consider Theorem 1.4

when n = 1. Our main results are as follows:

Theorem 1.5 Let F be a family of meromorphic functions in D satisfying that all

zeros of f ∈ F have multiplicities at least 4 and all poles of f ∈ F are multiple. If for

each pair of functions f and g in F , f’ and g’ share a nonzero value a in D, then F is

normal in D.

Theorem 1.6 Let F be a family of meromorphic functions in D satisfying that all

zeros of f ∈ F are multiple. If for each pair of functions f and g in F , ff’ and gg’ share

a nonzero value a in D, then F is normal in D.

Since normality of families of F and F∗ = { 1f |f ∈ F} is the same by the famous

Marty’s criterion, we obtain the following criteria from above results.

Theorem 1.7 Let F be a family of meromorphic functions in D, n be a positive inte-

ger. If n ≥ 4 and for each pair of functions f and g in F , f -n f’ and g -n g’ share a

nonzero value a in D, then F is normal in D.

Theorem 1.8 Let F be a family of meromorphic functions in D satisfying that all

poles of f ∈ F are multiple. If for each pair of functions f and g in F , f -3 f’ and g -3 g’

share a nonzero value a in D, then F is normal in D.

Theorem 1.9 Let F be a family of meromorphic functions in D satisfying that all

zeros and poles of f ∈ F have multiplicities at least 3. If for each pair of functions f

and g in F , f -2 f’ and g -2 g’ share a nonzero value a in D, then F is normal in D.

Theorem 1.10 Let F be a family of meromorphic functions in D satisfying that all

poles of f ∈ F have multiplicities at least 4 and all zeros of f ∈ F are multiple. If for

each pair of functions f and g in F , f -2 f’ and g -2 g’ share a nonzero value a in D, then

F is normal in D.

Example 1.2 The family of holomorphic functions F = {fj(z) = jez − j − 1 : j = 1, 2, . . . , }
is not normal in D = {z : |z| < 1} This is deduced by f #j (0) = j → ∞, as j ® ∞ and Marty’s
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criterion [2], although for any fj(z) ∈ F ,
f ′
j

fj
= 1 + j+1

jez−j−1 �= 1. Hence, for each pair m, j,

f ′
j

fj
and

f ′
j

fj
share the value 1.

Remark 1.11 Example 1.1 shows that the condition that all zeros of f ∈ F are multi-

ple in Theorem 1.6 is best possible. Both Examples 1.1 and 1.2 show that above results

are best possible in a sense.

2 Preliminary lemmas
To prove our result, we need the following lemmas. The first is the extended version

of Zalcman’s [16] concerning normal families.

Lemma 2.1 [17]Let F be a family of meromorphic functions on the unit disc satisfy-

ing all zeros of functions in F have multiplicity ≥ p and all poles of functions in F
have multiplicity ≥ q. Let a be a real number satisfying - q < a < p. Then, F is not

normal at 0 if and only if there exist

(a) a number 0 < r <1;

(b) points zn with |zn| < r;

(c) functions fn ∈ F ;

(d) positive numbers rn ® 0

such that gn(ζ):= r -a fn (zn + rnζ) converges spherically uniformly on each compact

subset of C to a nonconstant meromorphic function g(ζ), whose all zeros of functions in

F have multiplicity ≥ p and all poles of functions in F have multiplicity ≥ q and order

is at most 2.

Remark 2.2 If F is a family of holomorphic functions on the unit disc in Lemma

2.1, then g(ζ) is a nonconstant entire function whose order is at most 1.

The order of g is defined using Nevanlinna’s characteristic function T(r, g):

ρ(g) = lim
r→∞ sup

log T(r, g)
log r

.

Lemma 2.3 [18] or [19] Let f(z) be a meromorphic function and c Î C\{0}. If f(z) has

neither simple zero nor simple pole, and f’(z) ≠ c, then f(z) is constant.

Lemma 2.4 [20] Let f(z) be a transcendental meromorphic function of finite order in

C, and have no simple zero, then f’(z) assumes every nonzero finite value infinitely

often.

3 Proof of the results
Proof of Theorem 1.5 Suppose that F is not normal in D. Then, there exists at least

one point z0 such that F is not normal at the point z0. Without loss of generality, we

assume that z0 = 0. By Lemma 2.1, there exist points zj ® 0, positive numbers rj ® 0

and functions fj ∈ F such that

gj(ξ) = ρ−1
j fj(zj + ρjξ) ⇒ g(ξ) (3:1)

locally uniformly with respect to the spherical metric, where g is a nonconstant mer-

omorphic function in C satisfying all its zeros have multiplicities at least 4 and all its

poles are multiple. Moreover, the order of g is ≤ 2.
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From (3.1), we know

g′
j(ξ) = f ′

j (zj + ρjξ) ⇒ g′(ξ)

and

f ′
j(zj + ρjξ) − a = g′

j(ξ) − a

⇒ g′(ξ) − a
(3:2)

also locally uniformly with respect to the spherical metric.

If g’ - a ≡ 0, then g ≡ aξ + c, where c is a constant. This contradicts with g satisfying

all its zeros have multiplicities at least 4. Hence, g’ - a ≢ 0.

If g’ - a ≠ 0, by Lemma 2.3, then g is also a constant which is a contradiction with g

being not any constant. Hence, g’ - a is a nonconstant meromorphic function and has

at least one zero.

Next, we prove that g’ - a has just a unique zero. By contraries, let ξ0 and ξ∗
0 be two dis-

tinct zeros of g’ - a, and choose δ (> 0) small enough such that D(ξ0, δ) ∩ D(ξ∗
0 , δ) = φ

where D(ξ0, δ) = {ξ : |ξ - ξ0| <δ} and D(ξ∗
0 , δ) = {ξ : |ξ − ξ∗

0 | < δ}. From (3.2), by

Hurwitz’s theorem, there exist points ξj Î D(ξ0, δ), ξ
∗
j ∈ D(ξ∗

0 , δ) such that for sufficiently

large j

f ′
j (zj + ρjξj) − a = 0, f ′

j (zj + ρjξ
∗
j ) − a = 0.

By the hypothesis that for each pair of functions f and g in F , f ’- a and g’- a share 0

in D, we know that for any positive integer m

f ′
m(zj + ρjξj) − a = 0, f ′

m(zj + ρjξ
∗
j ) − a = 0.

Fix m, take j ® ∞, and note zj + rjξj ® 0, zj + ρjξ
∗
j → 0, then f ′

m(0) − a = 0. Since

the zeros of f ′
m − a have no accumulation point, so

zj + ρjξj = 0, zj + ρjξ
∗
j = 0.

Hence,ξj = − zj
ρj
, ξ∗

j = − zj
ρj
. This contradicts with ξj Î D(ξ0, δ), ξ∗

j ∈ D(ξ∗
0 , δ) and

D(ξ0, δ) ∩ D(ξ∗
0 , δ) = φ. Hence, g’- a has just a unique zero, which can be denoted by

ξ0. By Lemma 2.4, g is not any transcendental function.

If g is a nonconstant polynomial, then g’- a = A(ξ - ξ0)
l, where A is a nonzero con-

stant, l is a positive integer. Thus, g’= A(ξ - ξ0)
l and g’’ = Al(ξ - ξ0)

l-1. Noting that the

zeros of g are of multiplicity ≥ 4, and g’’ has only one zero ξ0, we see that g has only

the same zero ξ0 too. Hence, g’(ξ0) = 0 which contradicts with g’(ξ0) = a ≠ 0. Therefore,

g is a rational function which is not polynomial, and g’ + a has just a unique zero ξ0.

Next, we prove that there exists no rational function such as g. Now, we can set

g(ξ) = A
(ξ − ξ1)

m1(ξ − ξ2)
m2 · · · (ξ − ξs)

ms

(ξ − η1)
n1 (ξ − η2)

n2 · · · (ξ − ηt)
nt , (3:3)

where A is a nonzero constant, s ≥ 1, t ≥ 1, mi ≥ 4 (i = 1, 2, ..., s), nj ≥ 2 (j = 1, 2, ..., t).

For stating briefly, denote

m = m1 +m2 + · · · +ms ≥ 4s, N = n1 + n2 + · · · + nt ≥ 2t. (3:4)
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From (3.3), then

g′(ξ) =
A(ξ − ξ1)

m1−1(ξ − ξ2)
m2−1 · · · (ξ − ξs)

ms−1h(ξ)

(ξ − η1)
n1+1(ξ − η2)

n2+1 · · · (ξ − ηt)
nt+1

=
p1(ξ)
q1(ξ)

, (3:5)

where

h(ξ) = (m − N − t)ξ s+t−1 + as+t−2 ξ s+t−2 + · · · + a0,
p1(ξ) = A(ξ − ξ1)

m1−1(ξ − ξ2)
m2−1 · · · (ξ − ξs)

ms−1h(ξ),
q1(ξ) = (ξ − η1)n1+1(ξ − η2)

n2+1 · · · (ξ − ηt)
nt+1

(3:6)

are polynomials. Since g’(ξ) + a has only a unique zero ξ0, set

g′(ξ) + a =
B(ξ − ξ0)

l

(ξ − η1)
n1+1(ξ − η2)

n2+1 · · · (ξ − ηt)
nt+1

, (3:7)

where B is a nonzero constant, so

g′′(ξ) =
(ξ − ξ0)

l−1p2(ξ)

(ξ − η1)
n1+2(ξ − η2)

n2+2 · · · (ξ − ηt)
nt+2

, (3:8)

where p2(ξ) = B(l - N - 2t) ξt + bt-1ξ
t-1 + ... + b0 is a polynomial. From (3.5), we also

have

g′′(ξ) =
(ξ − ξ1)

m1−2(ξ − ξ2)
m2−2 · · · (ξ − ξs)

ms−2p3(ξ)

(ξ − η1)
n1+2(ξ − η2)

n2+2 · · · (ξ − ηt)
nt+2

, (3:9)

where p3(ξ) is also a polynomial.

We use deg(p) to denote the degree of a polynomial p(ξ).

From (3.5), (3.6) then

deg(h) ≤ s + t − 1, deg(p1) ≤ m + t − 1, deg(q1) = N + t. (3:10)

Similarly from (3.8), (3.9) and noting (3.10) then

deg(p2) ≤ t, (3:11)

deg(p3) ≤ deg(p1) + t − 1 − (m − 2s) ≤ 2t + 2s − 2. (3:12)

Note that mi ≥ 4 (i = 1, 2, ..., s), it follows from (3.5) and (3.7) that g’(ξ0) = 0 (i = 1,

2, ..., s) and g’(ξ0) = a ≠ 0. Thus, ξ0 ≠ ξi (i = 1, 2, ..., s), and then (ξ - ξ0)
l-1 is a factor of

p3(ξ). Hence, we get that l - 1 ≤ deg(p3). Combining (3.8) and (3.9), we also have m -

2s = deg(p2) + l - 1 - deg(p3) ≤ deg(p2). By (3.11), we obtain

m − 2s ≤ deg(p2) ≤ t. (3:13)

Since m ≥ 4s, we know by (3.13) that

2s ≤ t. (3:14)

If l ≥ N + t, by (3.12), then

3t − 1 ≤ N + t − 1 ≤ l − 1 ≤ deg(p3) ≤ 2t + 2s − 2.

Noting (3.14), we obtain1 ≤ 0, a contradiction.
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If l <N + t, from (3.5) and (3.7), then deg(p1) = deg(q1). Noting that deg(h) ≤ s + t -1,

deg(p1) ≤ m + t - 1 and deg(q1) = N + t, hence m ≥ N + 1 ≥ 2t + 1. By (3.13), then

2t + 1 ≤ 2s + t. From (3.14), we obtain 1 ≤ 0, a contradiction.

The proof of Theorem 1.5 is complete.

Proof of Theorem 1.6 Set F∗ = { f 22 |f ∈ F}.
Noting that all zeros of g ∈ F∗ have multiplicities at least 4 and all poles of g ∈ F∗

are multiple, and for each pair of functions f and g in F∗, f’ and g’ share a nonzero

value a in D, we know that F∗ is normal in D by Theorem 1.5. Therefore, F is normal

in D.

The proof of Theorem 1.6 is complete.

Proof of Theorem 1.7 Set F∗ = { 1f |f ∈ F}, F := 1
f .

Noting that f -n f’ = - Fn-2 and n ≥ 4 implies n - 2 ≥ 2, by Theorem 1.4, we know that

F∗ is normal in D.

Since normality of families of F and F∗ = { 1f |f ∈ F} is the same by the famous

Marty’s criterion,

Therefore, F is normal in D.

The proof of Theorem 1.7 is complete.
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