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Abstract

This article is devoted to extensions of some existing results about the Caratheodory
operator from the function sense to the differential form situation. Similarly as the
function sense, we obtain the convergence of sequences of differential forms
defined by the Caratheodory operator. The main result in this article is the continuity
and mapping property from one space of differential forms to another under some
dominated conditions.
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1 Introduction
It is well known that differential forms are generalizations of differentiable functions in

RN and have been applied to many fields, such as potential theory, partial differential

equations, quasi-conformal mappings, nonlinear analysis, electromagnetism, and con-

trol theory [1-12].

One of the important work in the field of differential forms is to develop various

kinds of estimates and inequalities for differential forms under some conditions. These

results have wide applications in the A-harmonic equation, which implies more ver-

sions of harmonic equations for functions [1,5,6].

The Caratheodory operator arose from the extension of Peano theorem about the

existence of solutions to a first-order ordinary differential equation, which says that

this kind equation has a solution under relatively mild conditions. It is very interesting

to characterize equivalently the Caratheodory’s conditions and the continuity of Car-

atheodory operator, which form classic examples to discuss boundedness and continu-

ity of nonlinear operators and play an important part in advanced functional analysis.

For general function space, we define the Caratheodory operator as in [13,14].

Definition 1.1. Suppose that G is measurable in RN, and 0 <mesG ≤ +∞. We say that

function f(x, ω)(x Î G, -∞ <ω < +∞) satisfies the Caratheodory conditions, if

1. for almost all x Î G, f(x, ω) is continuous with respect to ω; and

2. for any ω, f(x, ω) is measurable about x on G.

For the function f(x, ω) with Caratheodory conditions, we define the Caratheodory

operator T : G × R ® R by

Tω (x) = f (x,ω (x)) .

There are some essential results for Caratheodory operator as follows.
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Lemma 1.1. Suppose that mesΩ < +∞. Then f(x, ω) satisfies the Caratheodory condi-

tion if and only if for any h > 0, there exists a bounded open set F ⊂ Ω with mesF

>mesΩ - h, such that f(x, ω) is continuous on F × R.

Lemma 1.2. Suppose that mesΩ < ∞. If ωn(s) (n = 1, 2, ...) convergence in measure

to ω(s) on Ω, then Tωn(s) = f(s, ωn(s))(n = 1, 2, ...) convergence in measure to Tω(s)

on Ω.

Theorem 1.1. The Caratheodory operator T maps Lp1 (�) into Lp2 (�) if and only if

there exists a real number b > 0, and a function a (x) ≥ 0, a (x) ∈ Lp2 (�) satisfies the

following inequality

|f (x,ω) | ≤ a (x) + b|ω|
p1
p2 (x ∈ �,ω ∈ (−∞, +∞)) .

This article is to extend the above results to the space of differential forms.

2 Some preliminaries about differential forms
First, we introduce some notations and preliminaries about differential forms. Let Ω

denote an open subset of RN, N ≥ 2 and R = R1, and the n-dimensional Lebesgue mea-

sure of a set Ω ⊂ RN is denoted by mes(Ω). Let {e1, e2, ..., en} denote the standard

orthogonal basis of RN. Λl(RN) is the linear space of l-covectors, generated by the

exterior products eI = ei1 ∧ ei2 ∧ · · · ∧ eiι, corresponding to all ordered l-tuples I = (i1,

i2, ..., il), 1 ≤ i1 <i2 < ··· <il ≤ N, l = 0,1, ..., N. The Grassman algebra

∧ = ∧ (
RN

)
= ⊕N

ι=0∧ι is a graded algebra with respect to the exterior products.

A differential l-form ω on Ω is a Schwartz distribution on Ω with values in ∧(RN).

Let D’(Ω, ∧l) denote the space of all differential l-forms, and Lp(Ω, ∧l) denote the

space composed by the l-forms

ω (x) =
∑
I

ωI (x)dxI =
∑
I

ωi1 i2...iι (x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiι ,

where ωI Î Lp(Ω, R) for all ordered l-tuples I. Then Lp(Ω, ∧l), p ≥ 1 is a Banach

space with norm

‖ ω‖p,� =
(∫

�|ω (x) |pdx
)1/p

=

⎛
⎝∫

�

(∑
I

|ωI (x) |2
)p/2

dx

⎞
⎠

1/p

< +∞.

We see that{
dxi1 ∧ dxi2 ∧ . . . ∧ dxiι , 1 ≤ i1 < i2 < · · · < iι ≤ N

}
is a basis of the space ∧l, then dim

(∧ι
)
= dim

(∧ι
(
RN))

=
∑

N
ι=0C

ι
N and

dim (∧) =
N∑
l=0

dim
(
∧l (RN))

=
N∑
l=0

Cl
N = 2N.

Then we define the Caratheodory conditions and Caratheodory operator for differen-

tial forms.

Definition 2.1. For a mapping f : Ω × ∧l ® ∧l, where Ω is an open set in RN, we say

that f satisfies Caratheodory conditions if 1. for all most s Î Ω, f(s, ω) is continuous

with respect to ω, which means that f can be expanded as f(s, ω) = ΣJ fJ(s, ω)dxJ where

Tang and Zhu Journal of Inequalities and Applications 2011, 2011:88
http://www.journalofinequalitiesandapplications.com/content/2011/1/88

Page 2 of 14



fJ : Ω × ∧l ® R and fJ(s, ω) is continuous about ω for all most s Î Ω; and 2. for any

fixed ω = ΣI ωdxI Î ∧l, f(s, ω) is measurable about s, which means that each coefficient

function fJ(s, ω) is measurable about s for any fixed ω Î ∧l.
Throughout this article we assume that f(s, ω) satisfies the Caratheodory condition

(C-condition). Similarly, we can define the continuity of f(s, ω) about (s, ω) Î Ω × ∧l.
Definition 2.2. Suppose that Ω ⊂ RN is measurable set(0 <mesΩ ≤ +∞), and f : Ω ×

∧l ® ∧l. We define the Caratheodory operator T : ∧l ® ∧l for differential forms by

Tω (s) = f (s,ω (s)) .

3 Main results and proofs
There is a necessary and sufficient condition of the Caratheodory conditions:

Lemma 3.1. Suppose that mesΩ < +∞. Then f(x, ω) satisfies the Caratheodory condi-

tion, if and only if, for any h > 0, there exists a bounded closed set F ⊂ Ω, with mesF

>mesΩ - h, such that f(x, ω) is continuous on F × ∧l.
Proof. Proof of sufficiency.

According to the hypothesis, there exists a bounded open set Fn ⊂ Ω, with

mesFn > mes� − 1
n

(n = 1, 2, . . .), such that f(x, ω) is continuous on Fn × ∧l. Let

F = ∪+∞
m=1 Fn ⊂ �, then mesF = mesΩ, and when x Î F, f(x, ω) is continuous on ∧l.

Hence, the first one of Caratheodory conditions is satisfied. For fixed ω Î ∧l, {x Î Fn|fI
(x, ω) ≥ a}(a Î R) is bounded and closed. Then

{x ∈ F|fI(x,ω) ≥ a} =
+∞⋃
n=1

{x ∈ Fn|fI(x,ω) ≥ a}

is measurable, so that f(x, ω) = ∑I f(x, ω)dxI is measurable on F respect to x, then it

is measurable on Ω. Hence, the second one of Caratheodory conditions is satisfied.

Proof of necessity.

For a given h > 0, we only need to prove the following result: there exists a bounded

closed set Fn ⊂ Ω with mesFn > mes� − η

2n
and δn > 0 (n = 1, 2, ...) such that for any

x1, x2 Î Fn with dist(x1, x2) <δn, ω1,I, ω2,I Î [-n, n], |ω1,I - ω2,I| <δn, where ωi = ∑I ωi,

IdxI, ωi,I Î R, i = 1, 2, we have

|f (x1,ω1) − f (x2,ω2)| <
1
n

(n = 1, 2, ...).

Actually, if we have proved this conclusion, then F =
⋂+∞

n=1 Fn ⊂ � is bounded and

closed and satisfies

mes(�\F) = mes(
+∞⋃
n=1

(�\Fn) ≤
+∞∑
n=1

mes(�\Fn) <

+∞∑
n=1

η

2n
= η.

Then we can prove f(x, ω) is continuous on F × ∧l as follows. For any given (x, ω) Î

F × ∧l, and ε > 0, we select n0 with
1
n0

< ε and |ω1,I| <n0 - 1 for all I. When (x2, ω2) in

F × ∧l satisfies dist(x1, x2) < δ = min{δn0 , 1}, |ω1,I − ω2,I| < δ, we have

x1, x2 ∈ F ⊂ Fn0 , dist(x1, x2) < δn0,|ω2,I| < δ + n0 − 1 ≤ n0, and
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|f (x1,ω1) − f (x2,ω2)| <
1
n0

< ε.

Thus, f(x, ω) is continuous on F × ∧l. Set

�0 = {x ∈ �|f (x,ω) is continuous on − ∞ < ωI < +∞ as function about ω}.

According to the first one of Caratheodory conditions, we have mesΩ0 = mesΩ. Let

�m,n = {x ∈ �0|ω1,I,ω2,I ∈ [−n,n], and for all I|ω1,I − ω2,I| <
1
m

contains that|f (x,ω1) − f (x,ω2)| ≤ 1
3n

} (n = 1, 2, ...).

With the density of the rational number, we have Ω0\Ωm,n = {x Î Ω0| there exists

ω1,I, ω2,I Î [-n, n], such that

|ω1,I − ω2,I| <
1
m
, |f (x,ω1) − f (x,ω2)| >

1
3n

} = {x ∈ �0|there exists rational number ωi,I

Î [-n, n], i = 1, 2, such that |ω1,I − ω2,I| <
1
m
, |f (x,ω1) − f (x,ω2)| >

1
3n

}..
With the second one of Caratheodory condition, for fixed

ω1,ω2, {x ∈ �0||f (x,ω1) − f (x,ω2)| >
1
3n

} is measurable. Thus Ω0 \ Ωm,n (as the

countable union of such able sets) is measurable, too. So Ωm,n is measurable.

Obviously, for fixed n we have Ω1,n ⊂ Ω2,n ⊂ ···. Let En =
⋃+∞

m=1 �m,n ⊂ �0. We will

prove that En = Ω0. Actually, if En ≠ Ω0, then there exists

x0 ∈ �0\En =
⋂+∞

m=1 (�0\�m,n). Thus, there exist ω
(m)
i =

∑
Iω

(m)
i,I dxI, i = 1, 2 with

ω
(m)
1,I ,ω

(m)
2,I ∈ [−n,n], such that

|ω(m)
1,I − ω

(m)
2,I | <

1
m
,

and

|f (x0,ω(m)
1 ) − f (x0,ω

(m)
2 )| >

1
3n

(m = 1, 2, ...).

This obviously contradicts the uniform continuity of function f(x0, ω), where ω = ∑I

ωI dxI with -n ≤ ωI ≤ n for any I. Hence, we have proved En = Ω0 (n = 1, 2, ...).

Then we have

lim
m→+∞mes�m,n = mes�0 (n = 1, 2, ...).

For given n, we select m0 such that

mes�m0,n > mes�0 − 1
2n

η

3
.

For any I, we divide interval [-n, n] into s = 2nm0 subintervals, and the endpoints of

these subintervals are

−n = ω
(0)
I < ω

(1)
I < ω

(2)
I < · · · < ω

(s)
I = n,

where I = (i1, i2, ..., il) and the number of all I is t = Cl
n. Using Luzin theorem, there

exist bounded closed sets Dj ⊂ Ω0, such that
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mesDj > mes�0 − η

3(s + 1)N2n
,

and fI(x, ω
(j)) is continuous on Dj with respect to x (thereby uniform continuous),

where ω(j) =
∑

Iω
(SI)dxI stands for ω

(SI)
I

selected from ω
(0)
I ,ω(1)

I , ...,ω(s)
I

for different I.

Then ω(j) =
∑

Iω
(SI)
I dxI ∈ ∧ι, and we know the total amount of these ω(j)S is

(s + 1)N � r.

Let D =
⋂r

j=1 Dj. According to the uniform continuity, there exists δ > 0 such that

|f (x1,ω(j)) − f (x2,ω(j))| <
1
3n

, for all x1, x2 ∈ D

and

dist(x1, x2) < δ for j = 1, 2, ..., t.

Now we select closed set Fn ⊂ Ωm0,n ∩ D such that

mesFn > mes(�m0,n ∩ D) − 1
2n

η

3
,

and δn satisfies 0 < δn < min
{
δ,

1
m0

}
. We shall prove that Fn and δn are those that

we need.

Actually,

�0\(�m0,n ∩ D) = (�\�m0,n) ∪ (�0\D)

= (�\�m0,n) ∪
⎛
⎝ r⋃

j=1

(�0\Di)

⎞
⎠ ,

then we have

mes(�0\(�m0,n ∩ D)) ≤ mes(�0\�m0,n) +
r∑
j=1

mes(�0\Dj)

<
1
2n

η

3
+

r∑
j=1

η

3r2n
=
1
2n

2η

3
.

This leads to

mes(�m0,n ∩ D) > mes�0 − 1
2n

2η

3
.

Thus,

mesFn > mes�0 − η

2n
= mes� − η

2n
.

Suppose that x1, x2 Î Fn, d(x1, x2) <δn, ωi,I Î [-n, n] (i = 1, 2) |ω1,I - ω2,I| <δn, and

ω
(i+1)
I − ω

(i)
I =

1
m0

(
δn <

1
m0

)
, i = 0, 1, 2, ..., s − 1, and there exist some

ω(j) =
∑

Iω
(SI)
I dxI such that for any I, we have |ω1,I − ω

(SI)
2,I | <

1
m0

. Then, we obtain
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|f (x1,ω1) − f (x1,ω2)| ≤ |f (x2,ω2) − f (x2,ω(j))| + |f (x2,ω(j)) − f (x1,ω(j))|
+ |f (x1,ω(j)) − f (x1,ω1)|
≤ 1

3n
+

1
3n

+
1
3n

=
1
n
.

The proof of necessity is finished.

Actually, [15] gave a proof of the condition that the u in f(x, u) is a normal l-dimen-

sional vector. With this lemma, we have the following result.

Lemma 3.2. Suppose that mesΩ < +∞. If for ω(x) = ΣI ωI(x)dxI, ωI(x) is measurable

on Ω, then Tω(x) = f(x, ω(x)) is measurable on Ω.

Proof. According to Lemma 3.1, there exists a closed set Fn ⊂ Ω with

mesFn > mes� − 1
n

(n = 1, 2, ...), such that f(x, ω) is continuous on Fn × ∧l. Suppose

that Fn ⊂ Fn+1 (n = 1, 2, ...), otherwise let
⋃n

k=1 Fk be the new Fn. From Luzin Theorem,

there exists a closed set Dn,I ⊂ Fn,mesDn,I > mesFn − 1
nt
(t = Cl

N) such that ωI(x) is

continuous on Dn,I. Similarly, supposing Dn,I ⊂ Dn+1,I (n = 1, 2, ...), and Dn = ∩I Dn,I ⊂

Fn, we have mes(Fn\Dn) ≤ ∑
I(mesFn − mesDn,I) =

∑
I
1
nt

=
1
n
, which deduces that for

any I, ωI (x) is continuous on Dn. We suppose Dn ⊂ Dn+1 (n = 1, 2, ...) just as Fn. Let

D =
⋃∞

n=1 Dn,H = �\D, then
mesD = lim

n→∞mesDn = mes�.

Hence, we have mesH = 0. For any rational number a,

{x|x ∈ Dn, fI(x,ω(x)) ≥ a}

is closed and can be expressed as

{x|x ∈ D fI(x,ω(x)) ≥ a} =
∞⋃
n=1

{x|x ∈ Dn fI(x,ω(x)) ≥ a}.

Thus, {x|x Î Dn, fI(x, ω(x)) ≥ a} is measurable, which implies that

{x|x ∈ D, fI(x,ω(x)) ≥ a}

is measurable. Hence, fI(x, ω(x)) is measurable on Ω. Then, f(x, ω(x)) is measurable.

This ends the proof.

In fact, this lemma is also true when mesΩ = +∞. For the Caratheodory operator T,

we first prove that the operator maintains the convergence in measure for sequences

of differential forms.

Theorem 3.1. Suppose that mesΩ < ∞. If ωn(s) (n = 1, 2, ...) converge in measure to

ω(s) on Ω, then Tωn(s) = f(s, ωn(s))(n = 1, 2, ...) converge in measure to Tω(s) on Ω.

Proof.

For any s > 0, let Fn = {s|s Î Ω, |f(s, ωn(s)) - f(s, ω(s))| ≥ s}. We need to prove

lim
n→∞mesFn = 0,
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that is

lim
n→∞mesDn = mes�,

where

Dn = �\Fn = {s|s ∈ �, |f (s,ωn(s)) − f (s,ω(s))| < σ }.

Let

�k = {s|s ∈ � satisfy that for any ω′; if|ω(s) − ω′| <
1
k
, then we have

|f (s,ω(s)) − f (s,ω′)| < σ }(k = 1, 2, ...).

Clearly

�1 ⊂ �2 ⊂ �3 ⊂ · · · .

Let H =
⋃∞

k=1 �k. If s0 Î Ω \ H, then s0 ∉ Ωk (k = 1, 2, ...). So there exists ω′
k such

that

|ω(s0) − ω′
k| <

1
k
.

But

|f (s0,ω(s0)) − f (s0,ω′
k)| ≥ σ (k = 1, 2, ...).

Thus f(s0, ω) is not continuous at ω = ω0 = ω(s0). Hence, because of f satisfying C-

conditions, we know mes(Ω \ H) = 0, that is

lim
k→∞

mes�k = mesH = mes�.

For all ε > 0, we can choose sufficiently large k0 such that

mes�k0 > mes� − ε

2
. (3:1)

Let

Qn = {s|s ∈ �, |ωn(s) − ω(s)| ≥ 1
k0

}

Rn = �\Qn = {s|s ∈ �, |ωn(s) − ω(s)| <
1
k0

}.

As ωn(s) converge in measure to ω(s), we have

lim
n→∞mesQn = 0,

that is

lim
n→∞mesRn = mes�.

Thus, there exists a positive integer N such that

mesRn > mes� − ε

2
ifn > N. (3:2)
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Obviously, �k0 ∩ Rn ⊂ Dn, so

�\Dn ⊂ �\(�k0 ∩ Rn) = (�\�k0) ∪ (�\Rn).

Then, with (3.1) and (3.2), and mesΩ < ∞, we know that for n >N,

0 ≤ mes� − mesDn = mes(�\Dn)

≤ mes(�\�k0) +mes(�\Rn)

= (mes� − mes�k0) + (mes� − mesRn)

<
ε

2
+

ε

2
= ε.

That is

lim
n→∞mesDn = mes�,

and we have

lim
n→∞mesFn = 0.

Lemmas 3.3, 3.4 will be used in the following proof of the main theorem.

Lemma 3.3. In normed space, we have,

||x| − |y||p ≤ ||x|p − |y|p|.

where x, y is any element of this space.

The proof is easy to obtain and therefore omitted.

Lemma 3.4. Suppose ωn(s) Î Lp(Ω, ∧l) and p ≥ 1. If ||ωn - ω0|| ® 0, then there

exists a subsequence ωnk(s) of ωn(s) such that ωnk(s) → ω0(s)a.e.

Proof. For ωn(s) = ΣIωn,I(s)dsI Î Lp(Ω, ∧l), if

||ωn − ω0||p → 0,

using

||ωn,I − ω0,I||p ≤ ||ωn − ω0||p = ||(
∑

(ωn,I − ω0,I)2)p/2||p,

we have

||ωn,I − ω0,I||p → 0, for any I.

As we know, for the first index I1, we have subsequence ωnk ,I1(s) → ωo,I1 (s)a.e.. And

for I2, we also have ||ωn,I2 − ω0,I2 || → 0. By fixing the index I2, there exists a subse-

quence ωnkj ,I2
(s) of the sequence ωnk ,I2 satisfying ωnkj ,I2

(s) → ω0,I2 (s)a.e..

By repeating the above procedure, we can find subsequence ωn,I(s) ® ω0,I(s) a.e., for

any I.

Hence, there exists a subsequence ωn,I(s) → ω0,I(s)a.e. Thus, we complete the proof.

Theorem 3.2. Suppose mesΩ < ∞, p1, p2 ≥ 1. If f satisfies

|f (s,ω)| ≤ a(s) + b|ω|p1/p2 s ∈ �,ω ∈ Lp1 (�,∧ι),

where a(s) ∈ Lp2(�), and b > 0 is a constant, then C-operator T maps Lp1(�,∧ι) into

Lp2(�,∧ι) and simultaneously is bounded and continuous.

Proof. If ω(s) ∈ Lp1 (�,∧t),, we have a(s) + b|ω(s)|p1/p2 ∈ Lp2(�), which implies that

Tω(s) = f (s,ω(s)) ∈ Lp2(�,∧ι) and

Tang and Zhu Journal of Inequalities and Applications 2011, 2011:88
http://www.journalofinequalitiesandapplications.com/content/2011/1/88

Page 8 of 14



T : Lp1(�,∧ι) → Lp2(�,∧ι).

With Minkowski inequality, for any ω(s) ∈ Lp1 (�,∧ι), we have

||Tω||p2 ≤ ||a(s) + b|ω(s)|p1/p2 ||p2
≤ ||a(s)||p2 + b||ω(s)||p1/p2p1 .

So T is bounded. Next we prove the continuity of T.

If T is discontinuous in Lp1(�,∧ι), that is to say, there exist

{ωn} ⊂ Lp1 (�,∧ι) (n = 0, 1, 2...) and ε0 > 0, such that

||ωn(s) − ω0(s)||p1 → 0,

but

||Tωn(s) − Tω0(s)||p2 ≥ ε0.

Let

fn(s) = Tωn(s) = f (s,ωn(s)), gn(s) = a(s) + b|ωn(s)|p1/p2 .

Then

|fn(s)| ≤ gn(s).

According to Minkowski inequality, we have

−||ωn − ω0||p1 ≤ ||ωn||p1 − ||ω0||p1 ≤ ||ωn − ω0||p1 ,

So

|||ωn|| − ||ω0||| ≤ ||ωn − ω0||p1 .

and

||ωn − ω0||p1 → 0,

so

||ωn||p1 → ||ω0||p1 .

With the first one of C-conditions and Lemma 3.4, there exists a subsequence (sup-

pose that {ωn} is this subsequence) such that

fn(s) → f0(s), gn(s) → g0(s) a.e.

Obviously, ||ωn|p1 − |ω0|p1 | ≤ |ωn|p1 + |ωp1
0 |. According to Lemma Fatou, we have∫

�

limn→∞(|ωn|p1 + |ω0|p1 − ||ωn|p1 − |ω0|p1 |)ds

≤ limn→∞

∫
�

(|ωn|p1 + |ω0|p1 − ||ωn|p1 − |ω0|p1 |)ds.

Then

2||ω0||p1p1 ≤ 2||ω0||p1p1 − limn→∞

∫
�

(||ωn|p1 − |ω0|p1 |)ds.
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Hence, there exists a subsequence {ωnk(s)} such that

lim
k→∞

∫
�

||ωnk |p1 − |ω0|p1 |ds = 0.

Suppose that limn→∞
∫
�

||ωn|p1 − |ω0|p1 |ds = 0

and with Lemma 3.3, we have

∫
�

|gn(s) − g0(s)|p2ds = bp2
∫

�

||ωn|p1/p2 − |ω0|p1/p2|p2ds

≤ bp2
∫

�

||ωn|p1 − |ω0|p1 ||ds → 0 (n → ∞).

As

lim
n→∞

∫
�

||ωn|p1 − |ω0|p1 |ds = 0,

we have

lim
n→∞

∫
�

|gn(s) − g0(s)|p2ds = 0.

Then

||gn(s)||p2 → ||g0(s)||p2 (n → ∞).

And

|fn(s) − f0(s)|p2 ≤ 2p2(|gn(s)|p2 + |g0(s)|p2).

Applying Lemma Fatou to {2p2 |gn(s)|p2 + |g0(s)|p2 − |fn(s) − f0(s)|p2}, we have

limn→∞

∫
�

|fn(s) − f0(s)|p2ds = 0.

According to Lemma 3.4, there exists a subsequence {fnk} such that

lim
k→∞

∫
�

|fnk(s) − f0(s)|p2ds = limn→∞

∫
�

|fn(s) − f0(s)|p2ds = 0,

that is

||Tωnk − Tω0|| → 0 (k → ∞).

This is contradictory to ||Tωn(s) − Tω0(s)||p2 ≥ ε0. Hence, T is continuous. This

ends the proof.

Actually, we can prove that the condition in Theorem 3.2 is a necessary and suffi-

cient condition.

Theorem 3.3. The Caratheodory operator T maps continuously and boundedly

Lp1(�,∧ι) into Lp2(�,∧ι), if and only if, there exists b > 0, a(x) ≥ 0, a(x) ∈ Lp2 (�)

satisfying the following inequality,

|f (x,ω)| ≤ a(x) + b|ω|
p1
p2 (x ∈ �,ω ∈ ∧ι). (3:3)

Proof. The proof of sufficiency has been proved in Theorem 3.2.

Tang and Zhu Journal of Inequalities and Applications 2011, 2011:88
http://www.journalofinequalitiesandapplications.com/content/2011/1/88

Page 10 of 14



Proof of necessity. First, we suppose f(x, 0) ≡ 0. With the continuity and bound-

edness of T, we know there exists b > 0 such that∫
�

|ω(x)|p1dx ≤ 1 ⇒
∫

�

|f (x,ω(x))|p2dx ≤ bp2 . (3:4)

Then, we define a function on Ω × ∧l:

g(x,ω) =

⎧⎨
⎩ |f (x,ω)| − b|ω|

p1
p2 , if|f (x,ω)| ≥ b|ω|

p1
p2 ;

0, if|f (x,ω)| ≥ b|ω|
p1
p2 .

Suppose that ω(x) ∈ Lp1(�,∧ι). Let F = {x|x Î Ω, g(x, ω(x)) > 0} and

∫F|ω(x)|p1dx = n + α, where n is a nonnegative integer and 0 ≤ a < 1. With the absolute

continuity of integral, we can divide F into n + 1 measurable set Ω1, Ω2, ..., Ωn+1

which is mutually disjoint and∫
�i

|ω(x)|p1dx ≤ 1 (i = 1, 2, ..., n + 1).

Hence, according to (3.4), we have

∫
F
|f (x, ω(x))|p2dx =

n+1∑
i=1

∫
�i

|f (x, ω(x))|p2dx

≤ (n + 1)b
p2

Then∫
�

[g(x, ω(x))]p2dx =
∫
F
[g(x, ω(x))]

p2
dx

=
∫
F
[f (x, ω(x))| − b|ω(x)|

p1
p2 ]

p2

dx

≤
∫
F
[f (x, ω(x))|p2dx − bp2

∫
F
|ω(x)|p1dx

≤ (n + 1)bp2 − (n + α)b
p2

≤ bp2 .

(3:5)

We use the following inequality in the above statement,

(u − υ)r ≤ ur − υ r, ∀u ≥ υ ≥ 0, r ≥ 1.

As f(x, ω) satisfies the Caratheodory condition, g(x, ω) also satisfies it. Then there

exist D ⊂ Ω, mes(Ω\D) = 0, and f(x, ω) is continuous with respect to ω for any x Î D.

Let D =
⋃∞

k=1 Dk, where mesDk < +∞ (k = 1, 2, ...) and D1 ⊂ D2 ⊂ D3 ⊂ ⋅⋅⋅. Let ωk(x) =

ΣI ωk,I (x)dxI on x Î Dk, where for any I,

−k ≤ ω∗
I ≤ k, and g(x,ω∗) = max−k≤ωI≤kg(x,ω).

We choose ωk as follows. First, we sort all of the I with an order

ω1,ω2, ...,ωr
(
r � Cl

N

)
. For I1, let ω∗

I1 be the smallest value of which satisfies the above

qualification; for I2, let ω∗
I2 be the smallest value of which satisfies the above qualifica-

tion and under the condition that we have selected ω∗
I1; then we repeat this procedure.
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Hence, ωk(x) =
∑
I

ωk,I(x)dxI =
∑
I

ω∗
I dxI on Dk. If x Î Ω \ Dk, let ωk,I = 0, then ωk(x) =

0.

Now we prove that ωk,I(x) is measurable on Ω for any I. Obviously we only need to

prove this on Dk. We suppose that any other ωk,I’ is fixed where the maximum can be

got; then g(x, ω) only has two variables x, ωI. Hence, let g(x, ωI) stand for the function

we are studying here, which actually is g(x,ω),ω =
∑

I,ω
∗
I , dxI, dxI, +ωk,IdxI. Using

Lemma (3.1), there exists bounded closed set

Fk,n ⊂ Dk,mesFk,n > mesDk − 1
n

(n = 1, 2, ...) such that g(x, ωI) is continuous on Fk,n

× (-∞, +∞). Clearly, we can suppose Fk,n ⊂ Fk,n+1 (n = 1, 2, ...). Let Gk =
⋃∞

n=1 Fk,n.

Then mes(Dk \ Gk) = 0. For any real number a, we investigate the set Hk,n = {x|x Î Fk,

n,ωk,I >a}. Suppose that x0 Î Hk,n, let h = ωk,I(x0) - a > 0, and we select δ > 0 such

that δ <h and -k <ωk,I - δ. According to the definition of ωk,I, we know g(x0, ωI) <g(x0,

ωk,I(x0)), for all -k ≤ ω <ωk,I(x0). Hence,

2δ = g(x0,ωk,I(x0)) − max−k≤ω≤ωk,I(x0)−δ g(x0,ωI) > 0.

With the uniform continuity of g(x, ωI) on Fk,n × [-k, k], there exists ρx0 > 0 such

that if |x − x0| < ρx0 and x Î Fk,n, then we always have

|g(x,ωI) − g(x0,ωI)| < δ for all − k ≤ ω ≤ k.

Hence, we know that

g(x,ωk,I(x0)) > g(x,ωI), for all − k ≤ ωI ≤ ωk,I(x0) − δ.

Then ωk ,I(x) >ωk ,I(x0) - δ >ωk ,I(x0) - h = a, for all |x − x0| < ρx0 , x ∈ Fk,n. Let

S(s0,ρx0 ) stand for the open ball {x|x ∈ RN , |x − x0| < ρx0}. Then we have proved

S(x0,ρx0 ) ∩ Fk,n ⊂ Hk,n. Hence, we know that

Hk,n =

⎛
⎝ ⋃

x∈Hk,n

S(x,ρx)

⎞
⎠ ∩ Fk,n.

As
⋃

x∈Hk,n
S(x,ρx) is open set and Fk ,n is closed set, Hk ,n is measurable. Thus,

{x|x ∈ Gk,ωk,I > a} = ⋃∞
n=1 Hk,n is also measurable. Then we know that ωk,I(x) is mea-

surable on Gk, so is on Dk.

Now we prove that ωk,I(x) is measurable for any I. According to Lemma 3.2, f(x, ωk

(x)) is measurable, therefore g(x, ωk(x)) is measurable, too.

Obviously,∫
�

|ω(x)|p1dx =
∫
Dk

|ωk(x)|p1dx ≤ (Cl
n)

p1kp1mesDk < +∞.

So ωk(x) ∈ Lp1(�,∧ι). Using (3.5), we have∫
�

[g(x,ωk(x))]
p2dx ≤ bp2 (k = 1, 2, ...). (3:6)

Let a(x) = supω∈∧ιg(x,ω) (x ∈ �)..
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Clearly, when x Î D, we have

a(x) = limk→∞g(x,ωk(x)), (3:7)

and so a(x) is nonnegative measurable function. With (3.6) and (3.7), using Lemma

Fatou, we have that∫
�

[a(x)]p2dx ≤ limk→∞

∫
�

[g(x,ωk(x))]
p2dx ≤ bp2 .

Hence, a(x) ∈ Lp2(�). As

a(x) = supω∈∧ιg(x,ω) ≥ supω∈∧ι{|f (x,ω)| − b|ω|
p1
p2 },

thus

|f (x,ω)| ≤ a(x) + b|ω|
p1
p2 (x ∈ �,ω ∈ ∧ι).

Hence, under the hypothesis f(x, 0) ≡ 0, we prove the necessity of the theorem. For

general situation, let f1(x, ω) = f(x, ω) - f(x, 0). Then f1(x, 0) ≡ 0. Applying the above

conclusion to f1, we know that there exist a1(x) ≥ 0, a1(x) ∈ Lp1(�) and b > 0, such

that

|f1(x,ω)| ≤ a(x) + b|ω|
p1
p2 , ∀x ∈ �, ω ∈ ∧ι,

where a(x) = a1(x) + |f (x, 0)| ≥ 0, a(x) ∈ Lp2 (�). Then we know f (x,ω) ∈ Lp2(�,∧ι)..

Hence, we complete the proof.

In the proofs above, when l = 0, Caratheodory operator T: Ω × R ↦ Ω × R degener-

ates to normal function space. We can also find that when l1 ≠ l2, these conclusions

are still true. Actually, we only need to redefine an appropriate norm. For

ω(x) =
∑n

l=0
ωl(x) ∈ ∧, let

||ω(x)||�,∧,p =
n∑
l=0

||ωl(x)||�,∧ι ,p,

where ωl(x) = ΣI ωI,l(x)dxI. Then we can extend T to Lp1(� × ∧) �→ Lp2 (� × ∧) and
the above conclusions still come into existence.
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