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Abstract

In this paper, some new inequalities of the Hermite-Hadamard type for functions
whose modulus of the derivatives are convex and applications for special means are
given. Finally, some error estimates for the trapezoidal formula are obtained.
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1. Introduction
A function f: I — R is said to be convex function on [ if the inequality

flax+ (1 —a)y) < af (x) + (1 = a)f(y),

holds for all x, y e I and o € [0,1].

One of the most famous inequality for convex functions is so called Hermite-Hada-
mard’s inequality as follows: Let f: I & R — R be a convex function defined on the
interval I of real numbers and a, b € I, with a <b. Then:

a+b 1 b f(a) +f(b)
f( ) )Eb—d./a f(x)dx < ) . (1.1)

In [1], the following theorem which was obtained by Dragomir and Agarwal contains
the Hermite-Hadamard type integral inequality.

Theorem 1. Let f: I' € R — R be a differentiable mapping on I, a, b € I’ with a <b.
If |f] is convex on [a, ], then the following inequality holds:

f(a) +f(b) I b—a)(If'(a)l +If"()])
‘ ) — b—a/a f(uw)du 3 .

In [2] Kirmaci, Bakula, Ozdemir and Peéari¢ proved the following theorem.
Theorem 2. Let f: I — R, I € R be a differentiable function on I’ such that f € L |a,
b), where a, b € I, a <b. If |f|? is concave on |a, b] for some q > 1, then:

=< ( (1.2)
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‘f(a) +f(b) _ / i

f(b;“)[fqiﬂ" () )

In [3], Kirmaci obtained the following theorem and corollary related to this theorem.
Theorem 3. Let f: I' € R — R be a differentiable mapping on I’, a, b € I’ with a <b
and let p > 1. If the mapping |f|’ is concave on |a, b], then we have

(1.3)

b
fleas (1 =B =)+ f@ =) +f0)A= L f(x)dx‘

T K-T M —
§(b—a)[K /(a +b( )>|+M ,(aN+b( N))H
K M
where
2 _A)2 3,3 2 _ )2 _R)?
K=A +(c—A) ,T=A +c Ac ,M=(B c) +(1 B)/
2 3 2 2
3
N=B +c +1—(1+CZ)B
3 2

Corollary 1. Under the assumptions of Theorem 3 with A =B =c = ), we have

@10 _ / foyds

/(5a6+b) ’ /<a+65b>H'

For recent results and generalizations concerning Hermite-Hadamard’s inequality see

(1.4)

E(b;a)[

[1]-[5] and the references given therein.

2. The New Hermite-Hadamard Type Inequalities
In order to prove our main theorems, we first prove the following lemma:

Lemma 1. Let f: I € R — R be a differentiable mapping on I’, where a, b € 1 with a
<b.Iff € L |a, b], then the following equality holds:

(b —x)f(b) + (x — a)f (a) 1
b _b_a/;f(u)du
2 b—x)? [}
=(xb_‘;) /(; (t—l)f/(tx+(1—t)a)dt+(h_xa) /0 (1 = f (e + (1 — t)b)d.
Proof. We note that

N2 pl
J= (3; _aa) fo (t— 1)f'(tx + (1 — t)a)dt
_x)2 r!
+ (l; _32 /0 (1 —0)f'(tx+ (1 — t)b)de.
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Integrating by parts, we get

/- (x—c;)z |:(t_1)f(tx+(1—t)a)

f(tx+ (1 —t)a)
b— f xX—a dtj|

(b—x)? flx+ (1 —0)b) ! ' f(tx+ (1 —0)b)
T b-a |:(1_t) x—b o Jo x—b dt}

ST [ L [

(b—-x)7T f(b) 1 ¥

T b—a [‘x—f(x—b)z/bf(“)du]
— +(x— b

_(@ x)f(bg_(ax a)f(a)_b 1 ) / F(u)du,

0O

Using the Lemma 1 the following results can be obtained.
Theorem 4. Let f: [ € R — R be a differentiable mapping on I’ such that f € L |a,
b), where a, b € I with a <b. If |f| is convex on |a, b], then the following inequality

holds:
— + — b
|(b PO+ Coafw 1 [ roa
_(x—a)’ [If/(x)l +2|f/(a)|} L (b—x) [If/(X)I +2|f/(b)l}
~ b—a 6 b-a 6

for each x € [a, b].
Proof. Using Lemma 1 and taking the modulus, we have

oy _ b
|(b YO e-af@ _ 1 [ st

b—a

= (2__? /0 (1 —0)If (tx + (1 — t)a)|dt
_ 12 rl
[ oo v

Since |f| is convex, then we get

(b —=x)f(b) + (x — a)f (a) I
’ b—a _b—a/af(u)du

—a)? r!
<67 [ a-owr@ie o - or@i

A f (1= 9l @1+ (1= OIf (b)l1de

_ (x—a)? [If’(x)l+2|f’(a)|] . (b —x)? [If’(x)l +2If’(b)|]
b—a 6 b—a 6

which completes the proof. O
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Corollary 2. In Theorem 4, if we choose x = ‘”hwe obtain

‘f(a) +f(b) _ / Fu)d

< a(WWH+

(50| ron).

Remark 1. In Corollary 2, using the convexity of |f| we have

‘f(a) +f(b)
2

b —
oo [ 0 <@ e

which is the inequality in (1.2).
Theorem 5. Let f: I S R — R be a differentiable mapping on I’ such that f € L |[a,

b), where a, b € I with a <b. If|f/|pf1is convex on [a, b] and for some fixed q > 1, then

the following inequality holds:

(b —x)f(b) + (x — a)f (a) I
| b—a _b—a/af(u)du

1 1
1 p/1\a
<(5.1)"(2)
1 1
(x—a)?[If' @17+ 1f (x)17]9 + (b — x)[If (x)|7 + I/ (b)I] @
b—a

Jor each x € [a, b] and g = pp1

Proof. From Lemma 1 and using the well-known Hélder integral inequality, we have

(b —x)f(b) + (x — a)f (a) I
| b—a _b—a/af(u)du

_ 2 rl
= (’Z_aa) /0 (1= 9If (& + (1 = a)lde

+(b —x)2 /1 (1 —0)If (tx + (1 — 0)b) dt

(x_“) (/ (1— )pdt) (/1|f/(m+(1—z)a)rfdt)‘17
(b_x) (/ (1- )pdt> (/01|f/(tx+(1—t)b)|th>;

. b . s .
Since | f/|p-1 Is convex, by the Hermite-Hadamard’s inequality, we have

/01 If (tx + (1 — t)a)|9dt < |f/(“)|q;r If’ ()9

and

v ()17 + I ()1
/0 I (6 + (1 — )b) 9t < SO,
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SO

(b —x)f(b) + (x — a)f(a) I
| b—a _b—a/af(u)du

1 1
1 p/1\a
<(,01)"(2)
1 1
(= a)?[If (@17 +1f ()] 7 + (b — x)[If ()7 + |f(b)]] 9
b—a

which completes the proof. O

Corollary 3. In Theorem 5, if we choose x = “*we obtain

;
CRCR
R
| 1
[ () o ()]
<", 1>;<;);(If’(a)l O,

The second inequality is obtained using the following fact:
S (A + )’ < D p (@)’ + Xy (e)Sfor (0 < s < 1), ay, as, as,..., a, > 0; by, by, bs,...,
b, > 0 with 0 < p;l <1 forp>1.

Theorem 6. Let f: I S R — R be a differentiable mapping on I’ such that f € L |a,
b), where a, b € I with a <b. If || is concave on |a, D], for some fixed q > 1, then the
following inequality holds:

b—a
L [
“l29-1 b—a

for each x € [a, b].

— _ b
|(b VO +G-afe _ 1 [ s

Proof. As in Theorem 5, using Lemma 1 and the well-known Hélder integral inequal-

ity forg > 1and p = 1, we have
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(b — x)f (b) + (x — a)f(a) ot
b—a _b—a/af(u)du

2
<679 | =0y 0 - naa

(b __x)Z /1 (] B t)|f/(tx+ (l . t)b)|dt

—1 1

(x—“) (/ (1—1)- ldt> ! (/01|f’(tx+(l—t)a)|th>q

L([Ta-ota) ql(/01|f’(tx+(1—r)b)|‘7dt>‘7

Since |f|? is concave on [a, b], we can use the Jensen’s integral inequality to obtain:

1

1 1
/ If' (tx + (1 —t)a)|"dt=/ O1f (tx + (1 — t)a)|9dt
0 0

(/0 tOdt) < X Odt./ (tx+(1—t)a)dt)
(vl

,(b+x
2
Combining all the obtained inequalities, we get

(b —x)f(b) + (x — a)f (a) I
b—a _b—a/af(u)du

}21 {(x— O If (%) 1+ (0 =271 () 1

IA

Analogously,

/1 If'(tx + (1 — £)b)|%dt <
0

q

!

s[q_l

29 —1 b—a

which completes the proof. O
Remark 2. In Theorem 6, if we choose x = “;bwe have

fla) S0 _ / i

qg—1 q 3a+b ,{a+3b
SEE ( D) ()
which is the inequality in (1.3).

Theorem 7. Let f: I S R — R be a differentiable mapping on I’ such that f € L |a,
b, where a, b € I with a <b. If || is convex on [a, b] and for some fixed q > 1, then

the following inequality holds:

+
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(b —x)f(b) + (x — a)f(a) 1t
b—a _b—a/,;f(u)du

1 1 1
11\ | = @[ 21 @17+ (b= X[ () 21f (B)]
~ 2\3 b—a

for each x € a, b).

Proof. Suppose that ¢ > 1. From Lemma 1 and using the well-known power-mean
inequality, we have

(b-2)f(b) + (x—a)f(a) _ 1 "
b—a _b—a/af(u)du

AV 1
<& | =i o=l

_ )2 1
G [ o o

: 1

(x—a) - =g/ p1 e 1 !
(/ (1 t)dt) 1(/0 (1= 0)lf (ex+ (1 t)a)|th> |
(b—x) (/ (1—t)dt> q(/ol(l—t)|f’(tx+(1—t)b)|th>q

Since |f|? is convex, therefore we have
/1 (1 —=0)lf'(tx+ (1 — t)a)|%dt
0
1
< [ a0l a-or@ea

_ @I+ 20 (@)
) 6
Analogously,
/1 (1= O (s (1 — gy = O+ 20O
0

Combining all the above inequalities gives the desired result. O
Corollary 4. In Theorem 7, choosing x = “;band then using the convexity of |f|? we

have

‘f(a) +f(0) / Fu)d

N [

3
< ( )(b—ﬂ)(lf/(a)|+|f'(b)|)~
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Theorem 8. Let f: I S R — R be a differentiable mapping on I’ such that f € L |a,
b], where a, b € I with a <b. If |f|? is concave on |a, b], for some fixed q = 1, then the
following inequality holds:

_ + — b
|(b X (0) + (x = a)f(a) _ bia/a f(u)du

b—a
N2 1§ (X+2a b— 2,47 [ x+2b
1| G=a)If ("9) 1+ (=271 (*57) |

< .

-2 b—a
Proof. First, we note that by the concavity of || and the power-mean inequality,
we have

If (tx+ (1 = 0)a)|? = dlf ()| + (1 = )If (a)]".
Hence,

If (tx + (1 = t)a)| = tlf'(x)| + (1 — 0)If (a1,

so |f] is also concave.

Accordingly, using Lemma 1 and the Jensen integral inequality, we have

(b —x)f(b) + (x — a)f (a) I
| b—a _b—a/af(u)du

—_ 4 rl
—(3;,_6;) /0 (1 —0)If (tx + (1 — t)a)|dt

_ )2l
*%fl) /0 (1= 0If (+ (1 = 0)b)lde

1
2 (/1 (- t)dt) I (fo (1 —-t)(tx+(1— t)a)dt>
0

fo (1 —t)dt
(b—x) (/ (1- t)dt) (fo (1—0)(tx+ (1 —t)b)dt)
1 {(H)z (5] + (0= x)?
-2

fo (1 —1)de
b—a

)

O

Remark 3. In Theorem 8, if we choose x = “;bwe have

fla) 10 _ / s
Sbga[ /<5a6+b>‘+ ,<a+65b)u

which is the inequality in (1.4).
3. Applications to Special Means

Recall the following means which could be considered extensions of arithmetic, loga-

rithmic and generalized logarithmic from positive to real numbers.
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(1) The arithmetic mean:

b
A=A(ab) = a;— ;a,beR

(2) The logarithmic mean:

—a

b
L(a,b)=ln|b| ;lal #|bl,ab #0,a,b € R

—1In|a|
(3) The generalized logarithmic mean:

bn+1 _ aml

Lp(a,b) = [(b—a)(n+l)} ;ne Z\{—1,0},a,beR,a+#b

Now using the results of Section 2, we give some applications to special means of
real numbers.
Proposition 1. Let a, be R, a <b, 0 ¢ [a, bl and n € Z, |n| = 2. Then, for all p > 1

(a)
1 1
|A(a", b") — L} (a, b)| < |n|(b— a)(pi . ) ’ (;) A (la"%, b") 3.1)
and
(b)

1_1

A", B — L a, b)| < Inl(b—a)° . A (jarm . (3.2)

Proof. The assertion follows from Corollary 3 and 4 for f (x) = x", x€ R, ne Z, |n| =

2.0
Proposition 2. Let a, b € R, a <b, 0 & [a, b]. Then, for all g > 1,
(a)
. 1 . 1
A=l 1) — L 1(a, _ p qA -2 1p-2 (3.3)
A -1 o = 6-a( ) 1) () Al )
and
(b)
-

A(a,b7") =L (a,b)| < (b—a) A(lal™% 1b]7?). (3.4)

Proof. The assertion follows from Corollary 3 and 4 for f(x) = .. O

4, The Trapezoidal Formula
Let d be a division a = xy <x; < ... <x,, . 1 <x,, = b of the interval [a, b] and consider

the quadrature formula

b
/ f(x)dx = T(f,d) + E(f, d) (4.1)
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where

T(f,d) = nif (x) +2f Ce1) iy — )
i=0

for the trapezoidal version and E (f, d) denotes the associated approximation error.
Proposition 3. Let f: [ € R — R be a differentiable mapping on I’ such that f € L

la, b], where a, b € I with a <b and |f/|pflis convex on [a, b), where p > 1. Then in

(4.1), for every division d of [a, b, the trapezoidal error estimate satisfies

|Eqwn|s(pil);(;);é;(””;““y(vme+u%&Hny

Proof. On applying Corollary 3 on the subinterval [x;, x;,1] (i = 0, 1, 2,..., n - 1) of the

division, we have

flx) +f(xi) 1 !
I 2 X — X Py S
1 1
Hence in (4.1) we have
b n—-1 Xis1 )+ i
Q/fwwx—ﬂﬁ®‘=§:{ fwa—ﬂ”);“lhmH—mﬁ‘
a i=0 ‘U
n-1 Xis1 . .
= Z - fx)dx— /) +2f(x1+1) (xi1 — i)
lzol 117 1 (1’n71 (x xi)?
i+1 T A / /
<(,1,)"(3) 2 e e

which completes the proof. O

Proposition 4. Let f: I S R — R be a differentiable mapping on I’ such that f € L
la, b], where a, b € I with a <b. If |f|? is concave on |a, D], for some fixed q > 1, Then
in (4.1), for every division d of |a, b, the trapezoidal error estimate satisfies

)

Proof. The proof is similar to that of Proposition 3 and using Remark 2. 0

Proposition 5. Let f: I € R — R be a differentiable mapping on I’ such that f € L
la, b], where a, b € I with a <b. If || is concave on |a, b], for some fixed q > 1, Then
in (4.1), for every division d of [a, b], the trapezoidal error estimate satisfies

, [ 5Xi + Xis1 , [ Xi + DX
f( 6 N+f( 6 N)

Proof. The proof is similar to that of Proposition 3 and using Remark 3. O

1

E(f, d)] < (;,q__ll)"q y e af (

i=0

n—1

wqdns;EZWH—mf(

i=0
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