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Abstract

We say that a functional equation (&) is stable if any function g satisfying the
functional equation (&) approximately is near to a true solution of (&).

In this paper, by using Banach’s contraction principle, we prove the stability of
nonlinear partial differential equations of the following forms:

Vel 1) = f(x, £, y(x, 1)),

ayx(x t) + byu(x, £) = f(x t,y(x, 1)),

Pl Oyxe (x,€) + q0x ye(x, €) + pi (s )y (1) — P, e, 1) = £, 1, y(x, 1)),
p(x, Oyxe(x, 1) +q(x, Oy (x, 1) = f(x, 1, y(x, 1))
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1. Introduction
Let X be a normed space over a scalar field K, and let I be an open interval. Assume
that, for any function f: I — X (y = f (x)) satisfying the differential inequality

(@)™ (€) + an-a (YD) + -+ ar (€Y' () + a0 (hy(0) + h(D)]] <e
for all ¢t € I, where ¢ > 0, there exists a function f; : I — X satisfying

Yo = fo(x),
an(0)r5"(©) + auo1 (O (€) + -+ ar (€)Y o(0) + ao(D)yo(€) + h(1) = 0

and [|f () - fo ®)|] < K (¢) for any t € L

Then we say that the above differential equation has the Hyers-Ulam stability. If the
above statement is also true, then we replace ¢ and K(¢) by ¢(¢) and ¢(t), where ¢, ¢ : I
— [0, o) are functions not depending on f and f; explicitly, then we say that the corre-
sponding differential equation has the Hyers-Ulam-Rassias stability or the generalized
Hyers-Ulam stability.

In 1998, the Hyers-Ulam stability of differential equation ¥’ = y was first investigated
by Alsina and Ger [1]. In 2002, this result has been generalized by Takahasi et al. [2]
for the Banach space-valued differential equation y’ = Ay. In 2005, Jung [3] proved the
generalized Hyers-Ulam stability of a linear differential equation of the first order. For
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more results on stability of differential equations, see also [4-7] and [8] and, for more
details on the Hyers-Ulam stability and related topics, the readers refer to [9-17] and
[18-20].

In this paper, we prove the Hyers-Ulam-Rassias stability of the following partial

differential equations:

(1) The first order nonlinear partial differential equation:

yx(x ) = f(x 6, y(x, 0));

(2) The first order nonlinear partial differential equation:
ayx(x, €) + byi(x, 1) = f(x 1, y(x, 1))

forall a, b e R;

(3) The second order nonlinear partial differential equation:
(%, Oyae (1) + q(x yx(x, 1) = f(x, 1,y (%, 1)) (1.1)
under the following condition:
Prc( £) = gx(x, t). (1.2)
The differential equation (1.1) is the second order nonlinear partial differential
equation, and we call it exact if the condition (1.2) holds.
(4) The mixed type second order nonlinear partial differential equation:
p(x, Oy (%, 1) + q(x, e (x, €) + pe(x, Oy (x, £) = P, e (%, 1) = f (1 y(x, 1))
under the following condition:
pre(%, 1) = qu(x, 7).

Theorem 1.1. (Banach’s Contraction Principle) Let (X, d) be a complete matric space
and T : X — X be a contraction, that is, there exists o € [0,1) such that

d(Tx, Ty) < ad(x,y)

for all x, y € X. Then, there exists a unique a € X such that Ta = a. Moreover, a =

lim,_,.. T" x and
1
d(a, x) < d(x, Tx)
11—«

forallx e X.

2. Main results
In this section, let I = [a, b] be a closed interval witha <band C(I xI) ={f: I x [ >
R: fis continuous}. For the sake of convenience, assume that all the integrals and all

the derivatives exist.
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Theorem 2.1. Let c€ [ ¢ : I x I — (0, ) be a continuous function, L : I x I — [1,e0)
be an integrable function and K : I x I x R — R be a continuous function. Assume that
there exists 0 <8 < 1 such that

X

/L(r,t)(p(r,t)dr < Bo(x, t); (2.1)

c

IK(x, t,u(x,t)) — K(x, t,v(x,t))] < L(x, t)|u(x, t) — v(x, t)] (2.2)
forallx,te€ ITandu, ve C (I x I). Lety: 1 xI— R be such that
[y(x,£) — K(x, t, y(x, 1)) < @(xt) (2.3)

for all x, t| I Then, there exists a unique continuously differentiable function y, : I x
I — R such that

X

yann=ﬂan+/Ku»manaMr

Cc
(consequently, yq is a solution to y, (x, t) = K(x, t, y(x,t))) and

¥ -ro(ol = P e

forall x, t[ I

Proof. Let X be the set of all continuously differentiable functions u : I x I — R. We
define a metric d and an operator T on X as follows, respectively:
lu(x, t) — v(x, t)|

d(u,v) =
(u V) Supx,tel ¢(x’ t)

and the operator

X

(Tu) (x,t) =y(c, t) + / K(z,t,u(z, t))dr

c

for all # € X. Using (2.1) and (2.2), we have

d(Ti, Tv) = sup,, .o, |[F[K(r, tou(z, 1) — K(z, t,v(7, 1)) ] d7|

o(x )
xLT,t u(z,t) —v(r,t dr
SSprteIfC (. Olu(z, 1) —v(z, 1)
’ p(x )
fcx L(z, )e(r,t) \u(r,;))(;tgr,m de
= SUDy 1ef ,
, o(x,t)
=sup fcx L(z. De(z. 1) SUP; 1 lu(r,f;)(;,%rlt)‘dt
S o(x 1)
fx L(z, t)p(z, t)dr
= d(u, c
(u,v) sup, ¢ o)

< Bd(u,v).
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Now, by Theorem 1.1, there exists a unique y, € X such that Tyo = yo, that is,

X

Yo(x £) =y(c 1) +/K(t, t,yo(z,t))dr.

c

Moreover, by Theorem 1.1, we have
1
Mmm)sl_ﬂﬂ%w) (2.4)

for all y € X. It follows from (2.3) that
—(x 1) < el 1) — K(x,£,)(%, 1)) < (1)
for all , t € I If we integrate each term in the above inequality from c to x, then we
get

X X

y(x ) — | y(ct) —/K(‘L’,t,)/(‘[,t) dr| < /go(r,t)dr

< /L(r, t)e(z, t)dr

c

< Bo(x1).
Now, we have

1) — (1) (5 0] _ 1) — (1) (5 0] _
oty SPTPwe oy Sh

Thus, we get
d(y, Ty) < 8. (2.5)

Therefore, by (2.4) and (2.5), we see that
B
e -neol < " e

for all w, ¢t € I This completes the proof. O

Theorem 2.2. Let c€ I, p, q : I x I > R be continuous functions with p(x, t) # 0 for
all x,t e I, ¢ : I x I - (0, o) be a continuous function, L : I x I — [1, ) be an integr-
able function, and f: 1 x I x R — R be a continuous function. Assume that there exists
0 <B < 1 such that

X

/LUJWUJMTSﬂﬂMW

h(e, ) = =[p(c, Oyx(c ) = pale, )y(e 1) +qle y(c, 1)];
K(x t,y(x 1))

=~ (P )" | (pxx, ©) — qx )y 1) + hle, 1) - / f(,ty(z 0)de
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and
|K(x, t, u(x,t)) — K(x, t, v(x, t))| < L(x, 6)u(x, ) — v(x, t)]

forall ¢, x,t € Iand h,u,v,ye C (I xI). Lety:Ix I — R be a function such that:
IP(x, Oy (x, 1) +q(x, )y (x, £) — f(x £, y(x )] < o(x, 1) 2.7)

for all x, t € I and (1.2) holds. Then, there exists a unique solution yy : I x I —> R of
(1.1) such that

W0 =0l < F e,

Proof. 1t follows from (1.2) and (2.7) that

Ip(x, )y (%, 8) + G, )y (x, 1) — f(x 8, y(x, 1))
= 1(p(x yx(x, 1) — pelx y(x, ) + (q(x, y(x, 1))

+ [pxe(% 1) — gu(x, O]y (e, £) — f(x, £, y(x, 1)
= 1(p(x Oy £) — pr, )y (3 1))x + (q(x, )y (x, £))x — f(x, 1, (%, 1))
< ¢(x1).

Thus, we have

—o(x 1)
< (p(x, )y, 1) — P, (. 1)), + (q(x, Oy, €))x — F 1 y(x, 1)) (2.8)
< ¢(x, ).

By using (2.8), we get

P )yx(x, €) = palx, Oy (x, 1) + q(x, )y(x, 1) + h(c, 1) — ff(ff t,y(z, 1))dr|

7o ) + (p(x 1) (06, €) — pel D)y, £) + hi(c, 1)

—‘/fhvnﬂrﬁndr)

X

< /(p(t,t)dr,

c

= Ip(x, 1)]
(2.9)

where
h(c, 1) = — [p(c, )yx(c, 1) — px(c, (e £) + qlc, y(c, )]

From (2.9), it follows that

wmo+Mxm*(mmo—mMOanmmo—/ﬂnwuﬂmJ

X

< |P(X,t)|_1/<p(r,t)dr.

c
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From p(x, t) = P(x'fl)j&ipt()’;f))z], without less of generality, we can assume that |p(x, t)|

> 1.

Now, By putting

K(x t,y(x 1))

= =(p(x. )" | (px(x, ) — q(x, 0)y(x, 1) + h(c,t) — /f(r,t, y(z. t)de

in the above inequality, we get

X

lye(x t) — K(x, t, y(x, 1) < Ip(x,t)l’lfgo(t,t)dt

c
X

< /(p(t, t)de

c
X

< /L(‘L’, He(r, t)dr

< Bo(xt)
<oxt).

Thus, the conclusions of the Theorem follows from Theorem 2.1. This completes the

roof. O
’ If (1.1) is multiplied by a function pu(x, £) such that the resulting equation is exact,
that is,
p(x [p(x Oy (x 1) + q0x )y — (2 6, y(x, 1)) = 0 (2.10)
and
(1 (e )P (% 1)) — (q(x, ) 1)) = O, (2.11)

then we say that u(x, t) is an integrating factor of the partial differential equation
(1.1).

Corollary 2.3. Let p, q, p : I x I > R be continuous functions such that p(x, t) # 0
and u(x, t) = 0 for all x, t € I, and (2.10) holds. Assume that c€ I, L : I x I — [1, oo)
is an integrable function and f: 1 x I x R — R is a continuous function. Suppose that
there exists 0 <f < 1 such that

X

/ L(x, 0)o(z, 0)dr < Bo(x );

c

h(c,t) = = [u(e, )p(x )yx(c, £) = (up)x(c )y(e t) + mle, ale, y(c, O];
Kty 1) = = (e 0Op(x )7 [l )al £) = (1a),(x 0)y(x )

+ (h(c, t) —/M(T,t)f(‘[,t,y(‘[,t))dt)

c
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and
IK(x, t, u(x,t)) — K(x, t, v(x, £))| < L(x, 6)u(x, t) — V(x, t)].

forall c,x,t € Iand h,u,ve C{ x ). Let y: I x I > R be a function such that
i (x, O1lp(x, )y (1) + g Cx, Oy, 1) — f x4 y(x, 1)) < @(x,1)

for all x, t € I and the condition (2.11) holds. Then, There exists a unique solution y,
: I x I — R of (2.10) such that

W0 =0l < F e,

Proof. 1t follows from Theorem 2.2 that

X

yo(x, t) =y(c t) + f K(z, t,y(zr,t))dr

c

with

K(x, 6, y(x,0)) = = (1e(x 0p(x )7 [((x q(x 0) = (1), (x )y (. 0)

+ (h(c, t) —/u(r,t)f(r,t,y(r,t))dr):|

[

and

h(e, t) = = [m(e )plx yx(e, t) = (wp)x(c, y(e 1) + nle, ale, y(e )]

has the required properties. This completes the proof. O

Remark 2.4. In 2009, Jung [7]proved the Hyers-Ulam stability of linear partial differ-
ential equation of the first order of the following form:

ayx(x,t) + bye(x, t) + g(x)y(x, t) + h(x) =0

foralla >0 and b > 0.

Now, we consider the generalization of this equation as follows:
ayx(x, t) + by (x, t) = f(x, t, y(x, 1)) (2.12)

forall a, be R witha =0 andb = 0. Let { and 1 be defined by
—x—"t n= L 2.13
f=x— 0L n (2.13)
If we define y(¢,n) =y(¢ +an, bn) = y(x, t), then, by (2.13), we have
~ CIQupe an
X L) = ’ ’ ’
ye(x t) =ye(&om) o +¥(Em) o
- . m  a. 1.
n@ ) =ye(&m) o +yn(@m) == ve(&om)+ ya(Eom).

Thus, we see that ayx(x,t) +by,(x,t) =¥,(¢, 1), and so we can rewrite the equation
(2.12) as follows:
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Vo2 m) = (& 0.5(¢ ). (2.14)

Now, we can use Theorem 2.1 for the generalized Hyers-Ulam stability of (2.14).
We consider the mixed type second order nonlinear partial differential equation:

p(x, O)yae (%, 8) + q(x, O)ye(x, 1) + pe(x, )y (x, 1) — prlx, O)ye(x, 1)

(2.15)
=f(x 6, y(x, 1))
Now, we prove the Hyers-Ulam-Rassias stability of (2.15) under the condition:
Pu(x, 1) = (%, 1) (2.16)

Theorem 2.5. Let c € Ip, q : I x I - R be continuous functions with p(x, t) = 0 for
all x,te I, ¢ : I x I - (0, o) be a continuous function, L : I x I — [1, ) be an integr-
able function, and f: 1 x [ x R — R be a continuous function. Assume that there exists
0 <B < 1 such that

X

f L(t, t)e(z, t)dt < Bo(x, t);

h(x, ) = =[p(x, AJyx(x, ) = pax, Iy €) + q(x, Jy(x O);
K(x t,y(x 1))

= —(p(x 1)) {(Px(xf £) = q(x, 6))y(x t) + h(x, ) — /f(x, T y(x f)df}

and
|K(x, t,u(x,t)) — K(x, t,v(x, t))] < L(x, )u(x, t) — v(x, t)]
forallc,x,te Land h,y,u,ve C{xI). Let y : [ x [ - R be a function such that

Ip(x, )yxe (% ) + q(x, ye(x, 1) + pe(, (1) = Pl e, 1) = f(x 6 (%, 1))

2.17
<o) (217

for all x, tl I and the condition (2.16) holds. Then, there exists a unique solution y, :
Ix I — R of (215) such that

ly(x, 1) —yo(x, )] = , fﬁfp(x,t).

Proof. By (2.17) and (2.16), we see that

Ip(x, a3 8) + q(x, Oye(x, €) + pu(, (%, €) = pal ye(x 1) = f(x, 1, y(x, 1))
[(pCx Oy (1) = pul (%, 0) + q(x, (%, 1))e

+ [pu (1) = @ Oly(x, 1) — f(x 1, y(x, 1))

|(p(x, )y (%, €) = pa(x, Oy (e 1) + (%, Oy (x, 1)) = f(x 1 (% 1)

Thus, we have

— o(x 1)
= (pCx, Oyx(x, 1) = pul )y (x, 1) + q(x, )y (x, 1)) — f(x 4, y(x, 1)) (2.18)
< o(x1).
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It follows from (2.18) that

p(x, Oyx(x,8) = pulx, )y(x, 1) + q(x, )y (x, 1) + h(c, 1) — / f(x T, y(x, 7))de

I Oy 1) + (0 0) 7 ((a(x 1) = pal )y, £) + h(c, 1)

! (2.19)
— /f(x,r,y(x,r))dr

t

/(p(x, 7)dr,

c

IA

where
B, €) = — [p(x (% ©) — pal, (%, ) + 4l (. ).

From (2.19), we obtain

wm0+@mwr1(«mw—m@ﬂ»@ﬂ+ﬂaﬂ—/ﬂmnﬂmﬂﬁr

t

< Ip(x, t)|_1/(p(x,r)dr.

c

The rest of the proof is similar to that of Theorem 2.2. This completes the proof. O
Remark 2.6. We can define the integrating factor for the equation (2.15) and prove a
corollary similar to Corollary 2.3 for Theorem 2.6.
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