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Abstract

In the present paper we establish some new Opial-type inequalities involving higher-
order partial derivatives. Our results in special cases yield some of the recent results
on Opial’s inequality and also provide new estimates on inequalities of this type.
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1 Introduction
In the year 1960, Opial [1] established the following integral inequality:

Theorem 1.1. Suppose fe C'(0, K] satisfies fl0) = fih) = 0 and fix) > O for all x € (0,
h). Then the integral inequality holds

h h h
/0 IJ‘(x)f’(x)|dx54/O (f'(x))*dx, (1.1)

where this constant Zis best possible.

Opial’s inequality and its generalizations, extensions and discretizations play a funda-
mental role in establishing the existence and uniqueness of initial and boundary value
problems for ordinary and partial differential equations as well as difference equations
[2-6]. The inequality (1.1) has received considerable attention, and a large number of
papers dealing with new proofs, extensions, generalizations, variants and discrete analo-
gues of Opial’s inequality have appeared in the literature [7-22]. For an extensive survey
on these inequalities, see [2,6]. For Opial-type integral inequalities involving high-order
partial derivatives see [23-27]. The main purpose of the present paper is to establish
some new Opial-type inequalities involving higher-order partial derivatives by an exten-
sion of Das’s idea [28]. Our results in special cases yield some of the recent results on

Opial’s-type inequalities and provide some new estimates on such types of inequalities.

2 Main results
Let n 2 1, k 2 1. Our main results are given in the following theorems.

i
Theorem 2.1 Let x(s, £) e C~ V[0, a] x C* ~ [0, b] be such that aa X(0,7) = 0
O—l

i n—1

0 x(0,0)=0,0¢€ [0,s], 7€ [0,#],0<i<n-1,0<j<k- 1 Further, let 9 x(s, t)
ot 9sn—1

k-1

o XG5 t)be absolutely continuous, and [ fé’ ) s, t)|2ds dt < oco. Then
o=
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a b a b 2
/ / ‘x(s, £) - xR (s, t)'ds de < e - a"bF - / / ) s, z)] dsdt, 2.1)
0 0 0 0
where
an [ ot
(k) _
X" (s, 1) = - (ath(s, t)),
and

1 2nk 2
Cnk = .
"7 gt \ (2n - 1)(2k - 1)
i
Proof. For o integration by parts (n - 1)-times and in view of 88 x(0,7) =0
O—l

o x(0,0)=00<i<n-1,0<j<k-1we have

ot/
x(s,t) = ( v’ [ (0 —9s)" 1 o x(a t) do
—1)!
(G et 0" 1 1 a"
= (s—o) nx(a,t) do = (s—0) x(glt) do
(n—1)! /51 580' . (n— 1)l/ 2.2)
= (n,l)!(kfl)!fo (s—o)"! (/ (t—o) 13 kx(a r)d‘[) do

= ey, [ 6o e do e

Multiplying both sides of (2.2) by ™% (s, £) and using the Cauchy-Schwarz inequality,
we have

1
x(s, £) - xR (s, t)‘ < n MJZE;?E)[ </ / (s— )" 2(t - 1)* 2 do dr) 2

I f

S e— 1 /n—n@k-1) "

x("'k)(a,r)‘zda d‘L’>2 (2.3)

1 s pt
272 x(”'k)(s, t)‘ </ /
o Jo

Thus, integrating both sides of (2.3) over ¢ from 0 to b first and then integrating the result-

1
2 2
xR (a, r)‘ do dr) .

ing inequality over s from O to a and applying the Cauchy-Schwarz inequality again, we obtain

./Oa ./Ob ‘x(s, 1) - 20 (s, t)} dsde
1
: ("—1)!(k—1)!\}(2n—1)(2k—1)</o /Obsznlt””dsdt)2
x(/oa/ob x("'k)(s,t)‘z </OS/OL
! 1
B 21;1 (znzi 1>2 2;, (23 1>Zanw,
QLB Lot o] osf

=y a"b" / / x(""’)(s,t)‘ dsdt.
0 0

) 2
X (g, r)‘ do dr) dsdt>
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This completes the proof.
Remark 2.1. Let x(s, t) reduce to s(¢) and with suitable modifications, Then (2.1)
becomes the following inequality:

1
/O“ (O (1)1de < 2;11! ' <2nn— 1)2an foa ()7 de. @4

This is just an inequality established by Das [28]. Obviously, for # > 2, (2.4) is shar-
per than the following inequality established by Willett [29].

a 1 a
/ lx(£)x"(t)|dt < a"/ |x"(¢)]dt. (2.5)
0 2 Jo
Remark 2.2. Taking for n = k = 1 in (2.1), (2.1) reduces to

a pb 2 2 a pb
/ / (5,0 x(s,t)‘ dsdr <V ab/ /
o Jo dsot 4 o Jo

Let x(s, t) reduce to s(¢) and with suitable modifications. Then (2.6) becomes the fol-
lowing inequality: If x(¢) is absolutely continuous in [0, a] and x(0) = 0, then

2
dsdt. (2.6)

32
,t
asac D

a a a
[ o< [T wora
0 2 Jo
This is just an inequality established by Beesack [30].
Remark 2.3. Let 0 < @, B < n, but fixed, and let g(s, t) € c" V[0, a] x c*P V)0, b

1 1
be such that (?ig(olt) = ;tig(slo) =0 0<i<nm-a-1,0<i<k-f-1and suppose
s

an—oz—l k—p—1 .
that 35n—a—1g(5’ t) atkf,sflg(s’ t) are absolutely continuous, and

S 2 arek=8) (5, 1) ds dt < oc.
Then from (2.1) it follows that

a rb a rb
/ / ‘g(s, t) - gek=P)s, t)‘ ds dt < ¢y_ge_pa" b P / /
o Jo o Jo

i
Thus, for g(s, £) = %% P(s, 1), where x(s, £) € C”"V[0, a] x C* - V[0, b], 88 x(0,£) =0,
Sl

2
gin-ak=p) (s, t)) dsdt.

j
; x(s5,0)=00<i<n-1,B<j<k-1, and D (61 are absolutely continuous,
v

and f(;l f(f |x(n'k) (s, 1f)|2 dsdt < oo, then
a pb
Iy

Obviously, a special case of (2.7) is the following inequality:

a pb 2
x@P)(s, 1) - xR (s, 1) ‘ dsdt < cpgppa" P / / xR (s, t)‘ dsdt. (2.7)
0 0

a b a pb 2
/ / ’x(k'k)(s, £) - xm (s, t)‘dsdtf Cotoni(ab)" " / / ‘x("'”)(s, t)‘ ds de(2-8)
0 0 0 0

Let x(s, £) reduce to s(t) and with suitable modifications. Then (2.8) becomes the fol-
lowing inequality:
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1

1 . n—=k 2 o ° )
2n — k! (2(n—k)—1) ¢ /0|x (DFde.

This is just an inequality established by Agarwal and Thandapani [31].

/ 12 () (1) |de <
0

Theorem 2.2. Let [ and m be positive numbers satisfying | + m >1. Further, let x(s, £)
i j

e C" V[0, a] x C*D|0, b] be such that aa x(0,7)=0 38 x(0,0)=00¢€ [0,s], 7€
o! 12

, : Gl ot
[0,£,0<i<n-1,0<j< k-1 and assume that a1 x(s, t) - x(s, tyare absolutely

continuous, and f; fé’ |x(”'k)(s, t)|l+mds dt < oo Then

a pb m a rb l+m
/ / (s, t)|l‘x(”'k)(s, t)‘ dsdt < ¢ ya"b" / / ‘x(”'k)(s, t)‘ dsdt, (2.9)
0 0 0 0

where

kn(1 — £)? = 1
* _ =lE+1_Em - . -1 -
A ((H—S)(k—é)) (ntkt)™, & l+m’

Proof. From (2.2), we have

1 s pt . L,
lx(s, 1) < (n—l)!(k—l)!/o /0 (s—o) Y- 1‘x( k)(a,r)‘ do dr,

by Hoélder’s inequality with indices / + m and l Lem X it follows that
+m—
I+m—1
1 s l+m l+m
—o)" =) l+m—1
lx(s, t)| < (n—1)1(k— 1)1 /0 /0 [(s—=0)" " (t—1)""] do dr
1
S k Lem l+m
x</ f NG )(a,r)’ dadr)
0 JO
st L+m &
=As”’gtk’§<‘// x(”rk)(a,r)} dadf),
0 JO
where

L a-er N
(n=§)(k=€)) (- 1)0- D

Multiplying the both sides of above inequality by |x"*(s, £)|" and integrating both
sides over ¢ from O to b first and then integrating the resulting inequality over s from
0 to a, we obtain

a pb m
[ f (s, t)|l‘x("'k) (s z)] dsdt
0 0

a pb m s pt Lem 3
< Al/ [ sl(nfé)tl(kfé)‘x(n,k)(sr t)‘ (f / ‘x(n,k)(alf)‘ do dr) ds dt.
0o Jo o Jo
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+m I+m .
and to the integral on the

m

Now, applying Holder’s inequality with indices l
right-side, we obtain

I

a pb a pb
/ / (s, O s, t)‘mds de < Al ( / / Sn=E)tem) (=) (bem) g dt>l+m
0 0 0 0

m
! I+m
a pb m+l s rt B l+m m
//‘ (//‘x("’)(a,r)‘ dodr) dsdt
0 JoO 0 JO
I
o 0 o B l+m
_A / / Sn=8)(1em) (k=€) () 4 4
0 0
m
! I+m

" // (//‘x("k)(a f)‘ dadr)m dsdt
I+m o 0sot

%-2 &l
( ) (mé )" a"'p / / ’x("k)(s t)‘ dsdt
=c:/ka"lbkl / / ‘x(”'k)(s, t)‘ dsdt.
0 0

This completes the proof.
Remark 2.4. Let x(s, t) reduce to s(¢) and with suitable modifications. Then (2.9)
becomes the following inequality:

/ |x(t)|‘x(")(t)‘ dt<5mmé<”(1 5))1(1 E)(n!)*’a"’ /0 ' ‘x(")(t)‘lmdt. (2.10)

This is an inequality given by Das [28]. Taking for #n = 1 in (2.10), we have

m/(l+m)

a
/ lx(0) ') (1) " de < / I/ (£)™*dt. (2.11)
0
For m, [ =2 1 Yang [32] established the following inequality:
a m a
f le(6) 1o (1)t < a / I ()™ de. (2.12)
0 l+m 0

Obviously, for m, [ > 1, (2.11) is sharper than (2.12).
Remark 2.5. For n = k = 1; (2.9) reduces to

[ f (s,

Let x(s, t) reduce to s(t) and with suitable modifications. Then above inequality

m+l

dsdt.

52
8 ar x(s, t) 253t x(s, t)

becomes the following inequality:

/u lx(0) ") (1) ™ de < gmmfa’fa I (0)™dt, & =(1+m)7}
0 0



Zhao and Cheung Journal of Inequalities and Applications 2011, 2011:7
http://www.journalofinequalitiesandapplications.com/content/2011/1/7

This is just an inequality established by Yang [32].
Remark 2.6. Following Remark 2.3, for x(s, ) € c” - VYo, a] x c* Vo, b],

1

j J
;}x(sro)zo,;.x(slo)zo,agisn—l,ﬁsjsk-landx("’ k=15, £) are abso-
v v

lutely continuous, and [ [¥ |x(nk)(s, t)|l+mds dt < oo it is easy to obtain that
a b

I
Obviously, a special case of (2.14) is the following inequality:

a pb i
[ [l
0 0

Let x(s, £) reduce to s(f) and with suitable modifications, then (2.14) becomes the fol-

[l
0

- m (n—k)(l—é) 1= —1_(n—k)l ¢
_$m5< O ) (n—k))™a /0

@B (s " Lok e o™ . n-ates) [ [ 1 " dede(2.13
X (s,t)‘ - |x (s,t)‘ dsdt <y p_pa b A X\ (s,t)‘ dsdt(2.13)

I+
x(n,n) (5, t) ’ mds dt(2 14)

m a pb
10 (s, 0)| " dsdt = ¢ (ab) " / /
0 0

lowing inequality:

(1) ’mdt

l+m
x(”)(t)‘ d, &=(+m)".

This is just an inequality established by Agarwal and Thandapani [31].
Theorem 2.3. Let [ and m be positive numbers satisfying | + m = 1. Further, let x(s,

i j
e c” Y00, a]l x c* V[0, b] be such that 83 x(0,7)=0 aajx(g,o) =0, 0¢ [0, s],
o T

n—1 k—1

. . 0
1€ [0,t],0<i<n-1,0<j< k-1 and assume that 35"‘1x(5' t)y 3tk—1x(5' t)are abso-

lutely continuous, and | fé’ |x("F) (s, t) | dsdt < oo. Then

a b m m a b
x(s, t () s, t)| dsdt < " a"pk xR (s, £)| ds dt. (2.15)
1
0o Jo (n!k!) o Jo

Proof. It is clear that
1 s 1 k=1 | (n))
(s, )] < (n—l)!(k—l)!fo /0 (s—o) ' (t—1) ‘x : (G,I)‘dod‘r

1 n—1k—1 ‘/s/t (n,k)
S(n—l)!(k—l)!s t ; O’x (U,t)‘do’dt

and hence

K (s, 1) ‘mds de

X0 (s, 1) )m ( /0 /ot

/Oa /Ob Ix(s, 0)|'

1 a b N i
= [(”—1)!(]3_1)!]1/(; /; =D (k=1)I

1
xR, t)‘ ds dt) dsdt.
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Now applying Holder inequality with indices ; and 1, we obtain
m

a rb m 1 a rb !
f / |x(s,t)|l‘x("'k)(s,t)‘ dsdr < l / / Sl 1ds dr
o Jo [(n—1)1(k—1)!] \Jo Jo
l m
a pb s pt
X f/ x("fk)(s,t)‘</ / ‘x("'k)(a,r)‘dad‘r)mdsdt
o Jo o Jo

1 1\,
" {(n— 1)k — 1)1 <n!k!> o

1
a pb 82 s pt +1
X m/ / - (/ / ‘x(”’k)(a,r)‘dadt>m dsdt
o Jo o Jo

mm a pb
- b / / ‘x("'k) (s, 0) \ dsd.
(n'k!) 0o Jo

This completes the proof.
Remark 2.7. Let x(s, t) reduce to s(¢) and with suitable modifications. Then (2.16)
becomes the following inequality:

m

a mm a
| sorsoras "t [ e

0 (n") 0
This is an inequality given by Das [28].
Remark 2.8. Following Remark 2.3, for x(s, £) € c” Y0, a] x ¢k~ Yo, b],
j j

aa‘x(S,O) =0 aan(slo) —oo<isn-1,B<j<k-1,andx" %" V(s, t) are abso-

¢ ¢

lutely continuous, and f(;l /. Ob |x(”rk) (s, 1) | dsdt < oo, from (2.16), it is easy to obtain that
a pb

o

5 m™" i) / ‘ / ’
[(n—a)!(k—B)!] o Jo

Let x(s, t) reduce to s(¢) and with suitable modifications, then (2.16) becomes the fol-

lowing inequality:

1
@B (s, 1) ‘ : ‘x(”'k) (5,0) ‘mds de

(2.16)

) (s, 1) ‘ dsdt.

[ sO@n@ma < a0 [T oide Lo =1
0 0

m
((n—R)1)
This is an inequality given by Das [28].
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