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1. Introduction
The classical Holder’s inequality states that if a; > 0, by 2 0(k=1,2, ..., n), p >0,g >0

1 1
and + =1, then

1 1
n

Zakka<ZaZ)p<ZbZ>q. 1)
k=1 k=1 k=1

The inequality (1) is reversed for p < 1(p = 0). (For p < 0, we assume that ay, by > 0.)
The following generalization of (1) is given in [1]:

Theorem A. (Generalized Holder inequality). Let A,; > 0, )" Aﬁ; <oo >0 =1,

1
2 s R Af Xy =1, then
]

) ﬁAnf <I1 (;AZ)W- )

k
nj=1 j=1

As is well known, Holder’s inequality plays a very important role in different
branches of modern mathematics such as linear algebra, classical real and complex
analysis, probability and statistics, qualitative theory of differential equations and their
applications. A large number of papers dealing with refinements, generalizations and
applications of inequalities (1) and (2) and their series analogues in different ares of
mathematics have appeared (see e.g. [2-30] and the references therein).

Among various refinements of (1), Hu in [13] established the following interesting
theorems.
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1 1
Theorem B. Let p > g > 0, 5 + q =1leta,b,207%, ah < oo, >oa bl < oo, and let

1-e,te, =20, X,|e, <. Then
1_1 R
() (55
1

()59 (2 (e[|

The integral form is as follows:
Theorem C. Let E be a measurable set, let fix) and g(x) be nonnegative measurable
Sfunctions with [gff(x)dx < o, [pg?(x)dx < oo, and let e(x) be a measurable function with

1 1
1-e(x)+e(y) 2 0. If p 2 q > 0, p + q =1, then
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The purpose of this work is to give extensions of inequalities (3) and (4) and estab-

(4)

lish their corresponding reversed versions. Moreover, the obtained results will be
applied to improve Hao Z-C inequality [31] and Beckenbach-type inequality that is due
to Wang [32]. The rest of this paper is organized as follows. In Section 2, we present
extensions of (3) and (4) and establish their corresponding reversed versions. In Sec-
tion 3, we apply the obtained results to improve Hao Z-C inequality and Beckenbach-
type inequality that is due to Wang. Consequently, we obtain the refinement of arith-
metic-geometric mean inequality. Finally, a brief summary is given in Section 4.

2. Extension of Hu Ke's Inequality
We begin this section with two lemmas, which will be used in the sequel.

1
Lemma 2.1. (eg. [16], p. 12). Let Ay; >0 (= 1,2, ., m, k= 1,2, ., n), 20 T LIf
)
M >0,4 <0 =23, .., m),then
1
n

> [T =TT( o) ®

k=1 j=1 j=1 N k=1
Lemma 2.2. [9]Ifx > -1, 0 > 1 or a < 0, then
(1+x)*>1+ax (6)

The inequality is reversed for 0 < a. < 1.
Next, we give an extension of Hu Ke’s inequality, as follows.
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Theorem 2.3. Let A,; > 0, Y, A <00 (f = 1,2, oy k), Ay 2 Dy 2 0 2 I > 0,

1
ZJI?:I T 1, and let 1-e, + e,, 2 0, ¥, |e,| <. If k is even, then
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k
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If k is odd, then
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The integral form is as follows:

1
Theorem 2.4. Let Ly = hy = - > Ay > 0, Z]k:l 5T 1, let E be a measurable set, F(x)
j

be nonnegative measurable functions with [, F;\’ (x)dx < oo, and let e(x) be a measur-

able function with 1-e(x) + e(y) = 0. If k is even, then
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k
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If k is odd, then

k—1
1 1 1

‘E/.fl[Fj(x)dx< (E/F,z’((x)dx) M fl[ {(E/ P 1(x)dx) Mj1 Agj

><|:</ Mfl(x)dx/ M’(x)dx)
E E
i )\.2] 2]
( E/ L (We(x)ds / (x)dx
1

a1 5 2%
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Proof. We need to prove only Theorem 2.3. The proof of Theorem 2.4 is similar. A

(10)

simple calculation gives

2 (1) £ ([T -eoeo

() ([1) - T ([12) (1)
X[

(S11m)

n j=1

(11)

Case (I). When & is even, by the inequality (2), we have

2 ([ 2 ([Tt
1
Anj) ZﬁAmi(l — e+ ey) N
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. 1 1, 1 1 ,1 1, 1 1 11, 1 1
— — . — =1
Consequently, according to (/\1 M)+ Nt ()\3 /\4) Tt <MH Ak) A TRITRE by

using the inequality (2) on the right side of (12), we observe that
k k
) (l_[An]) )3 (nAmi)(l Centen)
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Combining inequalities (11) and (13) leads to inequality (7) immediately.

Case (II). When k is odd, by the same method as in the above case (I), we have the
inequality (8). The proof of Theorem 2.3 is complete. ©

To illustrate the significance of the introduction of the sequence (e,)%2;, let us sketch

an example as follows.
Example 2.5. Let }; = 21\],j =12, ., 2N, n=1,2, .., 2N, N =2 2, let
1ifj=1,n=1,2,...,2N
Apy=11 ifn=j ,andleten={
0 otherwise

0 if n even

1 ifnodd’ Then from the generalized
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Holder inequality (2), we obtain However, from Theorem 2.3, we obtain

0 < (2N)2N'
0<0.
Corollary 2.6. Let A, A, e, be as in Theorem 2.3, and let )", Ai} # 0. Then, the fol-
lowing inequality holds:
1
k
S Ay < [H(ZAM)M}
n j=1 j= 1 n

(14)
i o

k
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if k even
where p(k) = I 2 1 .
if k odd
Corollary 2.7. Let Fj(x), A, e(x) be as in Theorem 2.4, and let fE F].Aj (x)dx # 0. Then,
the following inequality holds:
1

/ﬁFj(x)dxg [ﬁ (/F;\j(x)dx> %}
E =1 =

=1 E

ipm[ (fE S@e()dr ”‘x)e(x)dx)z]}
X 1-— N ,
o 203\ [ By (x)dx [ By (x)dx

(15)

—

if k even
where p(k) =

L ifkodd

Proof. We need to prove only Corollary 2.6. The proof of Corollary 2.7 is similar.
From inequalities (7) and (8), we obtain

DT [H(ZAM)%}

=1
" , (16)
o(k) P2
x{ I1 [1 - (Z Aoy ZnAn(zi)e">2] 23y }
pes haj ‘
j=1 Z An(}2] Zn An(]Zj)
Furthermore, performing some simple computations, we have
Xz )»2
Zn n(]2] 1) Zn n(12])
)»21 )»2] <L (17)

Zn n(2j—1) Zn n(2j)

Consequently, from Lemma 2.2 and the inequalities (16) and (17), we have the
desired inequality (14). The proof of Corollary 2.6 is complete. &

It is clear that inequalities (7), (14) and (16) are sharper than the inequality (2).

Now, we present the following reversed versions of inequalities (7), (8), (9) and (10).
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1
Theorem 2.8. Let A,; >0, (r=1,2, ., n,j = 1,2, .., m), Z]"il N = 1, and let 1-e, + e

20(=1,2.,n).IfA1>0,4, <0 (=23, .., m), then
n o m n 1 >, m n n 2
S (S RS0
r=1 j=1 r=1 j=2 r=1 r=1

1 (18)

KZA”‘Z’)(ZZ:AZD - (gAf;)(gAg@)]z}z%

The integral form is as follows:
Theorem 2.9. Let F‘(x) be nonnegative integrable functions on |a, b] such that

f F '(x)dxexist, let 1-e(x) + e(y) = O for all x, y € |[a, b], and f: e(x)dx < oo, and let

o !

]I)Lj=1.Ifﬂtl>O,7»j<0(/'=2,3,...,m),then
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Proof. We need to prove only Theorem 2.8. The proof of Theorem 2.9 is similar. By
the inequality (5), we have
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Consequently, according to
1 m 1 1 1 1 1 1 1
(0 =20 )+ o+ et R S
A1 ) Aj Ay A3 Am A2 A3 Am
(5) on the right side of (20), we observe that

$([1a) £ (1o -eoo
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=1, by using the inequality
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Combining inequalities (11) and (21) leads to inequality (18) immediately. The proof
of Theorem 2.8 is complete. O

Corollary 2.10. Let A,, A, e, be as in Theorem 2.8, and let Y ;_, A:‘jj # 0. Then

n m
2T
r=1 j=1
1 (22)
m n m n A Z" A)Lje 2
> |:l_[( AAJ>)\]j|{l_[|: _ 1 <Zr=1ArleT_ r=1 r) ]}
= 1j ) A :
j=1 S r=1 j=2 25\ YA PR Arj]
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Corollary 2.11. Let Fj(x), A, e(x) be as in Theorem 2.9, and let fab F;\ '(x)dx # 0. Then
b Lb 1
/ Fj(x)dx > []‘[ ( / F].*f(x)dx) %}
a =1 j=1 a

m (N @edy [ (x)e(x)dx 2 }
{H[l 2)‘1( fabF?l(x)dx fabP;\j(x)dx )] ‘

(23)

j=2

Proof. Making similar arguments as in the proof of Corollary 2.6, we have the desired
inequalities (22) and (23). O

It is clear that inequalities (18) and (22) are sharper than the generalized Holder
inequality (5).

Now, we give here some direct consequences from Theorem 2.8 and Theorem 2.9.
Putting m = 2 in (18) and (19), respectively, we obtain the following corollaries.

Corollary 2.12. Let A,1, A2, A1, Ao, e, be as in Theorem 2.8. Then, the following
reversed version of Hu Ke’s inequality (3) holds:

1 1

n n — n n 2
Faones () 2[(S4)(24)
r=1 r=1 r=1 r=1

24
1 )

() () (B S

Corollary 2.13. Let Fy(x), Fx(x), A1, Ay, e(x) be as in Theorem 2.9. Then, the following
reversed version of Hu Ke’s inequality (4) holds:

b

/ F1(x)F2(x)dx

a

11 b

> (/bFi‘l(x)dx) RREERN [(/Fﬁl(x)dx/b1D;2(x)(1x>2

a a a

b b

_( / F}' (x)e(x)dx / Fy? (x)dx

a

(25)

b b 1

- / FY1 (x)dx / F;Z(x)e(x)dx>2:| 22

a a
Example 2.14. Putting e(x) = ; cos néb — %) in (23), we obtain
—a

b m m b 1
Fi(x)dx > [ F(x)dx %}
[ e[ T1([ e
m 1 fab F}'(x) cos néb_—ax) dx [ ab F;\ ’(x) cos néb_—ax) dxy 2
X 1— —
[1_[[ 8%( [P (x)dx [} F (x)dx ) ”

Jj=2 a
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1
where &y > 0,4, <0 (j =2, 3, .., m), Z]'ZI s = 1
j

3. Applications

In this section, we show some applications of our new inequalities. Firstly, we provide
an application of the obtained results to improve Hao Z-C inequality, which is related
to the generalized arithmetic-geometric mean inequality with weights. The generalized

arithmetic-geometric mean inequality (e.g. [9]) states that if @; > 0,4, > 0(j = 1, 2, ...,

1
k), p > 0 and Z}il LS 1, then
j

Ha?»i - Z 4 (27)

The classical arithmetic-geometric mean inequality is one of the most important
inequalities in analysis. This classical inequality has been widely studied by many
authors, and it has motivated a large number of research papers involving different
proofs, various generalizations and improvements (see e.g. [1,9,12,19,33] and references
therein). In the year 1990, Hao Z-C in [31] established the following interesting
inequality

1 1 1
" _

Ok —p—1 koo
[ < fo [[Terar] "as] 7 <32 @
o Ut j

j=1

1
where a; > 0, 4; > 0(j = 1, 2, ..., k), p > 0 and Z]k:l 'V 1. The above Hao Z-C
j

inequality is refined by using Corollary 2.7 as follows:

1
Theorem 3.1 Let a; > 0 = 1,2, ., k), p > 0, let Ay 2 Ay 2 = = A > 0, Yy =1
j
and let 1-e(x) + e(y) = 0, [;° e(x)dx < co. Then
1 1
K k (k) -
A A 1
[1e7 = (H“j ]> x {H (1 - 2A-R2(x’e;aj’p))}
j=1 j=1 j=1 ! (29)
Xk ! - ! k
Y p 4
N
< p/[l_[(x+a]) :| dx 52/\],
0 j=1 j=1
if k even
where p(k) = | 4, 2 1 ,
' ifkodd

1o (x + agj—1) P e(x)dx B 1o (x + aj) P e(x)dx

R €, dj, = 00 00
(xe:a5.p) Jo (x+az—1)7P~1dx Jo (x+ag)™P1dx



Tian Journal of Inequalities and Applications 2011, 2011:77
http://www.journalofinequalitiesandapplications.com/content/2011/1/77

Proof. For x > 0, with a substitution a; — x + 4; in (27), we have

‘ X +aj a;
0<||(x+aj)A1§ E A‘]=x+E ;. (30)
; j oM

Now, integrating both sides of (30) from 0 to o, we observe that

1
Tk NPl - LI 1{Fa\"
() e Jlg2] ") (52) o
0 - 0 -

Jj=1

1

On the other hand, applying the inequality (15), we obtain
—p-1 vk
(x +a) } dx = /]"[ [(x+a) ™ ']% dx
- 0 j=1
1

/[
ST ) R

p
ko= (k)
1 Aj _ 1 5 .
) | |aj ) X |:| | (1 2)sz'R (x,e,a],p)):|.

j=1

Combining inequalities (32) and (31) yields inequality (29) immediately. The proof of
Theorem 3.1 is complete. O

From Theorem 3.1, we have the following Corollary.

Corollary 3.2. With notation as in Theorem 3.1, we have

1 1
k p(k) k

Aj 1 ) p aj (33)
14" < [H(l_ anz(x,e,aj,p))] (ij).
j=1 j=2 j=1

It is clear that inequality (33) is sharper than the inequality (27).

Now, we give a sharpness of Beckenbach-type inequality from Corollary 2.10. The
famous Beckenbach inequality [8] has been generalized and extended in several direc-
tions; see, e.g., [16]. In 1983, Wang [32] established the following Beckenbach-type
inequality.

Theorem D. Let f(x), g(x) be positive integrable functions defined on [0, T), and let

1 1
) + q = 1 If O<p < 1, then, for any positive numbers a, b, c, the inequality
1 1
L 1P (x)dx ) P T fr(x)dx) P
(a +c [y WP (x) a+cfy fP(x) (34)
>

b+cfy h(x)g(x)dx — b+cf) f(x)g(x)dx

q
holds, where h(x) = (ag(x) )P The sign of the inequality in (34) is reversed if p > 1.
b
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Theorem 3.3. Let flx), g(x), e(x) be integrable functions defined on [0, T, let fix), g(x)
1 1
>0,1-e(x) + el =0forall x,ye [0, 7], andletp + q =1 If0 <p < 1, then, for any

positive numbers a, b, c, the inequality

1 1
(a vefl hp(x)dx) p (a + chTfP(x)dx) p
b+cfy h(x)g(x)dx — b+cf) f(x)g(x)dx 35)
x[l_ 1( o fP@dr of) gi()de )}
2q a+cf0TfP(x)dx 4
a pbfl+cf0Tgfl(x)dx

q
holds, where h(x) = (ﬂglgx))p.

Proof. Performing some simple computations, we have

1
1

T ho(x)dx) P q T 3
(a + Cfg (x) x) _ <a Pyi 4 c/gq(x)dx> q (36)
b+c [y h(x)g(x)dx J

On the other hand, putting e; = 0, e; = 1, m = 2 in (22), from Corollary 2.10 we
obtain

T 1 7

T 1
b+ c/f(x)g(x)dx >b+ c(/f”(x)dx) p (/gq(x)dx) q
0

0 0
1 1 T 1 g

—aPa PY+(c [ fP)dx)? (¢ [ ¢i(x)dx) 9
aP(ba P) (c O/ f (x)dx) (c O/ g (x)dx)
T 1 T 1 37)

q
> <a+c/fﬂ(x)dx>P (a pb“+60/g"(x)dx>q

0
1 chTff’(x)dx B chqu(x)dx 2
* |:1 2q <a+cf0TfP(x)dx 4 ) :|I
a Pvi+ chqu(x)dx

that is

1

4 T b (avc T e )P

(a pbq”of gq(x)dx) "= (bf f(x)g(x)zx
y [1 1( ¢ fo f7(x)dx ¢ fy 87(x)dx )]

2 a+cf0TfP(x)dx_ M
a pb4+cf0Tg‘7(x)dx

(38)
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Combining inequalities (36) and (38) yields inequality (35). The proof of Theorem
3.3 is complete. O

4. Conclusions

The classical Holder’s inequality plays a very important role in both theory and appli-
cations. In this paper, we have presented an extension of Hu Ke’s inequality, which is a
sharp Holder’s inequality, and established their corresponding reversed versions. More-
over, we have improved Hao Z-C inequality and Beckenbach-type inequality by using
the obtained results. Finally, we have obtained the refinement of arithmetic-geometric
mean inequality. We think that our results will be useful for those areas in which
inequalities (2) and (5) play a role. In the future research, we will continue to explore
other applications of the obtained inequalities.
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