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Abstract

We establish the Poincaré-type inequalities for the composition of the Laplace-
Beltrami operator and the Green’s operator applied to the solutions of the non-
homogeneous A-harmonic equation in the John domain. We also obtain some
estimates for the integrals of the composite operator with a singular density.
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1 Introduction
The purpose of the article is to develop the Poincaré-type inequalities for the composi-

tion of the Laplace-Beltrami operator Δ = dd* + d*d and Green’s operator G over the

δ-John domain. Both operators play an important role in many fields, including partial

differential equations, harmonic analysis, quasiconformal mappings and physics [1-6].

We first give a general estimate of the composite operator Δ ○ G. Then, we consider

the composite operator with a singular factor. The consideration was motivated from

physics. For instance, when calculating an electric field, we will deal with the integral

E(r) = 1
4πε0

∫
D ρ(x) r−x

‖r−x‖3 dx, where r(x) is a charge density and x is the integral vari-

able. It is singular if r Î D. Obviously, the singular integrals are more interesting to us

because of their wide applications in different fields of mathematics and physics.

In this article, we assume that M is a bounded, convex domain and B is a ball in ℝn,

n ≥ 2. We use sB to denote the ball with the same center as B and with diam (sB) =
sdiam(B), s > 0. We do not distinguish the balls from cubes in this article. We use |E|

to denote the Lebesgue measure of a set E ⊂ ℝn. We call ω a weight if ω ∈ L1loc(R
n)

and ω > 0 a.e. Differential forms are extensions of functions in ℝn. For example, the

function u(x1, x2,..., xn) is called a 0-form. Moreover, if u(x1, x2,..., xn) is differentiable,

then it is called a differential 0-form. The 1-form u(x) in ℝn can be written as

u(x) =
∑n

i=1 ui(x1, x2, . . . , xn)dxi. If the coefficient functions ui(x1, x2,..., xn), i = 1, 2,...,

n, are differentiable, then u(x) is called a differential l-form. Similarly, a differential k-

form u(x) is generated by {dxi1 ∧ dxi2 ∧ · · · ∧ dxik}, k = 1, 2,..., n, that is,

u(x) =
∑

I uI(x)dxI =
∑

ui1i2...ik(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxik, where I = (i1, i2,..., ik), 1 ≤ i1
<i2 < ... <ik ≤ n. Let ∧l = ∧l(ℝn) be the set of all l-forms in ℝn, D’(M, ∧l) be the space

of all differential l-forms on M and Lp(M, ∧l) be the l-forms u(x) =
∑

I uI(x)dxI on M

satisfying
∫
M |uI|p < ∞ for all ordered l-tuples I, l = 1, 2,..., n. We denote the exterior
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derivative by d : D’(M, ∧l) ® D’(M, ∧l+1) for l = 0, 1,..., n - 1, and define the Hodge

star operator * : ∧k ® ∧n-k as follows, If

u = ui1i2 ...ik(x1, x2, . . . , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik = uIdxI, i1 <i2 < ... <ik, is a differential

k-form, then ∗u = ∗(ui1 i2...ikdxi1 ∧ dxi2 ∧ · · · ∧ dxik) = (−1)
∑

(I)uIdxJ, where I = (i1, i2, ...

ik), J = {1, 2,..., n} - I, and
∑

(I) = k(k+1)
2 +

∑k
i=1 ij. The Hodge codifferential operator d*

: D’(M, ∧l+1) ® D’(M, ∧l) is given by d* = (-1)nl+1 * d* on D’(M, ∧l+1), l = 0, 1,..., n - 1.

and the Laplace-Beltrami operator Δ is defined by Δ = dd* + d* d. We write

‖ u‖s,M = (
∫
M |u|s)1/s and ‖ u‖s,M,ω = (

∫
M |u|sω(x)dx)1/s, where ω(x) is a weight. Let ∧lM

be the l-th exterior power of the cotangent bundle, C∞(∧lM) be the space of smooth l-

forms on M and W(∧lM) = {u ∈ L1loc(∧lM) : u has generalized gradient}. The harmo-

nic l-fields are defined by

H(∧lM) = {u ∈ W(∧lM) : du = d∗u = 0, u ∈ Lp for some 1 < p < ∞}. The orthogonal

complement of H in L1 is defined by H⊥ = {u ∈ L1 :< u, h >= 0 for all h ∈ H}. Then,
the Green’s operator G is defined as G : C∞(∧lM) → H⊥ ∩ C∞(∧lM) by assigning G

(u) be the unique element of H⊥ ∩ C∞(∧lM) satisfying Poisson’s equation ΔG(u) = u -

H(u), where H is the harmonic projection operator that maps C∞(∧lM) onto H so that

H(u) is the harmonic part of u [[7,8], for more properties of these operators]. The dif-

ferential forms can be used to describe various systems of PDEs and to express differ-

ent geometric structures on manifolds. For instance, some kinds of differential forms

are often utilized in studying deformations of elastic bodies, the related extrema for

variational integrals, and certain geometric invariance [9,10].

We are particularly interested in a class of differential forms satisfying the well

known non-homogeneous A-harmonic equation

d∗A(x, du) = B(x, du), (1:1)

where A : M × ∧l(ℝn) ® ∧l(ℝn) and B : M × ∧l(ℝn) ® ∧l-1(ℝn) satisfy the conditions:

|A(x, ξ)| ≤ a|ξ |p−1, A(x, ξ) · ξ ≥ |ξ |p, |B(x, ξ)| ≤ b|ξ |p−1 (1:2)

for almost every x Î M and all ξ Î ∧l(ℝn). Here a > 0 and b > 0 are constants and 1

<p < ∞ is a fixed exponent associated with the Equation (1.1). If the operator B = 0,

Equation (1.1) becomes d* A(x, du) = 0, which is called the homogeneous A-harmonic

equation. A solution to (1.1) is an element of the Sobolev space W1,p
loc (M,∧l−1) such

that
∫
M A(x, du) · dϕ + B(x, du) · ϕ = 0 for all ϕ ∈ W1,p

loc (M,∧l−1) with compact support.

Let A : M × ∧l(ℝn) ® ∧l(ℝn) be defined by A(x, ξ) = ξ|ξ|p-2 with p > 1. Then, A satis-

fies the required conditions and d* A(x, du) = 0 becomes the p-harmonic equation

d∗(du|du|p−2) = 0 (1:3)

for differential forms. If u is a function (0-form), the equation (1.3) reduces to the

usual p-harmonic equation div(∇u|∇u|p-2) = 0 for functions. Some results have been

obtained in recent years about different versions of the A-harmonic equation [8,11-16].

2 Main results and proofs
We first introduce the following definition and lemmas that will be used in this article.

Definition 2.1 A proper subdomain Ω ⊂ ℝn is called a δ-John domain, δ > 0, if there

exists a point x0 Î Ω which can be joined with any other point x Î Ω by a continuous

Fang and Ding Journal of Inequalities and Applications 2011, 2011:74
http://www.journalofinequalitiesandapplications.com/content/2011/1/74

Page 2 of 12



curve g ⊂ Ω so that

d(ξ , ∂	) ≥ δ|x − ξ |

for each ξ Î g. Here d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω.

Lemma 2.1 [17]Let j be a strictly increasing convex function on [0, ∞) with j(0) = 0,

and D be a domain in ℝn. Assume that u is a function in D such that j(|u|) Î L1(D,

μ) and μ({x Î D : |u - c| > 0}) > 0 for any constant c, where μ is a Radon measure

defined by dμ(x) = ω(x)dx for a weight ω(x). Then, we have∫
D

φ(
a
2

|u − uD,μ|)dμ ≤
∫
D

φ(a|u|)dμ

for any positive constant a, where uD,μ =
1

μ(D)

∫
D udμ.

Lemma 2.2 [3] Let u Î C∞ (Λl M) and l = 1, 2,..., n, 1 <s < ∞. Then, there exists a

positive constant C, independent of u, such that

‖ dd∗G(u) ‖s,M+ ‖ d∗dG(u) ‖s,M+ ‖ dG(u) ‖s,M+ ‖ d∗G(u) ‖s,M+ ‖ G(u) ‖s,M ≤ C ‖ u‖s,M

Lemma 2.3 [18]Each Ω has a modified Whitney cover of cubes V = {Qi}such that

∪iQi = Ω,
∑

Qi∈V χ√
5
4Qi

≤ Nχ	and some N >1, and if Qi ∩ Qj ≠ ∅, then there exists a

cube R (this cube need not be a member of V) in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR.

Moreover, if Ω is δ-John, then there is a distinguished cube Q0 ∈ Vwhich can be con-

nected with every cube Q ∈ Vby a chain of cubes Q0, Q1,..., Qk = Q from Vand such

that Q ⊂ rQi, i = 0, 1, 2,..., k, for some r = r (n, δ).

Lemma 2.4 Let u ∈ Lsloc(M,
l), l = 1, 2,..., n, 1 <s < ∞, G be the Green’s operator and

Δ be the Laplace-Beltrami operator. Then, there exists a constant C, independent of u,

such that

‖ �G(u) ‖s,B ≤ C ‖ u‖s,B (2:1)

for all balls B ⊂ M.

Proof By using Lemma 2.2, we have

‖ �G(u) ‖s,B =‖ (dd∗ + d∗d)G(u) ‖s,B ≤‖ dd∗G(u) ‖s,B+ ‖ d∗dG(u) ‖s,B ≤ C ‖ u‖s,B. (2:2)

This ends the proof of Lemma 2.4. □
Lemma 2.5 Let u ∈ Lsloc(M,
l), l = 1, 2,..., n, 1 < s <∞, be a solution of the non-

homogeneous A-harmonic equation in a bound and convex domain M, G be the Green’s

operator and Δ be the Laplace-Beltrami operator. Then, there exists a constant C inde-

pendent of u, such that

⎛
⎝∫

B

|�G(u)|s 1
d(x, ∂M)α

dx

⎞
⎠

1/s

≤ C

⎛
⎝∫

σB

|u|s 1
|x − xB|λ dx

⎞
⎠

1/s

(2:3)

for all balls B with sB ⊂ M and diam(B) ≥ d0 >0, where d0 is a constant, s >1, and

any real number a and l with a > l ≥ 0. Here xB is the center of the ball B.

Proof Let ε Î (0, 1) be small enough such that εn < a - l and B ⊂ M be any ball

with center xB and radius rB. Also, let δ >0 be small enough, Bδ = {x Î B : |x - xB| ≤
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δ} and Dδ = B \Bδ. Choose t = s/(1 - ε), then, t > s. Write b = t/(t - s). Using the

Hölder inequality and Lemma 2.4, we have

⎛
⎝∫
Dδ

|�G(u)|s 1
d(x, ∂M)α

dx

⎞
⎠

1/s

=

⎛
⎝∫
Dδ

(
|�G(u)| 1

d(x, ∂M)α/s

)s

dx

⎞
⎠

1/s

≤‖ �G(u)‖t,Dδ

⎛
⎝∫
Dδ

(
1

d(x, ∂M)

)tα/(t−s)

dx

⎞
⎠

(t−s)/st

=‖ �G(u)‖t,Dδ

⎛
⎝∫
Dδ

(
1

d(x, ∂M)

)αβ

dx

⎞
⎠

1/βs

≤‖ �G(u)‖t,B
⎛
⎝∫
Dδ

(
1

d(x, ∂M)

)αβ

dx

⎞
⎠

1/βs

≤ C1 ‖ u‖t,B
∥∥∥∥ 1
d(x, ∂M)α

∥∥∥∥
1/s

β,Dδ

.

(2:4)

We may assume that xB = 0. Otherwise, we can move the center to the origin by a

simple transformation. Then, 1
d(x,∂M) ≤ 1

rB−|x| for any x Î B, we have

⎛
⎝∫
Dδ

(
1

d(x, ∂M)

)αβ

dx

⎞
⎠

1/βs

≤
⎛
⎝∫
Dδ

1
|x − xB|αβ

dx

⎞
⎠

1/βs

. (2:5)

Therefore, for any x Î B, |x - xB| ≥ |x|- |xB| = |x|. By using the polar coordinate

substitution, we have

⎛
⎝∫
Dδ

1
|x − xB|αβ

dx

⎞
⎠

1/βs

≤
⎛
⎝C2

rB∫
δ

ρ−αβρn−1dρ

⎞
⎠

1/βs

=

∣∣∣∣ C2

n − αβ
(rBn−αβ − δn−αβ)

∣∣∣∣
1/βs

≤ C3|rBn−αβ − δn−αβ |1/βs.

(2:6)

Choose m = nst/(ns + at - lt), then 0 < m < s. By the reverse Hölder inequality, we

find that

‖ u‖t,B ≤ C4|B|
m−t
mt ‖ u‖m,σB, (2:7)

where s >1 is a constant. By the Hölder inequality again, we obtain

‖ u‖m,σB =

⎛
⎝∫

σB

(|u||x − xB|−λ/s|x − xB|λ/s)mdx
⎞
⎠

1/m

≤
⎛
⎝∫

σB

(|u||x − xB|−λ/s)
s
dx

⎞
⎠

1/s⎛
⎝∫

σB

(|x − xB|λ/s)
ms
s−m dx

⎞
⎠

s−m
ms

≤
⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s

C5(σ rB)λ/s+n(s−m)/ms

≤ C6

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s

(rB)λ/s+n(s−m)/ms.

(2:8)

Fang and Ding Journal of Inequalities and Applications 2011, 2011:74
http://www.journalofinequalitiesandapplications.com/content/2011/1/74

Page 4 of 12



By a simple calculation, we find that n - ab + lb + nb(s - m)/m = 0. Substituting

(2.6)-(2.8) in (2.4), we have

⎛
⎝∫
Dδ

|�G(u)|s 1
d(x, ∂M)α

dx

⎞
⎠

1/s

≤ C7|B|
m−t
mt

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s

(rB)
λ
s +

n(s−m)
ms |rn−αβ

B − δn−αβ |1/βs

= C7|B|
m−t
mt

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s[
rB

(λ
s +

n(s−m)
ms )βs

∣∣∣rn−αβ

B − δn−αβ
∣∣∣]1/βs

= C7|B|
m−t
mt

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s∣∣∣∣∣C8r
n−αβ+λβ+

nβ(s−m)
m

B − δn−αβ r
λβ+

nβ(s−m)
m

B

∣∣∣∣∣
1/βs

≤ C7|B|
m−t
mt

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s[
C8r

n−αβ+λβ+
nβ(s−m)

m
B − δn−αβδ

λβ+
nβ(s−m)

m

]1/βs

≤ C7|B|
m−t
mt

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s[
C8r

n−αβ+λβ+
nβ(s−m)

m
B + δ

n−αβ+λβ+
nβ(s−m)

m

]1/βs

≤ C9|B|
λ−α
ns

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s

≤ C10

⎛
⎝∫

σB

|u|s|x − xB|−λdx

⎞
⎠

1/s

,

(2:9)

thus is,

⎛
⎝∫
Dδ

|�G(u)|s 1
d(x, ∂M)α

dx

⎞
⎠

1/s

≤ C10

⎛
⎝∫

σB

|u|s 1

|x − xB|λ
dx

⎞
⎠

1/s

. (2:10)

Notice that limδ→0

(∫
Dδ

|�G(u)|s 1
d(x,∂M)α dx

)1/s

=
(∫
B

|�G(u)|s 1
d(x,∂M)α dx

)1/s

. letting δ

® 0 in (2.10), we obtain (2.3). we have completed the proof of Lemma 2.5. □
Theorem 2.6 Let u Î D’(Ω, Λl) be a solution of the A-harmonic equation (1.1), G be

the Green’s operator and Δ be the Laplace-Beltrami operator. Assume that s is a fixed

exponent associated with the non-homogeneous A-harmonic equation. Then, there exists

a constant C, independent of u, such that

⎛
⎝∫

	

|�G(u) − (�G(u))Q0
|s 1
d(x, ∂	)α

dx

⎞
⎠

1/s

≤ C

⎛
⎝∫

	

|u|sg(x)dx
⎞
⎠

1/s

(2:11)

for any bounded and convex δ-John domain Ω Î ℝn, where g(x) =
∑

i χQi
1

|x−xQi |λ,
xQiis the center of Qi with Ω = ∪iQi. Here a and l are constants with 0 ≤ l < a <n,

and the fixed cube Q0 Î Ω, the constant N > 1 and the cubes Qi Î Ω appeared in

Lemma 2.3, xQiis the center of Qi.
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Proof We use the notation appearing in Lemma 2.3. There is a modified Whitney

cover of cubes V = {Qi} for Ω such that Ω = ∪Qi, and
∑

Qi∈V χ√
5
4Qi

≤ Nχ	 for

some N > 1. For each Qi ∈ V, if diam(Qi) ≥ d0 (where d0 is the constant appearing

in Lemma 2.5), it is fine and we keep Qi in the collection V. Otherwise, if diam(Qi)

<d0, we replace Qi by a new cube Q∗
i with the same center as Qi and

diam(Q∗
i ) = d0. Thus, we obtain a modified collection V∗ consisting of all cubes Q∗

i ,

and V∗ has the same properties as V. Moreover, diam (Q∗
i ) ≥ d0 for any Q∗

i ∈ V∗.
Let 	∗ = ∪Q∗

i . Also, we may extend the definition of u to Ω* such that u(x) = 0 if

x Î Ω* - Ω. Hence, without loss of generality, we assume that diam(Qi) ≥ d0 for

any Qi ∈ V. Thus, |Qi| ≥ Kdn0 for any Qi ∈ V and some constant K > 0. Since Ω =

∪Qi, for any x Î Ω, it follows that x Î Qi for some i. Applying Lemma 2.5 to Qi,

we have

⎛
⎜⎝∫
Qi

|�G(u)|s 1
d(x, ∂	)α

dx

⎞
⎟⎠

1/s

≤ C1

⎛
⎜⎝∫

σQi

|u|s 1

d(x, xQi)
λ
dx

⎞
⎟⎠

1/s

, (2:12)

where s >1 is a constant. Let μ(x) and μ1(x) be the Radon measure defined by

dμ = 1
d(x,∂	)α dx and dμ1(x) = g(x)dx, respectively. Then,

μ(Q) =
∫
Q

1
d(x, ∂	)α

dx ≥
∫
Q

1
(diam(	))α

dx = P|Q|, (2:13)

where P is a positive constant. Then, by the elementary in equality (a + b)s ≤ 2s(|a|s

+ |b|s), s ≥ 0, we have

⎛
⎝∫

	

|�G(u) − (�G(u))Q0
|s 1
d(x, ∂	)α

dx

⎞
⎠

1/s

=

⎛
⎜⎝∫

∪Qi

|�G(u) − (�G(u))Q0
|sdμ

⎞
⎟⎠

1/s

≤

⎛
⎜⎝ ∑

Qi∈V

⎛
⎜⎝2s

∫
Qi

|�G(u) − (�G(u))Qi
|sdμ + 2s

∫
Qi

|(�G(u))Qi
− (�G(u))Q0

|sdμ

⎞
⎟⎠

⎞
⎟⎠

1/s

≤ C2

⎛
⎜⎝

⎛
⎜⎝ ∑

Qi∈V

∫
Qi

|�G(u) − (�G(u))Qi
|sdμ)

⎞
⎟⎠

1/s

+

⎛
⎜⎝ ∑

Qi∈V

∫
Qi

|(�G(u))Qi
− (�G(u))Q0

|sdμ

⎞
⎟⎠

1/s
⎞
⎟⎟⎠

(2:14)

for a fixed Q0 ⊂ Ω. The first sum in (2.14) can be estimated by using Lemma 2.1

with � = ts, a = 2, and Lemma 2.5
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∑
Qi∈V

∫
Qi

|�G(u) − (�G(u))Qi
|sdμ ≤

∑
Qi∈V

∫
Qi

2s|�G(u)|sdμ

≤ C3

∑
Qi∈V

∫
σQi

|u|sdμ1

≤ C4

∑
Qi∈V

∫
	

(|u|sdμ1)χσQi

≤ C5

∫
	

|u|sdμ1

= C5

∫
	

|u|sg(x)dx.

(2:15)

To estimate the second sum in (2.14), we need to use the property of δ-John domain.

Fix a cube Q ∈ V and let Q0, Q1,..., Qk = Q be the chain in Lemma 2.3.

|(�G(u))Q − (�G(u))Q0 | ≤
k−1∑
i=0

|(�G(u)Qi
− (�G(u))Qi+1

|. (2:16)

The chain {Qi} also has property that, for each i, i = 0, 1,..., k - 1, with Qi∩Qi+1 ≠ ∅,

there exists a cube Di such that Di⊂ Qi∩Qi+1 and Qi∪Qi+1 ⊂ NDi, N >1.

max{|Qi|, |Qi+1|}
|Qi ∩ Qi+1| ≤ max{|Qi|, |Qi+1|}

|Di| ≤ C6.

For such Dj, j = 0, 1,..., k - 1, Let |D*| = min{|D0|, |D1|,..., |Dk - 1|} then

max{|Qi|, |Qi+1|}
|Qi ∩ Qi+1| ≤ max{|Qi|, |Qi+1|}

|D∗| ≤ C7. (2:17)

By (2.13), (2.17) and Lemma 2.5, we have

|(�G(u))Qi − (�G(u))Qi+1 |s =
1

μ(Qi ∩ Qi+1)

∫
Qi∩Qi+1

|(�G(u))Qi
− (�G(u))Qi+1

|s dx
d(x, ∂	)α

≤ C8

|Qi ∩ Qi+1|
∫

Qi∩Qi+1

|(�G(u))Qi
− (�G(u))Qi+1

|s dx
d(x, ∂	)α

≤ C8C7

max{|Qi|, |Qi+1|}
∫

Qi∩Qi+1

|(�G(u))Qi
− (�G(u))Qi+1

|sdμ

≤ C9

i+1∑
j=i

1
|Qj|

∫
Qj

|�G(u) − (�G(u))Qj
|sdμ

≤ C10

i+1∑
j=i

1
|Qj|

∫
σQj

|u|sdμ1

= C10

i+1∑
j=i

|Qj|−1
∫

σQj

|u|sdμ1.

(2:18)
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Since Q ⊂ NQj for j = i, i + 1, 0 ≤ i ≤ k - 1, from (2.18)

|(�G(u))Qi − (�G(u))Qi+1 |sχQ(x) ≤ C11

i+1∑
j=i

χNQj(x)|Qj|−1
∫

σQj

|u|sdμ1

≤ C12

i+1∑
j=i

χNQj(x)
1
dn0

∫
σQj

|u|sdμ1

≤ C13

i+1∑
j=i

χNQj(x)
∫

σQj

|u|sdμ1.

(2:19)

Using (a + b)1/s ≤ 21/s(|a|1/s + |b|1/s), (2.16) and (2.19), we obtain

|(�G(u))Q − (�G(u))Q0 |χQ(x) ≤ C14

∑
Di∈V

⎛
⎝∫

σDi

|u|sdμ1

⎞
⎠

1/s

· χNDi(x)

for every x Î ℝn. Then

∑
Q∈V

∫
Q

|(�G(u))Q − (�G(u))Q0
|sdμ ≤ C14

∫
Rn

|
∑
Di∈V

⎛
⎝∫

σDi

|u|sdμ1

⎞
⎠

1/s

χNDi(x)|sdμ.

Notice that∑
Di∈V

χNDi(x) ≤
∑
Di∈V

χσNDi(x) ≤ Nχ	(x).

Using elementary inequality |∑M
i=1 ti|s ≤ Ms−1 ∑M

i=1 |ti|s for s >1, we finally have

∑
Q∈V

∫
Q

|(�G(u))Q − (�G(u))Q0
|sdμ ≤ C15

∫
Rn

⎛
⎝ ∑

Di∈V

⎛
⎝∫

σDi

|u|sdμ1

⎞
⎠χNDi(x)

⎞
⎠dμ

= C15

∑
Di∈V

⎛
⎝∫

σDi

|u|sdμ1

⎞
⎠

≤ C16

∫
	

|u|sg(x)dx.

(2:20)

Substituting (2.15) and (2.20) in (2.14), we have completed the proof of Theorem 2.6.

Using Lemma 2.2, we obtain

‖ ∇(�G(u) ‖s,B =‖ d(�G(u)) ‖s,B
=‖ �G(du) ‖s,B
=‖ (dd∗ + d∗d)(G(du)) ‖s,B
≤‖ dd∗(G(du)) ‖s,B+ ‖ d∗d(G(du)) ‖s,B
≤ C1 ‖ du‖s,B + C2 ‖ du‖s,B
≤ C3 ‖ du‖s,B
≤ C4(diam(B))−1u‖s,σB
≤ C5 ‖ u‖s,σB,

(2:21)
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where s >1 is a constant. Using (2.21), we have the following Lemma 2.7 whose

proof is similar to the proof of Lemma 2.5. □
Lemma 2.7 Let u ∈ Lsloc(M,
l), l = 1, 2,..., n, 1 < s <∞, be a solution of the non-

homogeneous A-harmonic equation in a bounded and convex domain M, G be the

Green’s operator and Δ be the Laplace-Beltrami operator. Then, there exists a constant

C independent of u, such that

⎛
⎝∫

B

|∇(�G(u))|s 1
d(x, ∂M)α

dx

⎞
⎠

1/s

≤ C

⎛
⎜⎝∫

ρB

|u|s 1
|x − xB|λ dx

⎞
⎟⎠

1/s

(2:22)

for all balls B with rB ⊂ M and diam(B) ≥ d0 >0, where d0 is a constant, r >1, any

real number a and l with a > l ≥ 0. Here, xB is the center of the ball.

Notice that (2.22) can also be written as

‖ ∇(�G(u)) ‖s,B,ω1 ≤ C ‖ u‖s,ρB,ω2 . (2:22a)

Next, we prove the imbedding inequality with a singular factor in the John domain.

Theorem 2.8 Let u Î D’(Ω, Λl) be a solution of the A-harmonic equation (1.1), G be

the Green’s operator and Δ be the Laplace-Beltrami operator. Assume that s is a fixed

exponent associated with the non-homogeneous A-harmonic equation. Then, there exists

a constant C, independent of u, such that

‖ ∇(�G(u)) ‖s,	,ω1 ≤ C ‖ u‖s,	,ω2 , (2:23)

‖ �G(u) ‖W1,s(	),ω1 ≤ C ‖ u‖s,	,ω2 (2:24)

for any bounded and convex δ-John domain Ω Î ℝn. Here, the weights are defined by

ω2(x) =
∑

i χQi
1

|x−xQi |λand
ω2(x) =

∑
i χQi

1
|x−xQi |λ, respectively, a and l are constants

with 0 ≤ l < a.
Proof Applying the Covering Lemma 2.3 and Lemma 2.7, we have (2.23) immediately.

For inequality (2.24), using Lemma 2.5 and the Covering Lemma 2.3, we have

‖ �G(u) ‖s,	,ω1 ≤ C1 ‖ u‖s,	,ω2 . (2:25)

By the definition of the ‖ ·‖W1,s(	),ω1 norm, we know that

‖ �G(u) ‖W1,s(	),ω1 = diam (	)−1 ‖ �G(u) ‖s,	,ω1+ ‖ d(�G(u) ‖s,	,ω1 . (2:26)

Substituting (2.23) and (2.25) into (2.26) yields

‖ �G(u) ‖W1,s(	),ω1 ≤ C2 ‖ u‖s,	,ω2 .

We have completed the proof of the Theorem 2.8. □
Theorem 2.9 Let u Î D’(Ω, Λl) be a solution of the A-harmonic equation (1.1), G be

the Green’s operator and Δ be the Laplace-Beltrami operator. Assume that s is a fixed

exponent associated with the non-homogeneous A-harmonic equation. Then, there exists

a constant C, independent of u, such that

‖ �G(u) − (�G(u))Q0‖W1,s(	),ω1 ≤ C ‖ u‖s,	,ω2 (2:27)

Fang and Ding Journal of Inequalities and Applications 2011, 2011:74
http://www.journalofinequalitiesandapplications.com/content/2011/1/74

Page 9 of 12



for any bounded and convex δ-John domain Ω Î ℝn. Here the weights are defined by

ω2(x) =
∑

i χQi
1

|x−xQi |λand
ω2(x) =

∑
i χQi

1
|x−xQi |λ, a and l are constants with 0 ≤ l < a,

and the fixed cube Q0 ⊂ Ω and the constant N >1 appeared in Lemma 2.3.

Proof Since (�G(u))Q0 is a closed form, ∇((�G(u))Q0) = d((�G(u))Q0 ) = 0. Thus, by

using Theorem 2.6 and (2.23), we have

‖ �G(u) − (�G(u))Q0‖W1,s(	),ω1

= diam (	)−1 ‖ �G(u) − (�G(u))Q0‖s,	,ω1+ ‖ ∇(�G(u) − (�G(u))Q0 ) ‖s,	,ω1

= diam (	)−1 ‖ �G(u) − (�G(u))Q0‖s,	,ω1+ ‖ ∇(�G(u)) ‖s,	,ω1

≤ C1 ‖ u‖s,	,ω2 + C2 ‖ u‖s,	,ω2

≤ C3 ‖ u‖s,	,ω2 .

Thus, (2.27) holds. The proof of Theorem 2.9 has been completed. □
As applications of our main results, we consider the following example.

Example 1 Let B = 0, A(x, ξ) = ξ|ξ|p-2, p >1, and u be a function(0-form) in (1.1).

Then, the operator A satisfies the required conditions and the non-homogeneous A-

harmonic equation(1.1) reduces to the usual p-harmonic equation

div(∇u|∇u|p−2) = 0 (2:28)

which is equivalent to

(p − 2)
n∑

k=1

n∑
i=1

uxkuxiuxkxi + |∇u|2�u = 0. (2:29)

If we choose p = 2 in (2.28), we have Laplace equation Δu = 0 for functions. Hence,

the Equations (2.28), (2.29) and the Δu = 0 are the special cases of the non-homoge-

neous A-harmonic equation (1.1). Therefore, all results proved in Theorem 2.6, 2.8,

and 2.9 are still true for u that satisfies one of the above three equations.

Example 2 Let f : Ω ® ℝn, f = (f1,..., fn), be a mapping of the Sobolev class

W1,p
loc (	,Rn), 1 < p <∞, whose distributional differential Df = [∂fi/∂xj] : Ω ® GL(n) is a

locally integrable function in Ω with values in the space GL(n) of all n × n-matrices, i,

j = 1, 2,..., n. we use

J(x, f ) = detDf (x) =

∣∣∣∣∣∣∣∣∣

f 1x1 f
1
x2 f

1
x3 · · · f 1xn

f 2x1 f
2
x2 f

2
x3 · · · f 2xn

...
...

...
. . .

...
f nx1 f

n
x2 f

n
x3 · · · f nxn

∣∣∣∣∣∣∣∣∣
to denote the Jacobian determinant of f. A homeomorphism f : Ω ® ℝn of the Sobo-

lev class W1,n
loc (	,Rn) is said to be K-quasiconformal, 1 ≤ K <∞, if its differential matrix

Df(x) and the Jacobian determinant J(x, f) satisfy

|Df (x)|n ≤ KJ(x, f ), (2:30)

where |Df(x)| = max |Df(x)h| : |h| = 1 denotes the norm of the Jacobi matrix Df(x).

It is well known that if the differential matrix Df(x) = [∂fi / ∂xj], i, j = 1, 2,..., n, of a

homeomorphism f(x) = (f1, f2,..., fn) : Ω ® ℝn satisfies (2.30), then, each of the func-

tions
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u = f i(x), i = 1, 2, ..., n, or u = log |f (x)|, (2:31)

is a generalized solution of the quasilinear elliptic equation

divA(x,∇u) = 0, (2:32)

in Ω - f-1(0), where

A = (A1,A2, . . . ,An),A(x, ξ) =
∂

∂ξi

⎛
⎝ n∑

i,j=1

θi,j(x)ξiξj

⎞
⎠

n/2

and θi,j are some functions, which can be expressed in terms of the differential

matrix Df(x) and satisfy

C1(K)|ξ |2 ≤
n∑

i,j=1

θi,j(x)ξiξj ≤ C2(K)|ξ |2 (2:33)

for some constants C1(K), C2(K) >0. Choosing u is defined in (2.31) and applying

Theorems (2.6), (2.8) and (2.9) to u, respectively, we have the following theorems.

Theorem 3.0 Let u = fi(x) or u = log |f(x)| Î D’(Ω, Λl), i = 1, 2,..., n, be a solution of

the quasilinear elliptic equation (2.32), where f : Ω ® ℝn, f = (f1,..., fn) be a K-quasicon-

formal mapping of the Sobolev class W1,p
loc (	,Rn), 1 < p <∞, G be the Green’s operator

and Δ be the Laplace-Beltrami operator. Assume that s is a fixed exponent associated

with the non-homogeneous A-harmonic equation. Then, there exists a constant C, inde-

pendent of u, such that

⎛
⎝∫

	

|�G(u) − (�G(u))Q0
|s 1
d(x, ∂	)α

dx

⎞
⎠

1/s

≤ C

⎛
⎝∫

	

|u|sg(x)dx
⎞
⎠

1/s

(2:34)

for any bounded and convex δ-John domain Ω Î ℝn, where g(x) =
∑

i χQi
1

|x−xQi |λ,
xQiis

the center of Qi with Ω = ∪iQi. Here a and l are constants with 0 ≤ l < a <n, and the

fixed cube Q0 Î Ω, the constant N >1 and the cubes Qi Î Ω appeared in Lemma 2.3,
xQiis the center of Qi.

Theorem 3.1 Let u = fi(x) or u = log |f(x)| Î D’(Ω, Λl), i = 1, 2,..., n, be a solution of

the quasilinear elliptic equation (2.32), where f : Ω ® ℝn, f = (f1,..., fn) be a K-quasicon-

formal mapping of the Sobolev class W1,p
loc (	,Rn), 1 <p < ∞, G be the Green’s operator

and Δ be the Laplace-Beltrami operator. Assume that s is a fixed exponent associated

with the non-homogeneous A-harmonic equation. Then, there exists a constant C, inde-

pendent of u, such that

‖ ∇(�G(u)) ‖s,	,ω1 ≤ C ‖ u‖s,	,ω2 , (2:35)

‖ �G(u) ‖W1,s(	),ω1 ≤ C ‖ u‖s,	,ω2 (2:36)

for any bounded and convex δ-John domain Ω Î ℝn. Here, the weights are defined by

ω2(x) =
∑

i χQi
1

|x−xQi |λand
ω2(x) =

∑
i χQi

1
|x−xQi |λ, respectively, a and l are constants

with 0 ≤ l < a < n.
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Theorem 3.2 Let u = f i(x) or u = log |f(x)| Î D’(Ω, Λl), i = 1, 2,..., n, be a solution of

the quasilinear elliptic equation (2.32), where f : Ω ® ℝn, f = (f1,..., fn) be a K-quasicon-

formal mapping of the Sobolev class W1,p
loc (	,Rn), 1 < p <∞, G be the Green’s operator

and Δ be the Laplace-Beltrami operator. Assume that s is a fixed exponent associated

with the non-homogeneous A-harmonic equation. Then, there exists a constant C, inde-

pendent of u, such that

‖ �G(u) − (�G(u))Q0‖W1,s(	),ω1 ≤ C ‖ u‖s,	,ω2 (2:37)

for any bounded and convex δ-John domain Ω Î ℝn. Here, the weights are defined by

ω2(x) =
∑

i χQi
1

|x−xQi |λand
ω2(x) =

∑
i χQi

1
|x−xQi |λ, a and l are constants with 0 ≤ l < a

< n, and the fixed cube Q0 ⊂ Ω and the constant N >1 appeared in Lemma 2.3.

Our results can be applied to all differential forms or functions satisfying some ver-

sion of the A-harmonic equation, the usual p-harmonic equation or the Laplace equa-

tion [1, 9, 10, for more applications].
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