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1. Introduction and main results
The notations and concepts used in this paper can be found in [1-3]. In this paper, We

also use f(z) = a ⇒ g(z) = b to stand for g(z) = b when f(z) = a.

Let D be a domain in the complex plane C, F be a family of meromorphic functions

defined in D. F is said to be normal in D, in the sense of Montel, if every sequence

fn(z) ∈ F(n = 1, 2, . . .) has a subsequence fnk(z)(k = 1, 2, . . .) that converges spheri-

cally locally uniformly in D, to a meromorphic function or ∞(see [2,4,5]).

In 1998, Y. F. Wang and M. L. Fang [6] proved the following theorem.

Theorem A. Let F be a family of meromorphic functions in D, n, k Î N with n ≥ k

+ 2. If for every function f ∈ F , f has only zeros of order at least n and f(k) ≠ 1, then

F is normal in D.

In 2004, M. L. Fang and L. Zalcman [7] proved the following theorem.

Theorem B. Let F be a family of meromorphic functions in D, and n be a positive

integer. If for each pair of functions f and g in F , f and g share the value 0 and fn f’

and gn g’ share a non-zero value b in D, then F is normal in D.

In 2008, Q. C. Zhang [8] proved the following Theorems C and D, which generalized

the condition f(k) ≠ 1 in Theorem A to shared value when k = 1 and generalized Theo-

rem B when n ≥ 2, respectively.

Theorem C. Let F be a family of meromorphic functions in D satisfying that all of

zeros and poles of f ∈ F have multiplicities at least 3. If for each pair of functions f

and g in F , f’ and g’ share a non-zero value b in D, then F is normal in D.

Theorem D. Let F be a family of meromorphic functions in D, and n be a positive

integer. If n ≥ 2 and for each pair of functions f and g in F , fn f’ and gn g’ share a non-

zero value b in D, then F is normal in D.
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In 2009, Y. T. Li and Y. X. Gu [9] proved the following theorem with high order

derivatives.

Theorem E. Let F be a family of meromorphic functions defined in a domain D. Let

k, n ≥ k + 2 be positive integers and a ≠ 0 be a finite complex number. If (fn)(k) and

(gn)(k) share a in D for every pair of functions f , g ∈ F , then F is normal in D.

In this paper, we investigate the normal family of meromorphic functions with higher

order derivatives and obtain the following two theorems, which generalize Theorems

C, D and E.

Theorem 1.1. Suppose that d(≥ 0) is an integer, p(z) is an analytic function in D, and

the multiplicity of its all zeros is at most d. Let F be a family of holomorphic func-

tions in D; the multiplicity of all zeros of f ∈ F is at least k + d + 2. If for each pair of

functions f and g in F , f(k) and g(k) share p(z) in D, then F is normal in D.

Theorem 1.2. Suppose that d(≥ 0) is an integer, p(z) is an analytic function in D, and

the multiplicity of its all zeros is at most d. Let F be a family of meromorphic func-

tions in D, the multiplicity of all zeros and poles of f ∈ F is at least k + 2d + 2. If for

each pair of functions f and g in F , f(k) and g(k) share p(z) in D, then F is normal in D.

Corollary 1.1. Let F be a family of meromorphic functions in D; the multiplicity of

all zeros and poles of f ∈ F is at least k + 2. a ≠ 0 is a finite complex number. If for

each pair of functions f and g in F , f(k) and g(k) share a in D, then F is normal in D.

Corollary 1.2. Suppose that d(≥ 0) is an integer, p(z) is an analytic function in D,

and the multiplicity of its all zeros is at most d. Let F be a family of holomorphic

functions in D, n be a positive integer. If n ≥ d + 2 and for each pair of functions f

and g in F , fn f’ and gn g’ share p(z) in D, then F is normal in D.

Corollary 1.3. Suppose that d(≥ 0) is an integer, p(z) is an analytic function in D,

and the multiplicity of its all zeros is at most d. Let F be a family of meromorphic

functions in D, n be a positive integer. If n ≥ 2d + 2 and for each pair of functions f

and g in F , fn f’ and gn g’ share p(z) in D, then F is normal in D.

Remark 1.1. From Corollary 1.1, we can deduce Theorems C and E; from Corollary

1.3, we can deduce Theorem D.

About the normality concerning shared value of meromorphic functions with its

derivatives, J. M. Chang [10] recently obtained the following theorem.

Theorem F. Let F be a family of meromorphic functions in D, a, b be two distinct

finite non-zero complex numbers. If for every f ∈ F , f(z) = a ⇒ f’(z) = a, f’(z) ≠ b, and

f”(z) ≠ b, then F is normal in D.

Thus, a natural question is: whether F is normal if we replace the condition f(z) = a

⇒ f’(z) = a in Theorem F by f’(z) = a ⇒ f(z) = a. We answer this question by the fol-

lowing result.

Theorem 1.3. Let F be a family of meromorphic functions in D, a, b be two distinct

finite complex numbers. If for every f ∈ F , f’(z) = a ⇒ f(z) = a, f’(z) ≠ b, and all of its

zeros have multiplicity at least 2, then F is normal in D.

2. Lemmas
Lemma 2.1. Let d(≥ 0), k(≥ 1) be two integers, p(z) = adzd + ad−1zd−1 + · · · + a1z + a0 be

a polynomial, where ad(≠ 0), ad-1, ..., a0 are constants. If g(z) is a non-constant polyno-

mial, the multiplicity of its all zeros is at least k + d + 2, then g(k) (z) - p(z) has at least

two distinct zeros, and g(k)(z) - p(z) ≢ 0.
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Proof We discuss in two cases:

Case 1. If g(k)(z) - p(z) ≠ 0, then g(k)(z) - p(z) ≡ C, where C is a constant. So

g(z) = adzd+k

(d+k)(d+k−1)···(d+1) +
ad−1zd+k−1

(d+k−1)(d+k−2)···d + · · · + a0zk

k(k−1)···1 + q(z), where q(k)(z) ≡ C,

i.e., q(z) is a polynomial of degree at most k, then g(z) is a polynomial of degree k + d,

which contradicts with that the multiplicity of all zeros of g(z) is at least k + d + 2.

Case 2. If g(k)(z) - p(z) has only one zero ξ0, we assume g(k)(z) - p(z) = A(z - ξ0)
r,

where A is a non-zero constant, r is a positive integer.

We discuss the following three cases:

(i) If r <d + 1, then g(z) is a non-constant polynomial of degree at most k + d, which

contradicts with that the multiplicity of all zeros of g(z) is at least k + d + 2.

(ii) If r = d + 1, then g(k+d+1)(z) = A·r·(r - 1) ····· 2·1, so g(k+d+1)(z) has no zero. Since

the multiplicity of all zeros of g(z) is at least k + d + 2, then g(z) has no zero, which

contradicts with g(z) is a non-constant polynomial.

(iii) If r >d + 1, then g(k+d)(z) - ad · d · (d - 1) ····· 2·1 = A · r · (r - 1) ····· (r - d + 1) (z

- ξ0)
r-d, g(k+d+1)(z) = A · r · (r - 1) ····· (r - d) (z - ξ0)

r-d-1, so ξ0 is the unique zero of g(k

+d+1)(z). Since g(z) is a non-constant polynomial and the multiplicity of all zeros of g(z)

is at least k + d + 2, then ξ0 is a zero of g, thus, g(k+d)(ξ0) = 0, which contradicts with g
(k+d)(ξ0) = ad · d · (d - 1) ····· 2·1 ≠ 0.

From Case 1 and Case 2, we know g(k)(z) - p(z) has at least two distinct zeros.

If g(k)(z) - p(z) ≡ 0, then similar to the proof of Case 1, we obtain that g(z) is a poly-

nomial of degree k + d and get a contradiction since that the multiplicity of all zeros

of g(z) is at least k + d + 2. Then, g(k)(z) - p(z) ≢ 0.

Lemma 2.2. Let d(≥ 0), k(≥ 1) be two integers, p(z) = ad zd + ad-1 zd-1 + · · · + a1z +

a0 be a polynomial, where ad(≠ 0), ad-1, ..., a0 are constants. If g(z) is a rational func-

tion and not a polynomial, and the multiplicity of all the zeros and poles of g(z) is at

least k + 2d + 2, then g(k)(z) - p(z) has at least two distinct zeros, and g(k)(z) - p(z) ≢ 0.

Proof Since g(z) is a rational function and not a polynomial, then obviously g(k)(z) - p

(z) ≢ 0. Let

g(z) = B
(z − γ1)

p1(z − γ2)
p2 · · · (z − γn)

pn

(z − δ1)
q1(z − δ2)

q2 · · · (z − δm)
qm ,

p = p1 + p2 + · · · + pn, q = q1 + q2 + · · · + qm,

(2:1)

where B is a non-zero constant, gi(i = 1, 2, ..., n) and δj(j = 1, 2, ..., m) are the zeros

and poles of g(z), their multiplicity are pi(i = 1, 2, ..., n) and qj(j = 1, 2, ..., m), respec-

tively. Then, pi, qj ≥ k + 2d + 2(i = 1, 2, ..., n, j = 1, 2, ..., m).

Differentiating both sides of (2.1) step by step, we have

g(k)(z) = B
(z − γ1)

p1−k(z − γ2)
p2−k

. . . (z − γn)
pn−k

(z − δ1)
q1+k(z − δ2)

q2+k . . . (z − δm)
qm+k

hk(z), (2:2)

where hk(z) = (p − q)(p − q − 1) · · · (p − q − k + 1)zk(n+m−1) + · · · + c(1)k z + c(0)k
is a

polynomial, c(i)k (i = 0, 1) are constants.

g(k+d+1)(z) = B
(z − γ1)

p1−k−d−1(z − γ2)
p2−k−d−1 · · · (z − γn)

pn−k−d−1

(z − δ1)
q1+k+d+1(z − δ2)

q2+k+d+1 · · · (z − δm)
qm+d+k+1

hk+d+1(z),(2:3)
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where hk+d+1(z) = (p−q)(p−q−1) · · · (p−q−k−d)z(k+d+1)(n+m−1) + · · ·+ c(1)k+d+1z+ c
(0)
k+d+1

is

a polynomial, c(i)k+d+1(i = 0, 1) are constants.

Next, we discuss in two cases.

Case 1. If g(k)(z) - p(z) has a unique zero ξ0, then let

g(k)(z) − p(z) =
D(z − ξ0)

l

(z − δ1)
q1+k(z − δ2)

q2+k . . . (z − δm)
qm+k

, (2:4)

where D is a non-zero constant and l is a positive integer.

Here, we discuss in two subcases.

Subcase 1.1. When d ≥ l.

Differentiating both sides of (2.4), we have

g(k+d+1)(z) − p(d+1)(z) =
D · Rd+1(z)

(z − δ1)
q1+k+d+1(z − δ2)

q2+k+d+1 · · · (z − δm)
qm+k+d+1

, (2:5)

where
Rd+1(z) = (l − q − mk)(l − q − mk − 1) · · · (l − q − mk − d)z(d+1)m−(d−l+1) +

r((d+1)m−(d−l+1)−1)
d+1 z(d+1)m−(d−l+1)−1 + · · · + r(1)d+1z + r(0)d+1

is

a polynomial, r((d+1)m−(d−l+1)−1)
d+1 , . . . , r(1)d+1, r

(0)
d+1

are constants.

By (2.2) and (2.4), since d ≥ l, then deg hk(z) + p - nk = q + km + d ≤ k(m + n - 1) +

p - nk, so p - q ≥ k + d. Observe the form of hk(z), then deg hk(z) = k(m + n - 1), as

deg hk(z) + p - nk = q + km + d, thus p - q = k + d. From (2.3) and (2.5), p - nk - nd -

n ≤ (d + 1)m - (d - l + 1). Since

p − nk − nd − n − (d + 1)m ≥ p − p(k+d+1)
k+2d+2 − q(d+1)

k+2d+2 = (k+d)(d+1)
k+2d+2

, then l - d ≥ p - nk - nd

- n - (d + 1)m + 1 ≥ 1, it contradicts with d ≥ l.

Subcase 1.2. When d <l.

Differentiating both sides of (2.4), we have

g(k+d+1)(z) − p(d+1)(z) =
(z − ξ0)

l−d−1Ud+1(z)

(z − δ1)
q1+k+d+1(z − δ2)

q2+k+d+1 · · · (z − δm)
qm+k+d+1

, (2:6)

where Ud+1(z) = D(l − q−mk)(l−q−mk−1) · · · (l −q−mk−d)z(d+1)m+· · ·+u(1)d+1z+u
(0)
d+1

is

a polynomial, u(i)d+1(i = 0, 1) are constants.

Differentiating both sides of (2.4) step by step for d times, we can get that ξ0 is a

zero of g(k+d)(z) - p(d)(z), as p(d)(z) ≠ 0, then gi ≠ ξ0(i = 1, 2, ..., n).

Here, we discuss in three subcases.

Subcase 1.2.1. When l <q + km + d. Similar to the proof of Subcase 1.1, we get p - q

= k + d. By (2.3), (2.6), and gi ≠ ξ0(i = 1, 2, ..., n), (d + 1)m ≥ p - nk - nd - n, then

p ≤ nk + nd + n + (d + 1)m ≤ p(k + d + 1)
k + 2d + 2

+
q(d + 1)
k + 2d + 2

< p,

which is a contradiction.

Subcase 1.2.2. When l = q + km + d. If p >q, from (2.3), (2.6), and gi ≠ ξ0(i = 1, 2, ...,

n), we get (d + 1)m ≥ p - nk - nd - n, then

p ≤ nk + nd + n + (d + 1)m ≤ p(k+d+1)
k+2d+2 + q(d+1)

k+2d+2 < p, which is a contradiction. Thus, p ≤

q. Then, from (2.3), (2.6), and gi ≠ ξ0(i = 1, 2, ..., n), we have l - d - 1 ≤ (k + d + 1)(n +

m - 1). By simple calculation,
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q ≤ n(k + d + 1) +m(d + 1) − (k + d) <
p(k + d + 1)
k + 2d + 2

+
q(d + 1)
k + 2d + 2

≤ q,

which is a contradiction.

Subcase 1.2.3. When l >q + km + d. If p ≤ q, by (2.2) and (2.4), then l ≤ q + km + d,

which is a contradiction. Thus, p >q. By (2.3), (2.6) and gi ≠ ξ0(i = 1, 2, ..., n), we get (d

+ 1)m ≥ p - nk - nd - n, then p ≤ nk + nd + n + (d + 1)m ≤ p(k+d+1)
k+2d+2 + q(d+1)

k+2d+2 < p, which

is a contradiction.

Case 2. If g(k)(z) - p(z) has no zero. Then, l = 0 in (2.4), similar discussion to Case 1,

we get a contradiction.

By Case 1 and Case 2, g(k)(z) - p(z) has at least two distinct zeros.

Lemma 2.3 (see [11]). Let g(z) be a transcendental meromorphic function of finite

order on C, and let p(z) be a polynomial, p(z) ≢ 0. Suppose that all zeros of g(z) have

multiplicity at least k + 1. Then, g(k)(z) - p(z) has infinitely many zeros.

Lemma 2.4 (see [12]). Let F be a family of meromorphic functions on the unit disk

Δ, such that all zeros of functions in F have multiplicity greater than or equal to l,

and all poles of functions in F have multiplicity greater than or equal to j. Let a be a

real number satisfying -l <a <j. Then, F is not normal in any neighborhood of z0 Î Δ,

if and only if there exist

(i) points zk Î Δ, zk ® z0;

(ii) positive numbers rk, rk ® 0, and

(iii) functions fk ∈ F such that ρα
k fk(zk + ρkζ ) → g(ζ ) spherically locally uniformly in

C, where g(ζ) is a nonconstant meromorphic function. The function may be taken to

satisfy the normalization g#(z) ≤ g#(0) = 1(z Î C). Here, g#(z) denotes the spherical

derivative of g(z).

Lemma 2.5 (see [13]). Suppose that f(z) is a meromorphic function on C, if the sphe-

rical derivative f#(z) of f(z) is bounded, then the order of f(z) is at most 2.

Lemma 2.6 (see [14]). Suppose that f(z) is a transcendental meromorphic on C, k is

a positive integer. If ε is a positive number, a, b are two dinstinct finite complex num-

bers, then

T(r, f (k)) <

(
1 +

1
2k

)
N

(
r,

1
f (k) − a

)
+

(
1 +

1
2k

)
N

(
r,

1
f (k) − b

)

−N
(
r,

1

f (k+1)

)
+ εT(r, f (k)) + S(r, f (k)).

Lemma 2.7 (see [15]). Let g be a meromorphic function with finite order on C. If g

has only finitely many critical values, then it has only finitely many asymptotic values.

Lemma 2.8 (see [16]). Let f(z) be meromorphic on C such that the set of its finite

critical and asymptotic values is bounded. Then, there exists a positive number r0,

such that if |z| >r0 and |f(z)| >r0, then

|f ′(z)| ≥ |f (z)| log |f (z)|
16π |z| .

Lemma 2.9. Suppose that f(z) is a meromorphic function of finite order on C, a and

b are two dinstinct finite complex numbers. If f’(z) = a ⇒ f(z) = 0, and f’(z) ≠ b, then f

is a rational function.
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Proof Suppose that f is not a rational function. Since f is a meromorphic function of

finite order, then f’ is also a meromorphic function of finite order. Because f’(z) ≠ b,

then from Lemma 2.6, f’ - a has infinitely many zeros {zn}, and zn ® ∞(n ® ∞). Since

f’(z) = a ⇒ f(z) = 0, hence f(zn) = 0.

Let F(z) = f(z) - bz, then F’(z) = f’(z) - b ≠ 0, i.e., F has no finite critical value. By

Lemmas 2.7 and 2.8, we have

|F′(zn)| ≥ |F(zn)| log |F(zn)|
16π |zn| ,

By simple calculation, we have

|a − b| ≥ |b| |zn| log |bzn|
16π |zn| → ∞(n → ∞),

which is a contradiction. Then, f is a rational function.

Lemma 2.10 (see [6]). Let f (z) = anzn + an−1zn−1 + · · · + a0 +
q(z)
p(z), where a0, a1, ..., an

are constants with an ≠ 0, q(z) and p(z) are two coprime polynomials with deg q(z) <

deg p(z), k be a positive integer. If f(k) ≠ 1, then we have

(i) n = k, and k!ak = 1;

(ii) f (z) = 1
k! z

k + · · · + a0 + 1
(az+b)m;

(iii) If the zeros of f are of order ≥ k + 1, then m = 1 in (ii) and f (z) = (cz+d)k+1

az+b
, where

c(≠ 0), d are constants.

Lemma 2.11 (see [6,17]). Let R be a rational function such that R’ ≠ 0 on C. Then,

either R = az + b or R = a
(z+z0)

n + b, where a(≠ 0), b and z0 are constants, and n is a

positive integer.

3. Proof of Theorem 1.1
For any point z0 in D, either p(z0) = 0 or p(z0) ≠ 0.

Case 1. When p(z0) = 0. We may assume z0 = 0. Then, p(z) = alz
l + al+1z

l+1 + · · · =

zlh(z), where al(≠ 0), al+1, · · · are constants, l ≥ 1.

Let M = {Gj|Gj =
fj(z)
zl , fj ∈ F}. If M is not normal at 0, then by Lemma 2.4, there

exist points zt ® 0, positive numbers rt ® 0 and Gt Î M such that

gt(ζ ) = ρ−k
t Gt(zt + ρtζ ) → g(ζ ) spherically locally uniformly in C, where g(ζ) is a non-

constant meromorphic function in C, and g#(ζ) ≤ 1. Thus, the order of g(ζ) is at most

2.

Here, we discuss in two cases.

Case 1.1. There exists a subsequence of zt
ρt
; we may still denote it as zt

ρt
such that

zt
ρt

→ c, c is a finite complex number. Then,

φt(ζ ) =
ft(ρtζ )

ρ l+k
t

=
(ρtζ )

lGt(zt + ρt(ζ − zt
ρt
))

(ρt)
l(ρt)

k
→ ζ lg(ζ − c) = H(ζ )

spherically locally uniformly in C, so

φ
(k)
t (ζ ) − p(ρtζ )

ρ l
t

=
f (k)t (ρtζ ) − p(ρtζ )

ρ l
t

→ H(k)(ζ ) − alζ l
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spherically locally uniformly in C.

Since ∀f ∈ F , the multiplicity of all zeros of f is at least k + d + 2, the multiplicity of

all zeros of H is at least k + d + 2, then from Lemmas 2.1 and 2.3 H(k)(ζ) - alζ
l ≢ 0,

and H(k)(ζ) - alζ
l has at least two distinct zeros.

Suppose that ζ1, ζ2 are two distinct zeros of H(k)(ζ) - alζ
l. We choose proper s > 0,

such that D(ζ1, s) ∩ D(ζ2, s) = ∅, where D(ζ1, s) = {ζ | |ζ - ζ1| <s}, D(ζ2, s) = {ζ | |ζ -

ζ2| <s}.

By Hurwitz’s Theorem, there exists a subsequence of f (k)t (ρtζ ) − p(ρtζ ), we may still

denote it as f (k)t (ρtζ ) − p(ρtζ ), then exists points ζt = ζ1, and points ζ̃t = ζ2, such that

when t is large enough,

f (k)t (ρtζt) − p(ρtζt) = 0, f (k)t (ρt ζ̃t) − p(ρt ζ̃t) = 0. (3:1)

As for each pair of functions f and g in F , f(k) and g(k) share p(z) in D, then by (3.1)

we can deduce that for any positive integer r, when t is large enough,

f (k)r (ρtζt) − p(ρtζt) = 0, f (k)r (ρt ζ̃t) − p(ρt ζ̃t) = 0. (3:2)

For fixed r, let t converges to ∞ in (3.2), then rtζt ® 0, ρt ζ̃t → 0, thus

f (k)r (0) − p(0) = 0.

Then, by the isolation property of zeros of f (k)r (ζ ) − p(ζ ), when t is large enough,

ρtζt = ρt ζ̃t = 0.

Thus, when t is large enough, ζ1 = ζ2 = 0, which contradicts with D(ζ1, s) ∩ (ζ2, s) =
∅. Thus, M is normal at 0.

Case 1.2. There exists a subsequence of zt
ρt
; we may still denote it as zt

ρt
such that

zt
ρt

→ ∞. Then,

f (k)t (zt + ρtζ ) = (zt + ρtζ )lG
(k)
t (zt + ρtζ ) +

k∑
i=1

ci(zt + ρtζ )l−iG(k−i)
t (zt + ρtζ )

= (zt + ρtζ )lg
(k)
t (ζ ) +

k∑
i=1

ci(zt + ρtζ )l−iρ i
tg

(k−i)
t (ζ ),

where ci = l(l − 1) · · · (l − i + 1)Cl
k when l ≥ i, and ci = 0 when l <i.

Thus, we have

alf
(k)
t (zt + ρtζ )
p(zt + ρtζ )

− al = (g(k)t (ζ ) +
k∑
i=1

ci
g(k−i)
t (ζ )

( zt
ρt
+ ζ )i

)
al

h(zt + ρtζ )
− al → g(k)(ζ ) − al,

spherically locally uniformly in C - {ζ | g(ζ) = ∞}.

Since ∀f ∈ F , the multiplicity of all zeros of f is at least k + d + 2, the multiplicity of

all zeros of g is at least k + 2. Thus, by Lemmas 2.1 and 2.3, g(k)(ζ) - al has at least two

distinct zeros, and g(k)(ζ) - al ≢ 0. Suppose that ζ3, ζ4 are two distinct zeros of g(k)(ζ) -

al. We choose proper s > 0, such that D(ζ3, s) ∩ D(ζ4, s) = ∅, where D(ζ3, s) = {ζ | |ζ

- ζ3| <s}, D(ζ4, s) = {ζ | |ζ - ζ4| <s}.
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By Hurwitz’s Theorem, there exists a subsequence of alf
(k)
t (zt + ρtζ ) − alp(zt + ρtζ ),

we may still denote it as alf
(k)
t (zt + ρtζ ) − alp(zt + ρtζ ), then exists points ζ̂t = ζ3, and

points ζ ∗
t = ζ4, such that when t is large enough,

alf
(k)
t (zt + ρt ζ̂t) − alp(zt + ρt ζ̂t) = 0, alf

(k)
t (zt + ρtζ

∗
t ) − alp(zt + ρtζ

∗
t ) = 0.

Similar to the proof of Case 1.1, we get a contradiction. Then, M is normal at 0.

From Cases 1.1 and 1.2, we know M is normal at 0; there exists Δr = {z : |z| <r }

and a subsequence Gjk of Gj, such that Gjk converges spherically locally uniformly to a

meromorphic function G(z) or ∞(k ® ∞) in Δr.

Here, we discuss in two cases:

Case i. When k is large enough, fjk(0) 
= 0. Then, G(0) = ∞. Thus, for ∀ constant R >

0, ∃s Î (0, r), we have |G(z)| >R when z Î Δs. Thus, for sufficiently large

k, |Gjk(z)| > R
2 ,

1
fjk

is holomorphic in Δs. Hence when |z| = σ
2,

| 1
fjk(z)

| = | 1
Gjk(z)zl

| ≤ 2l+1

Rσ l
.

By Maximum Principle and Montel’s Theorem, F is normal at z = 0.

Case ii. There exists a subsequence of fjk; we may still denote it as fjk such that

fjk(0) = 0. Since ∀f ∈ F , the multiplicity of all zeros of f is at least k + d + 2, then G(0)

= 0. Thus, there exists 0 <r <r such that G(z) is holomorphic in Δr = {z : |z| <r} and

has a unique zero z = 0 in Δr. Then, Gjk converges spherically locally uniformly to a

holomorphic function G(z) in Δr; fjk converges spherically locally uniformly to a holo-

morphic function zlG(z) in Δr. Hence F is normal at z = 0.

By Case i and Case ii, F is normal at 0.

Case 2. When p(z0) ≠ 0.

Suppose that F is not normal at z0. By Lemma 2.4, there exist points zn ® z0, rn ®
0, fn ∈ F such that ρ−k

n fn(zn + ρnζ ) → g(ζ ) spherically locally uniformly in C, g(ζ) is a

non-constant meromorphic function in C, and g#(ζ) ≤ 1.

By Lemma 2.5, g(ζ) is a meromorphic function of finite order, the multiplicity of all

zeros of f is at least k + d + 2 for ∀f ∈ F , thus the multiplicity of all zeros of g is at

least k + d + 2.

Hence by Lemmas 2.1 and 2.3, g(k)(ζ) - p(z0) has at least two distinct zeros, and g(k)(ζ)

- p(z0) ≢ 0. Similar to the proof of Case 1.1, we get a contradiction. Thus, F is normal

at z0.

Thus, F is normal in D as z0 is arbitrary. The proof is complete.

4. Proof of Theorem 1.2
Similar to the proof of Theorem 1.1 and utilize Lemma 2.2, we can prove Theorem 1.2

immediately.

5. Proof of Theorem 1.3
Suppose that F is not normal in D, then there exists z0 Î D, such that F is not nor-

mal at z0. Without loss of generality, we may assume z0 = 0. By Lemma 2.4, there exist

zk ® z0, rk ® 0, fk ∈ F such that ρ−1
k fk(zk + ρkz) → R(z) spherically locally uniformly
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in C, R(z) is a non-constant meromorphic function in C, and R#(z) ≤ 1. Thus,

f ′
k(zk + ρkz) → R′(z) spherically locally uniformly in C.

By Hurwitz’s Theorem, we can easily get: (i) R’ = a ⇒ R = 0; (ii) R’ ≠ b; (iii) the mul-

tiplicity of zeros of R is at least 2.

By Lemma 2.5, R(z) is a meromorphic function of finite order. Moreover from (i),

(ii), and Lemma 2.9, R is a rational function.

Here, we discuss in two cases:

Case 1. When b = 0. Because R’ ≠ b, by Lemma 2.11, R = cz + d or R = c
(z+z0)

n + d,

where c(≠ 0), d, z0 are constants, and n is a positive integer. From (iii), we have

R = c
(z+z0)

n + d. If a ≠ 0, then the roots number of R
′ = −nc

(z+z0)
n+1 = a is n + 1, and the

roots are different from each other, meanwhile the roots number of R = 0 is at most n,

it contradicts with R’ = a ⇒ R = 0. Then, a = 0, which contradicts with that a and b

are distinct constants.

Case 2. When b ≠ 0.

Here, we discuss in three subcases:

Subcase 2.1. If R is a polynomial. From R’ ≠ b and Lemma 2.11, we have R = cz + d,

where c(≠ 0), d(≠ b) are constants, which contradicts with (iii).

Subcase 2.2. If R = q(z)
p(z), where q(z) and p(z) are coprime polynomials, deg q(z) < deg

p(z), then R′ = q′p−qp′
p2 . Since deg q(z) < deg p(z), so deg (q’p - qp’) < deg (p2). Thus, 0 is

the only one deficiency value of R’, which contradicts with R’ ≠ b, b ≠ 0.

Subcase 2.3. If R = anzn + an−1zn−1 + · · · + a0 +
q(z)
p(z), where a0, a1, ..., an are constants,

an ≠ 0, q(z) and p(z) are coprime polynomials, deg q(z) < deg p(z). From Lemma 2.10

and (iii), R = bz + a0 + 1
cz+d = (lz+t)2

cz+d
, where c(≠ 0), d, l(≠ 0), t are constants. Since a and

b are distinct, then the roots of R
′ − a = b − a − c

(cz+d)2
= 0 are two distinct complex

numbers, meanwhile R = 0 has a single root z = − t
l, which contradicts with R’ = a ⇒ R

= 0.

Then, F is normal in D. The proof is complete.
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