
RESEARCH Open Access

On Minkowski’s inequality and its application
Chang-Jian Zhao1* and Wing-Sum Cheung2

* Correspondence: chjzhao@163.
com
1Department of Mathematics,
China Jiliang University, Hangzhou
310018, China
Full list of author information is
available at the end of the article

Abstract

In the paper, we first give an improvement of Minkowski integral inequality. As an
application, we get new Brunn-Minkowski-type inequalities for dual mixed volumes.
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1 Improvement of Minkowski’s inequality
The well-known inequality due to Minkowski can be stated as follows ([1], pp. 19-20,

[2], p. 31]):

Theorem 1.1 Let f(x), g(x) ≥ 0 and p >1, then

(∫
(f (x) + g(x))pdx

)1/p

≤
(∫

f (x)pdx
)1/p

+
(∫

g(x)pdx
)1/p

, (1:1)

with equality if and only if f and g are proportional, and if p <1 (p ≠ 0), then

(∫
(f (x) + g(x))pdx

)1/p

≥
(∫

f (x)pdx
)1/p

+
(∫

g(x)pdx
)1/p

, (1:2)

with equality if and only if f and g are proportional. For p <0, we assume that f(x), g

(x) >0.

An (almost) improvement of Minkowski’s inequality, for p Î ℝ\{0}, is obtained in the

following Theorem:

Theorem 1.2 Let f(x), g(x) ≥ 0 and p >0, or f(x), g(x) >0 and p <0. Let s, t Î ℝ\{0},

and s ≠ t. Then

(i) Let p, s, t Î ℝ be different, such that s, t >1 and (s - t)/(p - t) >1. Then

∫
(f (x)+g(x))pdx ≤

[(∫
f s(x)dx

)1/s

+
(∫

gs(x)dx
)1/s

]s(p−t)/(s−t)

×
[(∫

f t(x)dx
)1/t

+
(∫

gt(x)dx
)1/t

]t(s−p)/(s−t)

,

(1:3)

with equality if and only if f(x) and g(x) are constant, or 1/p = (1/s + 1/t)/2 and f(x)

and g(x) are proportional.

(ii) Let p, s, t Î ℝ be different, such that s, t <1 and s, t ≠ 0, and (s - t)/(p - t) <1.

Then
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∫
(f (x)+g(x))pdx ≥

[(∫
f s(x)dx

)1/s

+
(∫

gs(x)dx
)1/s

]s(p−t)/(s−t)

×
[(∫

f t(x)dx
)1/t

+
(∫

gt(x)dx
)1/t

]t(s−p)/(s−t)

,

(1:4)

with equality if and only if f(x) and g(x) are constant, or 1/p = (1/s + 1/t)/2 and f(x)

and g(x) are proportional.

Proof (i) We have (s - t)/(p - t) >1, and in view of∫
(f (x) + g(x))pdx =

∫
[(f (x) + g(x))s](p−t)/(s−t) · [(f (x) + g(x))t](s−p)/(s−t)dx.

By using Hölder’s inequality (see [1] or [2]) with indices (s - t)/(p - t) and (s - t)/(s -

p), we have

∫
(f (x) + g(x))pdx ≤

[∫
(f (x) + g(x))sdx

](p−t)/(s−t)[∫
(f (x) + g(x))tdx

](s−p)/(s−t)

, (1:5)

with equality if and only if (f(x) + g(x))s(p - t)/(s - t) and (f(x) + g(x))t(s - p)/(s - t) are pro-

portional, i.e., either f(x) + g(x) is constant or the exponents are equal, i.e., 1/p = (1/s +

1/t)/2.

On the other hand, by using Minkowski’s inequality for s >1 and t >1, respectively,

we obtain

(∫
(f (x) + g(x))sdx

)1/s

≤
(∫

f s(x)dx
)1/s

+
(∫

gs(x)dx
)1/s

, (1:6)

with equality if and only if f(x) and g(x) are proportional, and

(∫
(f (x) + g(x))tdx

)1/t

≤
(∫

f t(x)dx
)1/t

+
(∫

gt(x)dx
)1/t

, (1:7)

with equality if and only if f(x) and g(x) are proportional.

From (1.5), (1.6) and (1.7), (1.3) easily follows. From the equality conditions of (1.5),

(1.6) and (1.7), the case of equality stated in (i) follows.

(ii) We have (s - t)/(p - t) <1. Similar to the above proof, we have

∫
(f (x) + g(x))pdx ≥

[∫
(f (x) + g(x))sdx

](p−t)/(s−t)[∫
(f (x) + g(x))tdx

](s−p)/(s−t)

, (1:8)

with equality if and only if either f(x) + g(x) is constant or 1/p = (1/s + 1/t)/2.

On the other hand, in view of Minkowski’s inequality for the cases of 0 < s <1 and 0

< t <1,

(∫
(f (x) + g(x))sdx

)1/s

≥
(∫

f (x)sdx
)1/s

+
(∫

g(x)sdx
)1/s

, (1:9)

with equality if and only if f(x) and g(x) are proportional, and

(∫
(f (x) + g(x))tdx

)1/t

≥
(∫

f (x)tdx
)1/t

+
(∫

g(x)tdx
)1/t

, (1:10)

with equality if and only if f(x) and g(x) are proportional.
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The inequality (1.4) easily follows, with equality as stated in (ii). ■
Remark 1.3 For (i) of Theorem 1.2, for p >1, letting s = p + ε, t = p - ε, when p, s, t

are different, s, t >1, and (s - t)/(p - t) /2 >1, and letting ε ® 0, we get (1.1).

For (ii) of Theorem 1.2, for p <1 and p ≠ 0, s = p + ε, t = p + 2ε, when p, s, t are dif-

ferent, s, t <1 and s, t ≠ 0, and (s - t)/(p - t) = 1/2 <1, and letting ε ® 0, we get (1.2).

2 An application
The setting for this paper is n-dimensional Euclidean space ℝn(n >2). Associated with

a compact subset K of ℝn, which is star-shaped with respect to the origin, is its radial

function r(K, ·): Sn - 1 ® ℝ, defined for u Î Sn - 1, by

ρ(K, u) = Max{λ ≥ 0 : λu ∈ K}.

If r(K, ·) is positive and continuous, K will be called a star body. Let Sn denote the

set of star bodies in ℝn. Let δ̃ denote the radial Hausdorff metric, that is defined as fol-

lows: if K, L ∈ Sn, then δ̃(K, L) = |ρK − ρL|∞ (see e.g. [3]).

If K1, . . . ,Kr ∈ Sn and l1, ...,lr Î ℝ, then the radial Minkowski linear combination,

λ1K1+̃ · · · +̃λrKr, is defined by Lutwak (see [4]), as

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki}. Here, λ1x1+̃ · · · +̃λrxr equals l1x1 + ... +lrxr
if x1, ..., xr belong to a linear 1-subspace of ℝn, and is 0 else. It has the following

important property, for K, L ∈ Sn and l, μ ≥ 0

ρ(λK+̃μL, ·) = λρ(K, ·) + μρ(L, ·) (2:1)

For K1, . . . ,Kr ∈ Sn and l1, ..., lr ≥ 0, the volume of the radial Minkowski linear

combination λ1K1+̃ · · · +̃λrKr is a homogeneous nth-degree polynomial in the li,

V(λ1K1+̃ · · · +̃λrKr) =
∑

Ṽi1,...,inλi1 · · · λin (2:2)

where the sum is taken over all n-tuples (i1, ..., in) whose entries are positive integers

not exceeding r. If we require the coefficients of the polynomial in (2.2) to be sym-

metric in their argument, then they are uniquely determined. The coefficient Ṽi1,...,in is

positive and depends only on the star bodies Ki1 , . . . ,Kin. It is written as Ṽ(Ki1 , . . . ,Kin)

and is called the dual mixed volume of Ki1 , . . . ,Kin. If K1 = ... = Kn - i = K, Kn - i+1 = ...

= Kn = L, the dual mixed volumes are written as Ṽi(K, L). In particular, for B the unit

ball about o, Ṽi(K,B) is written as W̃i(K) (see [5]).

For Ki ∈ Sn, the dual mixed volumes were given by Lutwak (see [6]), as

Ṽ(K1, . . . ,Kn) =
1
n

∫
Sn−1

ρ(K1, u) . . . ρ(Kn, u)dS(u), (2:3)

For K, L ∈ Sn and i Î ℝ, the ith dual mixed volume of K and L, Ṽi(K, L), is defined

by,

Ṽi(K, L) =
1
n

∫
Sn−1

ρ(K, u)n−iρ(L, u)idS(u). (2:4)
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From (2.4), taking in consideration r(B, u) = 1, if K ∈ Sn, and i Î ℝ

W̃i(K) =
1
n

∫
Sn−1

ρ(K, u)n−idS(u). (2:5)

The well-known Brunn-Minkowski-type inequality for dual mixed volumes can be

stated as follows [6]:

Theorem 2.1 Let K, L ∈ Sn, and i < n - 1. Then,

W̃i(K+̃L)1/(n−i) ≤ W̃i(K)1/(n−i) + W̃i(L)1/(n−i), (2:6)

with equality if and only if K and L are dilates.

The inequality is reversed for i > n - 1 and i ≠ n.

In the following, we establish new Brunn-Minkowski-type inequalities for dual mixed

volumes.

Theorem 2.2 Let K, L ∈ Snand i, j, k Î ℝ.

(i) Let i, j, k Î ℝ be different, such that j, k < n - 1, and (j - k)/(i - k) >1. Then

W̃i(K+̃L) ≤
(
W̃j(K)

1/(n−j) + W̃j(L)
1/(n−j)

)(n−j)(k−i)/(k−j)

×
(
W̃k(K)

1/(n−k) + W̃k(L)
1/(n−k)

)(n−k)(i−j)/(k−j)
,

(2:7)

with equality if and only if K and L are balls, or 1/(n - i) = [1/(n - j) + 1/(n - k)]/2,

and K and L are dilates.

(ii) Let i, j, k Î ℝ be different, such that j, k > n - 1 and j, k ≠ n, and (j - k)/(i - k) <1.

Then

W̃i(K+̃L) ≥
(
W̃j(K)

1/(n−j) + W̃j(L)
1/(n−j)

)(n−j)(k−i)/(k−j)

(
W̃k(K)

1/(n−k) + W̃k(L)
1/(n−k)

)(n−k)(i−j)/(k−j)
,

(2:8)

with equality if and only if K and L are balls, or 1/(n - i) = [1/(n - j) + 1/(n - k)]/2,

and K and L are dilates..

Proof We begin with the proof of (i). From (2.1), (2.5) and (1.3), we have

W̃i(K+̃L) =
1
n

∫
Sn−1

ρ(K+̃L, u)n−idS(u) =
1
n

∫
Sn−1

(ρ(K, u) + ρ(L, u))n−idS(u)

≤ 1
n

[(∫
ρ(K, u)n−jdx

)1/(n−j)

+
(∫

ρ(L, u)n−jdx
)1/(n−j)

](n−j)(k−i)/(k−j)

×
[(∫

ρ(K, u)n−kdx
)1/(n−k)

+
(∫

ρ(L, u)n−kdx
)1/(n−k)

](n−k)(i−j)/(k−j)

=
(
W̃j(K)

1/(n−j) + W̃j(L)
1/(n−j)

)(n−j)(k−i)/(k−j)(
W̃k(K)

1/(n−k) + W̃k(L)
1/(n−k)

)(n−k)(i−j)/(k−j)
,

with equality if and only if as stated in (i).

Similarly, case (ii) of Theorem 2.2 easily follows. ■
Remark 2.3 For (i) of Theorem 2.2, for n - i >1, letting s = n - i + ε, t = n - i - ε,

when i, j, k are different, n - j, n - k >1, and (k - j)/(k - i) = 2 >1, and letting ε ® 0,

we get the following result: Let K, L ∈ Sn, and i < n - 1. Then,
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W̃i(K+̃L)1/(n−i) ≤ W̃i(K)1/(n−i) + W̃i(L)1/(n−i),

with equality if and only if K and L are dilates.

This is just the well-known inequality (2.6) in Theorem 2.1.

For (ii) of Theorem 2.2, for n - i <1 and n - i ≠ 0, s = n - i + ε, t = n - i + 2ε, when i,

j, k are different, n - j, n - k <1 and n - j, n - k ≠ 0, and (k - j)/(k - i) = 1/2 <1, and let-

ting ε ® 0, we get the following result:

Let K, L ∈ Sn, and i < n - 1 and i ≠ n. Then,

W̃i(K+̃L)1/(n−i) ≥ W̃i(K)1/(n−i) + W̃i(L)1/(n−i),

with equality if and only if K and L are dilates.

This is just an reversed form of inequality (2.6).
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