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Abstract

In this paper, we study the problem of a variety of nonlinear time series model X,,,1 =
F(X,, €n41(Zns1)) in which {Z,,1} is @ Markov chain with finite state space, and for every
state j of the Markov chain, {e,()} is a sequence of independent and identically
distributed random variables. Also, the existence of the stationary distribution of the
sequence {X,,} defined by the above model is investigated. Some new novel results on
the underlying models are presented.
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1 Introduction

It is known that stochastic difference equations provide models that represent a broad
class of discrete-time stochastic systems, and a unified representation leads to the
following general model (see, e.g.,[1-6]):

Xne1 = F(Xn, n41), n >0, (1.1)

where F: R?7 x R” » R? is a Boreal measurable mapping, {e,} is a sequence of inde-
pendent and identically distributed g-dimensional random vectors on a probability
space (2, F,P). It can be seen that sequence {X,} defined in (1.1) forms a temporally
homogeneous Markov chain with state space (R?, B,) whenever X, is a random vari-
able on (€2, F, P) which is independent of {e,} (see, e.g., [1-4]).

It has been recognized that the application of model (1.1) is of great significance.
However, the limitations of the model are obvious, that is, it neglects the factor that
interference with a system is affected by environment, see for example [7-9] and the
references therein. Generally speaking, the interference with a system will change when
environment changes. In view of the above fact, we, in the present paper, will intro-
duce a model, which improves model (1.1) in certain extent.

Let (R, 7, P) be a probability space, and (R?, B,) be a measurable space, where R? is
a g-dimensional real space, and B, is the o-algebra consisting of all Boreal subsets of
RY. y, denotes Lebesgue measure on (R% B,). E = {1, 2, ..., m} is a finite set. F stands
for the o-algebra consisting of all subsets of E. Let {Z,, n > 1} be an irreducible, aper-
iodic, and time homogeneous Markov chain, which values on state space (E, F) and its
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probability space is (€2, F, P). Its transition probability is p;; = P(Z,.1 = j|Z, = i), Vi, j €
E. {e,(1)}, ..., {e,(m)} are ii.d random vector sequences, which value on state space (RY,
B,) and are defined on (€2, F, P). They are mutually independent and Vi € E, {Z,} is

m
independent of {e,(i)}. Let ex(Zn) = >_ {ea(i)}(i)(Zs), where I(4(Z,) is an indicator func-
i=1

tion for a single point set {i}. We introduce the following definition on the model we
are studying.
Definition 1.1 If

{ Xus1 = F(Xn/ €n+1 (Zn+1 ))'

XO S Rl], (12)

where F: (R? x R? x E, B, x B, x F) » (R%, B,) is a Borel measurable mapping {Z,},
{e (1)}, ..., {e.(m)} are mutually independent and satisfy: both Z,, and e, (i) are indepen-
dent of Xy, Ee,(i) = 0, E |e,(i)| < oo, for every i € E and n > 0, then the model defined
by (1.2) is called general nonlinear time series model in random environment, written
as random environment general nonlinear time series (REGNLTS).

In the present paper, we are interested in the stationary solution of the sequence {X,,}
which is generated iteratively by (1.2).

We also recall the following definitions, which can be found in [7].

Definition 1.2 (see [7]). Assume that {X,)} is a sequence of q-dimensional random
vectors which submits to REGNLTS model (1.2).

(i) Let 1 be a probability distribution. If for every n > 1, X,, ~ m when X, ~ 1, then 7w
is called invariant distribution of the model (1.2).

(ii) If Xy ~ 7, and 1 is the invariant distribution of model (1.2), then the sequence
{X,,} which is generated iteratively by (1.2) and started from the initial value X,, is
called a stationary solution of the model (1.2).

2 Basic notions
In this section, we provide notions and preliminary properties for stationary distribu-
tion. These preliminaries will be used in subsequent sections.

Definition 2.1 (see [10,11]). Suppose (X, F) is a measurable space, {X,} is a homoge-
neous Markov chain with state space (X, F), P, n = 1, 2, ... is transition probability.
We call a probability measure 1 defined on F is a stationary distribution for {X,}, if
the following equality holds: to any A € F,

w(A) = /n(dx)P(x,A). (2.1)

X

It is easy to see, {X,;} is a strictly stationary process when X, ~ 7 is a stationary dis-
tribution for {X,,}. Furthermore, if {X,;} is ¢-irreducible, then {X,} has stationary distri-
bution if and only if {X,;} is ergodic.

Let £ = {glg is a finite non - negative measurable function defined on (X, F)}.
Define a mapping A:

AZ(x) = Elg(Xnr) — (%) IX = x] = / P(x, dy)3(y) — 8(x).

Ag(x) is called g-drift at x for {X,}.
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Proposition 2.2 Suppose that § € &, i is a stationary distribution for {X,;}. If g(x) is
integral with respect to w on X, then

/ 7 (dx) Ag(x) = 0. 2.2)

X

Especially, when g is a non-negative bounded measurable function on (X, F) the
above equality is true.
Proof From (2.1) and Fubini theorem, we have

[ w(@dgt) - [ 7@y [ poavg().
X X

X

Since g(x) is integral with respect to 7, it is easy to see equality(2.2) is true.
Before moving further, we give some notations.
Let

(o]

Gip(xA)=> P(x,A), xeX, AcF,
1

and

D={Ae}'|G1/2(x,A)>O, VXGX}

3 Preliminary results
Lemma 3.1 (see [7-9]). Suppose that {X,} is the iterative sequence in (1.2), then {(X,,
Z,)} is a time-homogeneous Markov chain with state space (R? x E, B, x F).

Theorem 3.2 If {(X,,, Z,)} is a time-homogeneous Markov chain with state space (R?
x E, B, x F), and there exists stationary distribution 1, x 1w, and (Xo, Zo) ~ 71 X Tra,
then for m(A) & (;m; x m,)(A x E) (VA € B,) we have

7(A) = /n(dx)P(x,A). (3.1)
RY
Proof Setting 1(A) = m; x m(A x E), we have

7 (A)

1 X 7w2(A x E)
P(X, €A Z, €E)
P(X; € A)

/P(X] S A|X0 = X)P(XO € dX)
R7

/n(dx)P(Xl € AlXo =Xx).

R4

7(A) = fn(dx)P(x,A). O

RY

Hence
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4 Main results
In this section, we present some main results in this paper. To begin with, we recall
the following theorem on a necessary condition for the existence of stationary distribu-
tion for a general state space Markov chain.

Lemma 4.1 (see [3]). Let V(x) € £. Suppose there exist A € F and parameter func-
tion V,(x), z € (a, b) on (X, F)such that

(i) Sup V(x) < +00 4,0 V(¥) = leelfl;) V(x) Vye AS

x€eA

(ii) for any z € (a, b), V,(x) is a non-negative bounded measurable function on
(X, F)

(iii) AV(x) = ligngAVz(x), Vx € X, and AV,(x), z € (a, b), has uniformly below
bound on X, i.e., there exists N > 0 such that AV,(x) > —N, Vx € X, z € (a, b);

(iv) A€ D, and AV(x) > 0, x € AS

Then there is no stationary distribution about Markov chain {X,}.

On the above basis, we obtain some criteria of existence for stationary solution about
the model (1.2).

Theorem 4.2. Suppose there is a strictly positive measurable function V(x, i) on (RT x
E B, x F)and A = {(x, i) € R? x E|V(%, i) < m} (to some m > 0) such that

(i) Vxa € R% je E, V(F(x, ¥())), j) is integral with respect to Di(-) on R?, where D/(-)
denotes probability distribution of e,(j);

(i) V(E(x, ¥()), j) = V(T(x), j) - O(x, a(y(j), Ya € R, y € R?, je E, where T(:) is a
measurable mapping on (RY, B,), O(-) is a bounded measurable function on (R? x E, B,
x F), a(-) is a measurable function defined on (R? x E, B, x F) and Vj € E, a(-(j)) is
integral with respect to Di(-) on R? x E;

(iii) A® € D, and V(T(x), j) >V(x, i) + ¢;0(x, ))(V(x, i) € A°), j € E, where
G = [ a(y())Di(dy),

RY
Then Markov chain (X,,, Z,)) determined by Equation (1.2) does not have stationary
distribution, and consequently, model (1.2) does not have stationary distribution.
Proof Using condition (i) and integral transformation formula, we have

/ P(X, dY)V(Y) / > psV(E(x y(j)).)D;(dy)

RIXE pi =1

> [ VG301, D)
j=1 RY

< 400,
where X = (x, i), Y = (y, j). Taking
1 — zV&xi)
Vo(x, i) = 1Z_Z , ze(0,1),

and in virtue of L’Hospital law, we have

V(x,i) = Zl_l)l’{{ V.(x,i), x€R% i€k

, and

0<V,(xi)<1+V(xi), VxeRI icE zc(01).
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According to control convergence theorem, we have

lim [ P(X,dY)V.(Y)= / P(X,dY)V(Y), X eR7xE,

z—1-
R/ E R7x E

then

lirfli AV.(X) = AV(X), XeRIxE.

Using condition is (ii) and (iii), we have

AV(X) = / P(X, dY)V(Y) — V(X)
R7xE
- / S piVE( (7)), ))Dj(dy) — V(X)
RY j=1

- Yom [ VE ) IDE) - V)
j=1 RY

v

> i [ 1V(T60.1) — 000 ety G0y d) — VX
j=1

RY
=Y pVT).j) / Di(dy) — >y (x.]) / «(y())
j=1 R j=1 R

Dy(dy) — V(X)

m
2 Pi(V(TX).J) = 0(x ) — V(x1)
j=1
> 0, (x1i)eA"
In the following, we prove AV,(X) has uniformly below bound. Denoting
Bixj) = {y € R": V(T(x),j) > V(F(x,y(j)).j)},

then

— AV, (x, 1) / P(X, dY)V.(Y) — V.(X)

R7x E

1-7"&) 1z
/ ( C TR ) px dy)
1—-z 1—-z

Rix E

V() _ v
_ fz Py

Rix E
Mo V(EGY(G)) _ VT(,)
RY j=1
mo V(IR _ V(i)

+ Z pij 1
=1

—Z
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IA

i [ 10 VT60.1) = VR YG) DIV @)
=1 By

+> pi  sup  [1+V(xi) = V(T(x),j)]

T V)< Vi)

2430 [ 6x Dy ()
j:

Bixj)

+ Zpif max {m, sup [V(x,i) — V(T(x),j)]}

j=1 (x,i)eA®

24360 ) [ latyG)ID)(ay)
j=1 RY

IA

+Zpi]-maxIm,|cj|~ sup |9(x,j)|}.

i=1 (x,i)eA®

Note that when Vj € E, a(-(j)) is integral with respect to Dj(-), we have

/ la(y(7))IDy(dy) < +o,
RY

therefore AV;(X) has uniformly below bound. We know {(X,,, Z,)} has not stationary
distribution in terms of Lemma 4.1, and consequently, {X,} has not stationary
distribution.

Another form of Theorem 4.2 is the following. O

Theorem 4.3 If there is a strictly positive measurable function V(x, i) on (R? x E, B,
x F) and A = {(», i) € RT x E|V(x, i) < K} (to some K > 0) such that

(i) Ve e R? je E, V(F(x, y())), j) is integral for D;(-) on R?, where Dj(-) denotes prob-
ability distribution of e,(j);

!
(ii) V(F(x, v(j)),j) = V(T(x),j) — g@k(x,j)ak(y(j)), Vxe R, je E, ye R, where T

() is a measurable mapping on (R?, B,), 0;(-) is a bounded measurable function on (R?
x E, B, x F), o(-) is a measurable function defined on (R? x E, B, x F) and

Clj = qu “k(Y(j))Dj(dy), k=1,2,.., [ is existent and finite;
!
(iii) A € D, and when (x, i) € A, we have V(T(x),j) > V(x,i) + Y Ok(x.) - (cij), ¥/
k=1

€ E, where % = qu O‘k(Y(j))Dj(d)’),

Then the Markov chain (X,,, Z,) determined by Equation (1.2) does not have station-
ary distribution, and consequently, there is no stationary distribution about {X,}.

Proof Similar to the proof of Tsheorem 4.2, we omit the proof. O

Remark Note that Theorems 4.2 and 4.3 may generalize to a general measurable
space.

Remark The system x,,,1 = T(x,,) defined by T(x) in Theorems 4.2 and 4.3, is called
the corresponding determination department of (1.2). Theorem 4.2 and 4.3 show that
the existence of stationary solution in Equation (1.2) depends on, to some extent, the
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increasing or decreasing rate of the determination department Lyapunov function
along path curve (i.e., reach to overcome the influence of noise).

Theorem 4.4 If the Markov chain {(X,, Z,)} determined by Equation (1.2) is weak
Feller chain, i.e., for every bounded continuous function g on (R? x E),

Pg = quE P(X,dY) - g(Y) is still a bounded continuous function on (R? x E), there are

constants r; 2 1, i =1, 2, ..., I, a nonempty compact subset A and a non-negative mea-
surable function V(X) on (R? x E, B, x F) such that

I
(i) V(F(x,y(5)).j) = kZ ((Hi(x, ) + O(x, o (y(G)))™ Y € R, y € R?, where Hy(x, j),
=1

O, ), k= 1,2, .., 1, j e E, are non-negative measurable function on (R? x E, B, x F),
and Vj € E, Hi(x, j), Ox(x, j) are bounded on A, ou(y())), k = 1, 2, ..., [, are nonnegative
measurable function on (R? x E, B, x F) and ou(y())), k = 1, 2, ..., [, are integral with
respect to Dj(-);

(i) de > 0, and set family {B(%,j)}xjjeas C R, when (%, j) € A and y € B(x, j), we
1

have V(F(x,v(j)).j) < V(x,j) —e — ZLI [Hk(x,j)Djr" (B(x,§)°) + Ou(x, ) - ci (%)™ where

1
aj(®) =1 [ ow(y())*Dj(dy)]™.
B(x)°
Then the Markov chain {(X,,, Z,)} has stationary distribution, and consequently, {X,}
has stationary distribution.

Proof

EIV(X01) 1% = (x1)] [ varean)

R/ E

/ 3 psVIER y(),j)D; (dy).

RY j=1

Using Minkowski inequality, for every (x, i) € A we have

E[V(Xne1)1Xn = (x,1)]

IA

S [ vy D)

— ‘
s B(x,)

I m
30 [ ) 0 a5 D)
k=1 j=1 B(X,j)c
V(x,j) —e.

IA

Besides, we have

E[V(Xn)IXn = (x,1)] pij(Hi(x,j) + 6r(x, j)eu(y(7)))" Dj(dy)

M-
—
M=

1

Hi (%) + 6k (%, J) - (R/ w;"(YU))Dj(dY))

IA
s
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and

sup E[V(Xn+1)IXn = (x,1)] < +o00.
(x,)€A
We know the conclusion is true in terms of Theorem 2 and 3 of [12]. ©
Corollary 4.5 Suppose the Markov chain {(X,, Z,)} determined by Equation (1.2) is
weak Feller chain, the T is a measurable mapping on (R?, B,). If there are a non-nega-
tive measurable function V(X) on (R? x E, B, x F), and a nonempty compact subset A

in R? such that
I

(i) V(F(x, v(1).j) < V(T(x),j) + ZQk(x,j)ak(y(j)), Vxe R%, ye R, je E, where oy
k=1
(Y()), Oxx, j), k= 1,2, .., I, j € E are measurable function on (R? x E, B, x F) and Vj
e E, V(T(x), j), 0i(x, j) are bounded on A, ou(y(j)), k = 1, 2, ..., | are integral with
respect to Dj(-);

(i) V(T(x),j) = V(%)) — i iib(x,j) — & x € AS, where % = qu ar(y())Dj(dy), k = 1,
k=1

2, .., L.

Then the Markov chain {(X,, Z,)} has stationary distribution, and consequently, {X,}
has stationary distribution.

Proof Similar to the proof of Theorem 4.4, we omit the proof. O

Remark The corollary does not demand 6,(x, j) and ox(x, j), k = 1, 2, ..., [, are non-
negative, so it makes that the application is more facility.

5 Example
Consider the following a class of model

Xne1 = T(Xn) + O(Xn) : en+1(Zn+1)- (51)

Here, X,, values on R? and 7' : R? » R? is a Boreal measurable mapping, 6(x) is a g
order matrix function on R? and its every element is Boreal measurable on R, {e,} is i.
i.d random sequence valued on R, e, has strictly positive density function fit) > 0, Vt
€ R7 with respect to Lebesgue measure z,. We suppose

Both Z, and e, (i) (Vi € E) are independent of X,
Ee,(i) = 0, Eles(i)| < +oo (Vi € E).
' axq I All; = sup '™
To any matrix A € R, denote 1 | ||P1 ]l -
Theorem 5.1 The Markov chain {(X,, Z,)} is determined by Equation (5.1), when

[|0(x)||1 is bounded function on RY, C := rnax{f It f;(t) - ug(dt) :j € Ef < +oc and
RY

there exists a constant K such that
@ [T > [1%|| + C||0&)||1 ||*]|| >K then {(X,, Z,)} has not stationary distribu-

tion, and consequently, {X,} has not stationary distribution.

(ii) If every component of T(x) and every element of O(x) are both continuous func-

1
r

tion on R? such that C ; max displaystyle/ el fi(t)" - ng(dt) :je Ey < +ocand
RY
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(11T + c||l0®)|])" < |1=]]" - & ||*]|| >K, where r = 1 and &, K > 0, then {(X,,, Z,)}
has stationary distribution, and consequently, {X,;} has stationary distribution.

Proof

(i) Taking V(x, i) = ||x||, x € R% i e E, we complete the proof in terms of theorem
4.3.

(ii) It is easy to see {(X,, Z,)} is a weak Feller chain, taking V(x, i) = ||x||", x € R?

and B(x, j)) =R%, xe A° = {xe R?: ||x|| >K} in the Theorem 4.4, then this completes
the proof. ©
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